94864fb9bc
https://software.intel.com/sites/default/files/managed/c6/a9/319433-020.pdf Most of the instructions are implemented, more on the way. + few bugfixes for legacy AVX-512 emulation AVX-512: Fixed bug in VCMPPS masked instruction implementation with 512-bit data size AVX-512: Fixed AVX-512 masked convert instructions with non-k0 mask (behaved as non masked versions) AVX-512: Fixed missed #UD due to invalid EVEX prefix fields for several AVX-512 opcodes (VFIXUPIMMSS/SD, FMA)
337 lines
12 KiB
C++
337 lines
12 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2012-2014 Stanislav Shwartsman
|
|
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stackPrefetch(bx_address offset, unsigned len)
|
|
{
|
|
bx_address laddr;
|
|
unsigned pageOffset;
|
|
|
|
BX_CPU_THIS_PTR espHostPtr = 0; // initialize with NULL pointer
|
|
BX_CPU_THIS_PTR espPageWindowSize = 0;
|
|
|
|
len--;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (long64_mode()) {
|
|
laddr = offset;
|
|
pageOffset = PAGE_OFFSET(offset);
|
|
|
|
// canonical violations will miss the TLB below
|
|
|
|
if (pageOffset + len >= 4096) // don't care for page split accesses
|
|
return;
|
|
|
|
BX_CPU_THIS_PTR espPageWindowSize = 4096;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
laddr = get_laddr32(BX_SEG_REG_SS, (Bit32u) offset);
|
|
pageOffset = PAGE_OFFSET(laddr);
|
|
if (pageOffset + len >= 4096) // don't care for page split accesses
|
|
return;
|
|
|
|
Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled;
|
|
Bit32u pageStart = (Bit32u) offset - pageOffset;
|
|
|
|
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid) {
|
|
BX_ERROR(("stackPrefetch: SS not valid"));
|
|
exception(BX_SS_EXCEPTION, 0);
|
|
}
|
|
|
|
BX_ASSERT(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p);
|
|
BX_ASSERT(IS_DATA_SEGMENT_WRITEABLE(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type));
|
|
|
|
// check that the begining of the page is within stack segment limits
|
|
// problem can happen with EXPAND DOWN segments
|
|
if (IS_DATA_SEGMENT_EXPAND_DOWN(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type)) {
|
|
Bit32u upper_limit;
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if (offset <= limit || offset > upper_limit || (upper_limit - offset) < len) {
|
|
BX_ERROR(("stackPrefetch(%d): access [0x%08x] > SS.limit [0x%08x] ED", len+1, (Bit32u) offset, limit));
|
|
exception(BX_SS_EXCEPTION, 0);
|
|
}
|
|
|
|
// check that the begining of the page is within stack segment limits
|
|
// handle correctly the wrap corner case for EXPAND DOWN
|
|
Bit32u pageEnd = pageStart + 0xfff;
|
|
if (pageStart > limit && pageStart < pageEnd) {
|
|
BX_CPU_THIS_PTR espPageWindowSize = 4096;
|
|
if ((upper_limit - offset) < (4096 - pageOffset))
|
|
BX_CPU_THIS_PTR espPageWindowSize = (Bit32u)(upper_limit - offset + 1);
|
|
}
|
|
}
|
|
else {
|
|
if (offset > (limit - len) || len > limit) {
|
|
BX_ERROR(("stackPrefetch(%d): access [0x%08x] > SS.limit [0x%08x]", len+1, (Bit32u) offset, limit));
|
|
exception(BX_SS_EXCEPTION, 0);
|
|
}
|
|
|
|
if (pageStart <= limit) {
|
|
BX_CPU_THIS_PTR espPageWindowSize = 4096;
|
|
if ((limit - offset) < (4096 - pageOffset))
|
|
BX_CPU_THIS_PTR espPageWindowSize = (Bit32u)(limit - offset + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
Bit64u lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
// Assuming that we always can read if write access is OK
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
|
BX_CPU_THIS_PTR espPageBias = (bx_address) pageOffset - offset;
|
|
BX_CPU_THIS_PTR pAddrStackPage = tlbEntry->ppf;
|
|
BX_CPU_THIS_PTR espHostPtr = (Bit8u*) tlbEntry->hostPageAddr;
|
|
}
|
|
}
|
|
|
|
if (! BX_CPU_THIS_PTR espHostPtr || BX_CPU_THIS_PTR espPageWindowSize < 7)
|
|
BX_CPU_THIS_PTR espPageWindowSize = 0;
|
|
else
|
|
BX_CPU_THIS_PTR espPageWindowSize -= 7;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_byte(bx_address offset, Bit8u data)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 1);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit8u *hostPageAddr = (Bit8u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 1, CPL, BX_WRITE, (Bit8u*) &data);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 1);
|
|
*hostPageAddr = data;
|
|
}
|
|
else {
|
|
write_virtual_byte(BX_SEG_REG_SS, offset, data);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_word(bx_address offset, Bit16u data)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 2);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit16u *hostPageAddr = (Bit16u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
|
if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 1) != 0) {
|
|
BX_ERROR(("stack_write_word(): #AC misaligned access"));
|
|
exception(BX_AC_EXCEPTION, 0);
|
|
}
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 2, CPL, BX_WRITE, (Bit8u*) &data);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
|
WriteHostWordToLittleEndian(hostPageAddr, data);
|
|
}
|
|
else {
|
|
write_virtual_word(BX_SEG_REG_SS, offset, data);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_dword(bx_address offset, Bit32u data)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 4);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit32u *hostPageAddr = (Bit32u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
|
if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 3) != 0) {
|
|
BX_ERROR(("stack_write_dword(): #AC misaligned access"));
|
|
exception(BX_AC_EXCEPTION, 0);
|
|
}
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 4, CPL, BX_WRITE, (Bit8u*) &data);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
|
WriteHostDWordToLittleEndian(hostPageAddr, data);
|
|
}
|
|
else {
|
|
write_virtual_dword(BX_SEG_REG_SS, offset, data);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_qword(bx_address offset, Bit64u data)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 8);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit64u *hostPageAddr = (Bit64u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
|
if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 7) != 0) {
|
|
BX_ERROR(("stack_write_qword(): #AC misaligned access"));
|
|
exception(BX_AC_EXCEPTION, 0);
|
|
}
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 8, CPL, BX_WRITE, (Bit8u*) &data);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
|
WriteHostQWordToLittleEndian(hostPageAddr, data);
|
|
}
|
|
else {
|
|
write_virtual_qword(BX_SEG_REG_SS, offset, data);
|
|
}
|
|
}
|
|
|
|
Bit8u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_byte(bx_address offset)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 1);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit8u *hostPageAddr = (Bit8u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
|
|
data = *hostPageAddr;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
|
|
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 1, CPL, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
else {
|
|
return read_virtual_byte(BX_SEG_REG_SS, offset);
|
|
}
|
|
}
|
|
|
|
Bit16u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_word(bx_address offset)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 2);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit16u *hostPageAddr = (Bit16u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
if (pAddr & 1) {
|
|
BX_ERROR(("stack_read_word(): #AC misaligned access"));
|
|
exception(BX_AC_EXCEPTION, 0);
|
|
}
|
|
}
|
|
#endif
|
|
ReadHostWordFromLittleEndian(hostPageAddr, data);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
|
|
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 2, CPL, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
else {
|
|
return read_virtual_word(BX_SEG_REG_SS, offset);
|
|
}
|
|
}
|
|
|
|
Bit32u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_dword(bx_address offset)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 4);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit32u *hostPageAddr = (Bit32u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
if (pAddr & 3) {
|
|
BX_ERROR(("stack_read_dword(): #AC misaligned access"));
|
|
exception(BX_AC_EXCEPTION, 0);
|
|
}
|
|
}
|
|
#endif
|
|
ReadHostDWordFromLittleEndian(hostPageAddr, data);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
|
|
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 4, CPL, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
else {
|
|
return read_virtual_dword(BX_SEG_REG_SS, offset);
|
|
}
|
|
}
|
|
|
|
Bit64u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_qword(bx_address offset)
|
|
{
|
|
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
|
|
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
|
|
stackPrefetch(offset, 8);
|
|
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR espHostPtr) {
|
|
Bit64u *hostPageAddr = (Bit64u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
|
|
if (pAddr & 7) {
|
|
BX_ERROR(("stack_read_qword(): #AC misaligned access"));
|
|
exception(BX_AC_EXCEPTION, 0);
|
|
}
|
|
}
|
|
#endif
|
|
ReadHostQWordFromLittleEndian(hostPageAddr, data);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
|
|
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 8, CPL, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
else {
|
|
return read_virtual_qword(BX_SEG_REG_SS, offset);
|
|
}
|
|
}
|