Bochs/bochs/cpu/stack16.cc
Stanislav Shwartsman 1af7010e50 Optimized memory access for 64-bit mode
Starting convergence to new lazy flags scheme by Darek Mihocka (www.emulators.com). The new flags code is still being validated and perfected but I try to minimize the diff between 2 versionS
2007-11-20 17:15:33 +00:00

231 lines
6.5 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: stack16.cc,v 1.26 2007-11-20 17:15:33 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPU_C::PUSH_RX(bxInstruction_c *i)
{
push_16(BX_READ_16BIT_REG(i->opcodeReg()));
}
void BX_CPU_C::PUSH16_CS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
}
void BX_CPU_C::PUSH16_DS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
}
void BX_CPU_C::PUSH16_ES(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
}
void BX_CPU_C::PUSH16_FS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
}
void BX_CPU_C::PUSH16_GS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
}
void BX_CPU_C::PUSH16_SS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
}
void BX_CPU_C::POP16_DS(bxInstruction_c *i)
{
Bit16u ds;
pop_16(&ds);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds);
}
void BX_CPU_C::POP16_ES(bxInstruction_c *i)
{
Bit16u es;
pop_16(&es);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], es);
}
void BX_CPU_C::POP16_FS(bxInstruction_c *i)
{
Bit16u fs;
pop_16(&fs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], fs);
}
void BX_CPU_C::POP16_GS(bxInstruction_c *i)
{
Bit16u gs;
pop_16(&gs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], gs);
}
void BX_CPU_C::POP16_SS(bxInstruction_c *i)
{
Bit16u ss;
pop_16(&ss);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss);
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
BX_CPU_THIS_PTR inhibit_mask |=
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
BX_CPU_THIS_PTR async_event = 1;
}
void BX_CPU_C::POP_RX(bxInstruction_c *i)
{
Bit16u rx;
pop_16(&rx);
BX_WRITE_16BIT_REG(i->opcodeReg(), rx)
}
void BX_CPU_C::POP_EwM(bxInstruction_c *i)
{
Bit16u val16;
pop_16(&val16);
// Note: there is one little weirdism here. It is possible to use
// SP in the modrm addressing. If used, the value of SP after the
// pop is used to calculate the address.
if (i->rm()==4 && i->sibBase()==4) {
BX_CPU_CALL_METHODR (i->ResolveModrm, (i));
}
write_virtual_word(i->seg(), RMAddr(i), &val16);
}
void BX_CPU_C::POP_EwR(bxInstruction_c *i)
{
Bit16u val16;
pop_16(&val16);
BX_WRITE_16BIT_REG(i->rm(), val16);
}
void BX_CPU_C::PUSH_Iw(bxInstruction_c *i)
{
push_16(i->Iw());
}
void BX_CPU_C::PUSH_EwM(bxInstruction_c *i)
{
Bit16u op1_16;
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
push_16(op1_16);
}
void BX_CPU_C::PUSH_EwR(bxInstruction_c *i)
{
push_16(BX_READ_16BIT_REG(i->rm()));
}
#if BX_CPU_LEVEL >= 3
void BX_CPU_C::PUSHAD16(bxInstruction_c *i)
{
Bit32u temp_ESP = ESP;
Bit16u temp_SP = SP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 2), &AX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 4), &CX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 6), &DX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 8), &BX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 10), &temp_SP);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 12), &BP);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 14), &SI);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 16), &DI);
ESP -= 16;
}
else
{
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 2), &AX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 4), &CX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 6), &DX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 8), &BX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 10), &temp_SP);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 12), &BP);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 14), &SI);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 16), &DI);
SP -= 16;
}
}
void BX_CPU_C::POPAD16(bxInstruction_c *i)
{
Bit16u di, si, bp, bx, dx, cx, ax;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
Bit32u temp_ESP = ESP;
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0), &di);
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 2), &si);
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4), &bp);
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8), &bx);
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 10), &dx);
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 12), &cx);
read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 14), &ax);
ESP += 16;
}
else
{
Bit16u temp_SP = SP;
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0), &di);
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 2), &si);
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4), &bp);
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8), &bx);
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 10), &dx);
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 12), &cx);
read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 14), &ax);
SP += 16;
}
DI = di;
SI = si;
BP = bp;
BX = bx;
DX = dx;
CX = cx;
AX = ax;
}
#endif