Bochs/bochs/cpu/bmi32.cc
Stanislav Shwartsman cc694377b9 Standartization of Bochs instruction handlers.
Bochs instruction emulation handlers won't refer to direct fields of instructions like MODRM.NNN or MODRM.RM anymore.
Use generic source/destination indications like SRC1, SRC2 and DST.
All handlers are modified to support new notation. In addition fetchDecode module was modified to assign sources to instructions properly.

Immediate benefits:
- Removal of several duplicated handlers (FMA3 duplicated with FMA4 is a trivial example)
- Simpler to understand fetch-decode code

Future benefits:
- Integration of disassembler into Bochs CPU module, ability to disasm bx_instruction_c instance (planned)

Huge patch. Almost all source files wre modified.
2012-08-05 13:52:40 +00:00

274 lines
6.9 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2011-2012 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_AVX
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ANDN_GdBdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src1());
Bit32u op2_32 = BX_READ_32BIT_REG(i->src2());
op1_32 = ~op1_32 & op2_32;
SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MULX_GdBdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = EDX;
Bit32u op2_32 = BX_READ_32BIT_REG(i->src2());
Bit64u product_64 = ((Bit64u) op1_32) * ((Bit64u) op2_32);
BX_WRITE_32BIT_REGZ(i->src1(), GET32L(product_64));
BX_WRITE_32BIT_REGZ(i->dst(), GET32H(product_64));
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BLSI_BdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src());
bx_bool tmpCF = (op1_32 != 0);
op1_32 = (-op1_32) & op1_32;
SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged
set_CF(tmpCF);
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BLSMSK_BdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src());
bx_bool tmpCF = (op1_32 == 0);
op1_32 = (op1_32-1) ^ op1_32;
SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged
set_CF(tmpCF);
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BLSR_BdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src());
bx_bool tmpCF = (op1_32 == 0);
op1_32 = (op1_32-1) & op1_32;
SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged
set_CF(tmpCF);
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RORX_GdEdIbR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src());
unsigned count = i->Ib() & 0x1f;
if (count) {
op1_32 = (op1_32 >> count) | (op1_32 << (32 - count));
}
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRX_GdEdBdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src1());
unsigned count = BX_READ_32BIT_REG(i->src2()) & 0x1f;
if (count)
op1_32 >>= count;
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SARX_GdEdBdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src1());
unsigned count = BX_READ_32BIT_REG(i->src2()) & 0x1f;
if (count) {
/* count < 32, since only lower 5 bits used */
op1_32 = ((Bit32s) op1_32) >> count;
}
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLX_GdEdBdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src1());
unsigned count = BX_READ_32BIT_REG(i->src2()) & 0x1f;
if (count)
op1_32 <<= count;
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BEXTR_GdEdBdR(bxInstruction_c *i)
{
Bit16u control = BX_READ_16BIT_REG(i->src2());
unsigned start = control & 0xff;
unsigned len = control >> 8;
Bit32u op1_32 = 0;
if (start < 32 && len > 0) {
op1_32 = BX_READ_32BIT_REG(i->src1());
op1_32 >>= start;
if (len < 32) {
Bit32u extract_mask = (1 << len) - 1;
op1_32 &= extract_mask;
}
}
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BZHI_GdEdBdR(bxInstruction_c *i)
{
unsigned control = BX_READ_16BIT_REG(i->src1()) & 0xff;
bx_bool tmpCF = 0;
Bit32u op1_32 = BX_READ_32BIT_REG(i->src2());
if (control < 32) {
Bit32u mask = (1 << control) - 1;
op1_32 &= mask;
}
else {
tmpCF = 1;
}
SET_FLAGS_OSZAxC_LOGIC_32(op1_32); // keep PF unchanged
set_CF(tmpCF);
BX_WRITE_32BIT_REGZ(i->dst(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PEXT_GdEdBdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src1());
Bit32u op2_32 = BX_READ_32BIT_REG(i->src2()), result_32 = 0;
Bit32u wr_mask = 0x1;
for (; op2_32 != 0; op2_32 >>= 1)
{
if (op2_32 & 0x1) {
if (op1_32 & 0x1) result_32 |= wr_mask;
wr_mask <<= 1;
}
op1_32 >>= 1;
}
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PDEP_GdEdBdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->src1());
Bit32u op2_32 = BX_READ_32BIT_REG(i->src2()), result_32 = 0;
Bit32u wr_mask = 0x1;
for (; op2_32 != 0; op2_32 >>= 1)
{
if (op2_32 & 0x1) {
if (op1_32 & 0x1) result_32 |= wr_mask;
op1_32 >>= 1;
}
wr_mask <<= 1;
}
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
BX_NEXT_INSTR(i);
}
#endif
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ADCX_GdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
Bit32u sum_32 = op1_32 + op2_32 + getB_CF();
BX_WRITE_32BIT_REGZ(i->dst(), sum_32);
Bit32u carry_out = ADD_COUT_VEC(op1_32, op2_32, sum_32);
set_CF(carry_out >> 31);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ADOX_GdEdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
Bit32u sum_32 = op1_32 + op2_32 + getB_OF();
BX_WRITE_32BIT_REGZ(i->dst(), sum_32);
Bit32u overflow = GET_ADD_OVERFLOW(op1_32, op2_32, sum_32, 0x80000000);
set_OF(!!overflow);
BX_NEXT_INSTR(i);
}