559 lines
20 KiB
C++
Executable File
559 lines
20 KiB
C++
Executable File
/*============================================================================
|
|
This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
|
Package, Release 2b.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
=============================================================================*/
|
|
|
|
/*============================================================================
|
|
* This code is based on QEMU patch by Peter Maydell
|
|
* Adapted for Bochs (x86 achitecture simulator) by
|
|
* Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
* ==========================================================================*/
|
|
|
|
#include "softfloat.h"
|
|
#include "softfloat-round-pack.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Primitive arithmetic functions, including multi-word arithmetic, and
|
|
| division and square root approximations. (Can be specialized to target
|
|
| if desired).
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-macros.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Functions and definitions to determine: (1) whether tininess for underflow
|
|
| is detected before or after rounding by default, (2) what (if anything)
|
|
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
|
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
|
| are propagated from function inputs to output. These details are target-
|
|
| specific.
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-specialize.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes three single-precision floating-point values `a', `b' and `c', one of
|
|
| which is a NaN, and returns the appropriate NaN result. If any of `a',
|
|
| `b' or `c' is a signaling NaN, the invalid exception is raised.
|
|
| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
|
|
| obviously c is a NaN, and whether to propagate c or some other NaN is
|
|
| implementation defined).
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 propagateFloat32MulAddNaN(float32 a, float32 b, float32 c, float_status_t &status)
|
|
{
|
|
int aIsNaN = float32_is_nan(a);
|
|
int bIsNaN = float32_is_nan(b);
|
|
|
|
int aIsSignalingNaN = float32_is_signaling_nan(a);
|
|
int bIsSignalingNaN = float32_is_signaling_nan(b);
|
|
int cIsSignalingNaN = float32_is_signaling_nan(c);
|
|
|
|
a |= 0x00400000;
|
|
b |= 0x00400000;
|
|
c |= 0x00400000;
|
|
|
|
if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN)
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
// operate according to float_first_operand_nan mode
|
|
if (aIsSignalingNaN | aIsNaN) {
|
|
return a;
|
|
}
|
|
else {
|
|
return (bIsSignalingNaN | bIsNaN) ? b : c;
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes three double-precision floating-point values `a', `b' and `c', one of
|
|
| which is a NaN, and returns the appropriate NaN result. If any of `a',
|
|
| `b' or `c' is a signaling NaN, the invalid exception is raised.
|
|
| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
|
|
| obviously c is a NaN, and whether to propagate c or some other NaN is
|
|
| implementation defined).
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 propagateFloat64MulAddNaN(float64 a, float64 b, float64 c, float_status_t &status)
|
|
{
|
|
int aIsNaN = float64_is_nan(a);
|
|
int bIsNaN = float64_is_nan(b);
|
|
|
|
int aIsSignalingNaN = float64_is_signaling_nan(a);
|
|
int bIsSignalingNaN = float64_is_signaling_nan(b);
|
|
int cIsSignalingNaN = float64_is_signaling_nan(c);
|
|
|
|
a |= BX_CONST64(0x0008000000000000);
|
|
b |= BX_CONST64(0x0008000000000000);
|
|
c |= BX_CONST64(0x0008000000000000);
|
|
|
|
if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN)
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
// operate according to float_first_operand_nan mode
|
|
if (aIsSignalingNaN | aIsNaN) {
|
|
return a;
|
|
}
|
|
else {
|
|
return (bIsSignalingNaN | bIsNaN) ? b : c;
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the single-precision floating-point values
|
|
| `a' and `b' then adding 'c', with no intermediate rounding step after the
|
|
| multiplication. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic 754-2008.
|
|
| The flags argument allows the caller to select negation of the
|
|
| addend, the intermediate product, or the final result. (The difference
|
|
| between this and having the caller do a separate negation is that negating
|
|
| externally will flip the sign bit on NaNs.)
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_muladd(float32 a, float32 b, float32 c, int flags, float_status_t &status)
|
|
{
|
|
int aSign, bSign, cSign, zSign;
|
|
Bit16s aExp, bExp, cExp, pExp, zExp;
|
|
Bit32u aSig, bSig, cSig;
|
|
int pInf, pZero, pSign;
|
|
Bit64u pSig64, cSig64, zSig64;
|
|
Bit32u pSig;
|
|
int shiftcount;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
cSig = extractFloat32Frac(c);
|
|
cExp = extractFloat32Exp(c);
|
|
cSign = extractFloat32Sign(c);
|
|
|
|
/* It is implementation-defined whether the cases of (0,inf,qnan)
|
|
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
|
|
* they return if they do), so we have to hand this information
|
|
* off to the target-specific pick-a-NaN routine.
|
|
*/
|
|
if (((aExp == 0xff) && aSig) ||
|
|
((bExp == 0xff) && bSig) ||
|
|
((cExp == 0xff) && cSig)) {
|
|
return propagateFloat32MulAddNaN(a, b, c, status);
|
|
}
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
if (cExp == 0) cSig = 0;
|
|
}
|
|
|
|
int infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
|
|
(aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
|
|
|
|
if (infzero) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
|
|
if (flags & float_muladd_negate_c) {
|
|
cSign ^= 1;
|
|
}
|
|
|
|
/* Work out the sign and type of the product */
|
|
pSign = aSign ^ bSign;
|
|
if (flags & float_muladd_negate_product) {
|
|
pSign ^= 1;
|
|
}
|
|
pInf = (aExp == 0xff) || (bExp == 0xff);
|
|
pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
|
|
|
|
if (cExp == 0xff) {
|
|
if (pInf && (pSign ^ cSign)) {
|
|
/* addition of opposite-signed infinities => InvalidOperation */
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
/* Otherwise generate an infinity of the same sign */
|
|
if ((aSig && aExp == 0) || (bSig && bExp == 0)) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloat32(cSign, 0xff, 0);
|
|
}
|
|
|
|
if (pInf) {
|
|
if ((aSig && aExp == 0) || (bSig && bExp == 0) || (cSig && cExp == 0)) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloat32(pSign, 0xff, 0);
|
|
}
|
|
|
|
if (pZero) {
|
|
if (cExp == 0) {
|
|
if (cSig == 0) {
|
|
/* Adding two exact zeroes */
|
|
if (pSign == cSign) {
|
|
zSign = pSign;
|
|
} else if (get_float_rounding_mode(status) == float_round_down) {
|
|
zSign = 1;
|
|
} else {
|
|
zSign = 0;
|
|
}
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
/* Exact zero plus a denormal */
|
|
float_raise(status, float_flag_denormal);
|
|
if (get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_underflow | float_flag_inexact);
|
|
return packFloat32(cSign, 0, 0);
|
|
}
|
|
}
|
|
/* Zero plus something non-zero */
|
|
return packFloat32(cSign, cExp, cSig);
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
|
|
/* Calculate the actual result a * b + c */
|
|
|
|
/* Multiply first; this is easy. */
|
|
/* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
|
|
* because we want the true exponent, not the "one-less-than"
|
|
* flavour that roundAndPackFloat32() takes.
|
|
*/
|
|
pExp = aExp + bExp - 0x7e;
|
|
aSig = (aSig | 0x00800000) << 7;
|
|
bSig = (bSig | 0x00800000) << 8;
|
|
pSig64 = (Bit64u)aSig * bSig;
|
|
if ((Bit64s)(pSig64 << 1) >= 0) {
|
|
pSig64 <<= 1;
|
|
pExp--;
|
|
}
|
|
|
|
zSign = pSign;
|
|
|
|
/* Now pSig64 is the significand of the multiply, with the explicit bit in
|
|
* position 62.
|
|
*/
|
|
if (cExp == 0) {
|
|
if (!cSig) {
|
|
/* Throw out the special case of c being an exact zero now */
|
|
pSig = (Bit32u) shift64RightJamming(pSig64, 32);
|
|
return roundAndPackFloat32(zSign, pExp - 1, pSig, status);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(cSig, &cExp, &cSig);
|
|
}
|
|
|
|
cSig64 = (Bit64u)cSig << 39;
|
|
cSig64 |= BX_CONST64(0x4000000000000000);
|
|
int expDiff = pExp - cExp;
|
|
|
|
if (pSign == cSign) {
|
|
/* Addition */
|
|
if (expDiff > 0) {
|
|
/* scale c to match p */
|
|
cSig64 = shift64RightJamming(cSig64, expDiff);
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
/* scale p to match c */
|
|
pSig64 = shift64RightJamming(pSig64, -expDiff);
|
|
zExp = cExp;
|
|
} else {
|
|
/* no scaling needed */
|
|
zExp = cExp;
|
|
}
|
|
/* Add significands and make sure explicit bit ends up in posn 62 */
|
|
zSig64 = pSig64 + cSig64;
|
|
if ((Bit64s)zSig64 < 0) {
|
|
zSig64 = shift64RightJamming(zSig64, 1);
|
|
} else {
|
|
zExp--;
|
|
}
|
|
zSig64 = shift64RightJamming(zSig64, 32);
|
|
return roundAndPackFloat32(zSign, zExp, zSig64, status);
|
|
} else {
|
|
/* Subtraction */
|
|
if (expDiff > 0) {
|
|
cSig64 = shift64RightJamming(cSig64, expDiff);
|
|
zSig64 = pSig64 - cSig64;
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
pSig64 = shift64RightJamming(pSig64, -expDiff);
|
|
zSig64 = cSig64 - pSig64;
|
|
zExp = cExp;
|
|
zSign ^= 1;
|
|
} else {
|
|
zExp = pExp;
|
|
if (cSig64 < pSig64) {
|
|
zSig64 = pSig64 - cSig64;
|
|
} else if (pSig64 < cSig64) {
|
|
zSig64 = cSig64 - pSig64;
|
|
zSign ^= 1;
|
|
} else {
|
|
/* Exact zero */
|
|
return packFloat32(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
}
|
|
}
|
|
--zExp;
|
|
/* Do the equivalent of normalizeRoundAndPackFloat32() but
|
|
* starting with the significand in a Bit64u.
|
|
*/
|
|
shiftcount = countLeadingZeros64(zSig64) - 1;
|
|
zSig64 <<= shiftcount;
|
|
zExp -= shiftcount;
|
|
zSig64 = shift64RightJamming(zSig64, 32);
|
|
return roundAndPackFloat32(zSign, zExp, zSig64, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the double-precision floating-point values
|
|
| `a' and `b' then adding 'c', with no intermediate rounding step after the
|
|
| multiplication. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic 754-2008.
|
|
| The flags argument allows the caller to select negation of the
|
|
| addend, the intermediate product, or the final result. (The difference
|
|
| between this and having the caller do a separate negation is that negating
|
|
| externally will flip the sign bit on NaNs.)
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_muladd(float64 a, float64 b, float64 c, int flags, float_status_t &status)
|
|
{
|
|
int aSign, bSign, cSign, zSign;
|
|
Bit16s aExp, bExp, cExp, pExp, zExp;
|
|
Bit64u aSig, bSig, cSig;
|
|
int pInf, pZero, pSign;
|
|
Bit64u pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
|
|
int shiftcount;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
cSig = extractFloat64Frac(c);
|
|
cExp = extractFloat64Exp(c);
|
|
cSign = extractFloat64Sign(c);
|
|
|
|
/* It is implementation-defined whether the cases of (0,inf,qnan)
|
|
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
|
|
* they return if they do), so we have to hand this information
|
|
* off to the target-specific pick-a-NaN routine.
|
|
*/
|
|
if (((aExp == 0x7ff) && aSig) ||
|
|
((bExp == 0x7ff) && bSig) ||
|
|
((cExp == 0x7ff) && cSig)) {
|
|
return propagateFloat64MulAddNaN(a, b, c, status);
|
|
}
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
if (cExp == 0) cSig = 0;
|
|
}
|
|
|
|
int infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
|
|
(aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
|
|
|
|
if (infzero) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
|
|
if (flags & float_muladd_negate_c) {
|
|
cSign ^= 1;
|
|
}
|
|
|
|
/* Work out the sign and type of the product */
|
|
pSign = aSign ^ bSign;
|
|
if (flags & float_muladd_negate_product) {
|
|
pSign ^= 1;
|
|
}
|
|
pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
|
|
pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
|
|
|
|
if (cExp == 0x7ff) {
|
|
if (pInf && (pSign ^ cSign)) {
|
|
/* addition of opposite-signed infinities => InvalidOperation */
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
/* Otherwise generate an infinity of the same sign */
|
|
if ((aSig && aExp == 0) || (bSig && bExp == 0)) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloat64(cSign, 0x7ff, 0);
|
|
}
|
|
|
|
if (pInf) {
|
|
if ((aSig && aExp == 0) || (bSig && bExp == 0) || (cSig && cExp == 0)) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloat64(pSign, 0x7ff, 0);
|
|
}
|
|
|
|
if (pZero) {
|
|
if (cExp == 0) {
|
|
if (cSig == 0) {
|
|
/* Adding two exact zeroes */
|
|
if (pSign == cSign) {
|
|
zSign = pSign;
|
|
} else if (get_float_rounding_mode(status) == float_round_down) {
|
|
zSign = 1;
|
|
} else {
|
|
zSign = 0;
|
|
}
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
/* Exact zero plus a denormal */
|
|
float_raise(status, float_flag_denormal);
|
|
if (get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_underflow | float_flag_inexact);
|
|
return packFloat64(cSign, 0, 0);
|
|
}
|
|
}
|
|
/* Zero plus something non-zero */
|
|
return packFloat64(cSign, cExp, cSig);
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
|
|
/* Calculate the actual result a * b + c */
|
|
|
|
/* Multiply first; this is easy. */
|
|
/* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
|
|
* because we want the true exponent, not the "one-less-than"
|
|
* flavour that roundAndPackFloat64() takes.
|
|
*/
|
|
pExp = aExp + bExp - 0x3fe;
|
|
aSig = (aSig | BX_CONST64(0x0010000000000000))<<10;
|
|
bSig = (bSig | BX_CONST64(0x0010000000000000))<<11;
|
|
mul64To128(aSig, bSig, &pSig0, &pSig1);
|
|
if ((Bit64s)(pSig0 << 1) >= 0) {
|
|
shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
|
|
pExp--;
|
|
}
|
|
|
|
zSign = pSign;
|
|
|
|
/* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
|
|
* bit in position 126.
|
|
*/
|
|
if (cExp == 0) {
|
|
if (!cSig) {
|
|
/* Throw out the special case of c being an exact zero now */
|
|
shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
|
|
return roundAndPackFloat64(zSign, pExp - 1, pSig1, status);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(cSig, &cExp, &cSig);
|
|
}
|
|
|
|
cSig0 = cSig << 10;
|
|
cSig1 = 0;
|
|
cSig0 |= BX_CONST64(0x4000000000000000);
|
|
int expDiff = pExp - cExp;
|
|
|
|
if (pSign == cSign) {
|
|
/* Addition */
|
|
if (expDiff > 0) {
|
|
/* scale c to match p */
|
|
shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
/* scale p to match c */
|
|
shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
|
|
zExp = cExp;
|
|
} else {
|
|
/* no scaling needed */
|
|
zExp = cExp;
|
|
}
|
|
/* Add significands and make sure explicit bit ends up in posn 126 */
|
|
add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
|
|
if ((Bit64s)zSig0 < 0) {
|
|
shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
} else {
|
|
zExp--;
|
|
}
|
|
shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
|
|
return roundAndPackFloat64(zSign, zExp, zSig1, status);
|
|
} else {
|
|
/* Subtraction */
|
|
if (expDiff > 0) {
|
|
shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
|
|
sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
|
|
sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
|
|
zExp = cExp;
|
|
zSign ^= 1;
|
|
} else {
|
|
zExp = pExp;
|
|
if (lt128(cSig0, cSig1, pSig0, pSig1)) {
|
|
sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
|
|
} else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
|
|
sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
|
|
zSign ^= 1;
|
|
} else {
|
|
/* Exact zero */
|
|
return packFloat64(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
}
|
|
}
|
|
--zExp;
|
|
/* Do the equivalent of normalizeRoundAndPackFloat64() but
|
|
* starting with the significand in a pair of Bit64u.
|
|
*/
|
|
if (zSig0) {
|
|
shiftcount = countLeadingZeros64(zSig0) - 1;
|
|
shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
|
|
if (zSig1) {
|
|
zSig0 |= 1;
|
|
}
|
|
zExp -= shiftcount;
|
|
} else {
|
|
shiftcount = countLeadingZeros64(zSig1) - 1;
|
|
zSig0 = zSig1 << shiftcount;
|
|
zExp -= (shiftcount + 64);
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig0, status);
|
|
}
|
|
}
|