Bochs/bochs/cpu/logical8.cc
Stanislav Shwartsman a1f830d429 Implemented FAST lazy flags version for logic instructions.
Small code cleanup/simplification for others.
2004-08-13 20:00:03 +00:00

414 lines
8.4 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: logical8.cc,v 1.25 2004-08-13 20:00:03 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XOR_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
result = op1 ^ op2;
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
result = op1 ^ op2;
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
}
void
BX_CPU_C::XOR_GbEb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op2 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_virtual_byte(i->seg(), RMAddr(i), &op2);
}
result = op1 ^ op2;
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), result);
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
}
void
BX_CPU_C::XOR_ALIb(bxInstruction_c *i)
{
Bit8u op1, op2, sum;
op1 = AL;
op2 = i->Ib();
sum = op1 ^ op2;
AL = sum;
SET_FLAGS_OSZAPC_RESULT_8(sum, BX_INSTR_LOGIC8);
}
void
BX_CPU_C::XOR_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = i->Ib();
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
result = op1 ^ op2;
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
result = op1 ^ op2;
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
}
void
BX_CPU_C::OR_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = i->Ib();
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
result = op1 | op2;
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
result = op1 | op2;
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
}
void
BX_CPU_C::NOT_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
result_8 = ~op1_8;
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1_8);
result_8 = ~op1_8;
Write_RMW_virtual_byte(result_8);
}
}
void
BX_CPU_C::OR_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
result = op1 | op2;
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
result = op1 | op2;
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
}
void
BX_CPU_C::OR_GbEb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op2 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_virtual_byte(i->seg(), RMAddr(i), &op2);
}
#if defined(BX_HostAsm_Or8)
Bit32u flags32;
asmOr8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 | op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), result);
}
void
BX_CPU_C::OR_ALIb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = AL;
op2 = i->Ib();
#if defined(BX_HostAsm_Or8)
Bit32u flags32;
asmOr8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 | op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
AL = result;
}
void
BX_CPU_C::AND_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
#if defined(BX_HostAsm_And8)
Bit32u flags32;
asmAnd8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 & op2;
#endif
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
#if defined(BX_HostAsm_And8)
Bit32u flags32;
asmAnd8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 & op2;
#endif
Write_RMW_virtual_byte(result);
}
#if !defined(BX_HostAsm_And8)
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
}
void
BX_CPU_C::AND_GbEb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op2 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_virtual_byte(i->seg(), RMAddr(i), &op2);
}
#if defined(BX_HostAsm_And8)
Bit32u flags32;
asmAnd8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 & op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), result);
}
void
BX_CPU_C::AND_ALIb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = AL;
op2 = i->Ib();
#if defined(BX_HostAsm_And8)
Bit32u flags32;
asmAnd8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 & op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
AL = result;
}
void
BX_CPU_C::AND_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = i->Ib();
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
#if defined(BX_HostAsm_And8)
Bit32u flags32;
asmAnd8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 & op2;
#endif
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
#if defined(BX_HostAsm_And8)
Bit32u flags32;
asmAnd8(result, op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
result = op1 & op2;
#endif
Write_RMW_virtual_byte(result);
}
#if !defined(BX_HostAsm_And8)
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
}
void
BX_CPU_C::TEST_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1;
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_virtual_byte(i->seg(), RMAddr(i), &op1);
}
#if defined(BX_HostAsm_Test8)
Bit32u flags32;
asmTest8(op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit8u result = op1 & op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
}
void
BX_CPU_C::TEST_ALIb(bxInstruction_c *i)
{
Bit8u op2, op1;
op1 = AL;
op2 = i->Ib();
#if defined(BX_HostAsm_Test8)
Bit32u flags32;
asmTest8(op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit8u result = op1 & op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
}
void
BX_CPU_C::TEST_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1;
op2 = i->Ib();
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_virtual_byte(i->seg(), RMAddr(i), &op1);
}
#if defined(BX_HostAsm_Test8)
Bit32u flags32;
asmTest8(op1, op2, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit8u result;
result = op1 & op2;
SET_FLAGS_OSZAPC_RESULT_8(result, BX_INSTR_LOGIC8);
#endif
}