Bochs/bochs/memory/memory.cc
Kevin Lawton b742ccec7e Changed eflags accessors for get_?F() to use (val32 & (1<<N)) instead
of (1 & (val32>>N)), and added a getB_?F() accessor for special
  cases which need a strict binary value (exactly 0 or 1).  Most
  code only needed a value for logical comparison.  I modified the
  special cases which do need a binary number for shifting and
  comparison between flags, to use the special getB_?F() accessor.

Cleaned up memory.cc functions a little, now that all accesses
  are within a single page.

Fixed a (not very likely encountered) bug in fetchdecode.cc (and
  fetchdecode64.cc) where a 2-byte opcode starting with a prefix
  starts at the last offset on a page.  There were no checks
  on the segment overrides for a boundary condition.  I added them.

The eflags enhancements added just a tiny bit of performance.
2002-09-22 18:22:24 +00:00

448 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: memory.cc,v 1.23 2002-09-22 18:22:24 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS BX_MEM_THIS
#if BX_PROVIDE_CPU_MEMORY
void
BX_MEM_C::writePhysicalPage(BX_CPU_C *cpu, Bit32u addr, unsigned len, void *data)
{
Bit8u *data_ptr;
Bit32u a20addr;
// Note: accesses should always be contained within a single page now.
#if BX_IODEBUG_SUPPORT
bx_iodebug_c::mem_write( cpu, addr, len, data);
#endif
a20addr = A20ADDR(addr);
BX_INSTR_PHY_WRITE(a20addr, len);
#if BX_DEBUGGER
// (mch) Check for physical write break points, TODO
// (bbd) Each breakpoint should have an associated CPU#, TODO
for (int i = 0; i < num_write_watchpoints; i++)
if (write_watchpoint[i] == a20addr) {
BX_CPU(0)->watchpoint = a20addr;
BX_CPU(0)->break_point = BREAK_POINT_WRITE;
break;
}
#endif
#if BX_SupportICache
if (a20addr < BX_MEM_THIS len)
cpu->iCache.decWriteStamp(cpu, a20addr);
#endif
if ( a20addr <= BX_MEM_THIS len ) {
// all of data is within limits of physical memory
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
if (len == 4) {
WriteHostDWordToLittleEndian(&vector[a20addr], *(Bit32u*)data);
BX_DBG_DIRTY_PAGE(a20addr >> 12);
return;
}
if (len == 2) {
WriteHostWordToLittleEndian(&vector[a20addr], *(Bit16u*)data);
BX_DBG_DIRTY_PAGE(a20addr >> 12);
return;
}
if (len == 1) {
* ((Bit8u *) (&vector[a20addr])) = * (Bit8u *) data;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
return;
}
// len == other, just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
write_one:
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
// addr *not* in range 00080000 .. 000FFFFF
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
inc_one:
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
goto write_one;
}
// addr in range 00080000 .. 000FFFFF
if (a20addr <= 0x0009ffff) {
// regular memory 80000 .. 9FFFF
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
goto inc_one;
}
if (a20addr <= 0x000bffff) {
// VGA memory A0000 .. BFFFF
BX_VGA_MEM_WRITE(a20addr, *data_ptr);
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_WRITE, *data_ptr); // obsolete
goto inc_one;
}
// adapter ROM C0000 .. DFFFF
// ROM BIOS memory E0000 .. FFFFF
// (ignore write)
//BX_INFO(("ROM lock %08x: len=%u",
// (unsigned) a20addr, (unsigned) len));
#if BX_PCI_SUPPORT == 0
#if BX_SHADOW_RAM
// Write it since its in shadow RAM
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
#else
// ignore write to ROM
#endif
#else
// Write Based on 440fx Programming
if (bx_options.Oi440FXSupport->get () &&
((a20addr >= 0xC0000) && (a20addr <= 0xFFFFF))) {
switch (bx_devices.pci->wr_memType(a20addr & 0xFC000)) {
case 0x1: // Writes to ShadowRAM
// BX_INFO(("Writing to ShadowRAM %08x, len %u ! ", (unsigned) a20addr, (unsigned) len));
shadow[a20addr - 0xc0000] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
goto inc_one;
case 0x0: // Writes to ROM, Inhibit
BX_DEBUG(("Write to ROM ignored: address %08x, data %02x", (unsigned) a20addr, *data_ptr));
goto inc_one;
default:
BX_PANIC(("writePhysicalPage: default case"));
goto inc_one;
}
}
#endif
goto inc_one;
}
else {
// some or all of data is outside limits of physical memory
unsigned i;
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
#if BX_SUPPORT_VBE
// Check VBE LFB support
if ((a20addr >= VBE_DISPI_LFB_PHYSICAL_ADDRESS) &&
(a20addr < (VBE_DISPI_LFB_PHYSICAL_ADDRESS + VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES)))
{
for (i = 0; i < len; i++) {
//if (a20addr < BX_MEM_THIS len) {
//vector[a20addr] = *data_ptr;
//BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_VGA_MEM_WRITE(a20addr, *data_ptr);
// }
// otherwise ignore byte, since it overruns memory
addr++;
a20addr = (addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return;
}
#endif
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
bx_generic_apic_c *ioapic = bx_devices.ioapic;
if (local_apic->is_selected (a20addr, len)) {
local_apic->write (a20addr, (Bit32u *)data, len);
return;
} else if (ioapic->is_selected (a20addr, len)) {
ioapic->write (a20addr, (Bit32u *)data, len);
return;
}
else
#endif
for (i = 0; i < len; i++) {
if (a20addr < BX_MEM_THIS len) {
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
}
// otherwise ignore byte, since it overruns memory
addr++;
a20addr = (addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return;
}
}
void
BX_MEM_C::readPhysicalPage(BX_CPU_C *cpu, Bit32u addr, unsigned len, void *data)
{
Bit8u *data_ptr;
Bit32u a20addr;
#if BX_IODEBUG_SUPPORT
bx_iodebug_c::mem_read( cpu, addr, len, data);
#endif
a20addr = A20ADDR(addr);
BX_INSTR_PHY_READ(a20addr, len);
#if BX_DEBUGGER
// (mch) Check for physical read break points, TODO
// (bbd) Each breakpoint should have an associated CPU#, TODO
for (int i = 0; i < num_read_watchpoints; i++)
if (read_watchpoint[i] == a20addr) {
BX_CPU(0)->watchpoint = a20addr;
BX_CPU(0)->break_point = BREAK_POINT_READ;
break;
}
#endif
if ( (a20addr + len) <= BX_MEM_THIS len ) {
// all of data is within limits of physical memory
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
if (len == 4) {
ReadHostDWordFromLittleEndian(&vector[a20addr], * (Bit32u*) data);
return;
}
if (len == 2) {
ReadHostWordFromLittleEndian(&vector[a20addr], * (Bit16u*) data);
return;
}
if (len == 1) {
* (Bit8u *) data = * ((Bit8u *) (&vector[a20addr]));
return;
}
// len == 3 case can just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
read_one:
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
// addr *not* in range 00080000 .. 000FFFFF
*data_ptr = vector[a20addr];
inc_one:
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
goto read_one;
}
// addr in range 00080000 .. 000FFFFF
#if BX_PCI_SUPPORT == 0
if ((a20addr <= 0x0009ffff) || (a20addr >= 0x000c0000) ) {
// regular memory 80000 .. 9FFFF, C0000 .. F0000
*data_ptr = vector[a20addr];
goto inc_one;
}
// VGA memory A0000 .. BFFFF
*data_ptr = BX_VGA_MEM_READ(a20addr);
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_READ, *data_ptr); // obsolete
goto inc_one;
#else // #if BX_PCI_SUPPORT == 0
if (a20addr <= 0x0009ffff) {
*data_ptr = vector[a20addr];
goto inc_one;
}
if (a20addr <= 0x000BFFFF) {
// VGA memory A0000 .. BFFFF
*data_ptr = BX_VGA_MEM_READ(a20addr);
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_READ, *data_ptr);
goto inc_one;
}
// a20addr in C0000 .. FFFFF
if (!bx_options.Oi440FXSupport->get ()) {
*data_ptr = vector[a20addr];
goto inc_one;
}
else {
switch (bx_devices.pci->rd_memType(a20addr & 0xFC000)) {
case 0x1: // Read from ShadowRAM
*data_ptr = shadow[a20addr - 0xc0000];
BX_INFO(("Reading from ShadowRAM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
goto inc_one;
case 0x0: // Read from ROM
*data_ptr = vector[a20addr];
//BX_INFO(("Reading from ROM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
goto inc_one;
default:
BX_PANIC(("::readPhysicalPage: default case"));
}
}
goto inc_one;
#endif // #if BX_PCI_SUPPORT == 0
}
else {
// some or all of data is outside limits of physical memory
unsigned i;
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
#if BX_SUPPORT_VBE
// Check VBE LFB support
if ((a20addr >= VBE_DISPI_LFB_PHYSICAL_ADDRESS) &&
(a20addr < (VBE_DISPI_LFB_PHYSICAL_ADDRESS + VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES)))
{
for (i = 0; i < len; i++) {
//if (a20addr < BX_MEM_THIS len) {
//vector[a20addr] = *data_ptr;
//BX_DBG_DIRTY_PAGE(a20addr >> 12);
*data_ptr = BX_VGA_MEM_READ(a20addr);
// }
// otherwise ignore byte, since it overruns memory
addr++;
a20addr = (addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return;
}
#endif
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
bx_generic_apic_c *ioapic = bx_devices.ioapic;
if (local_apic->is_selected (addr, len)) {
local_apic->read (addr, data, len);
return;
} else if (ioapic->is_selected (addr, len)) {
ioapic->read (addr, data, len);
return;
}
#endif
for (i = 0; i < len; i++) {
#if BX_PCI_SUPPORT == 0
if (a20addr < BX_MEM_THIS len)
*data_ptr = vector[a20addr];
else
*data_ptr = 0xff;
#else // BX_PCI_SUPPORT == 0
if (a20addr < BX_MEM_THIS len) {
if ((a20addr >= 0x000C0000) && (a20addr <= 0x000FFFFF)) {
if (!bx_options.Oi440FXSupport->get ())
*data_ptr = vector[a20addr];
else {
switch (bx_devices.pci->rd_memType(a20addr & 0xFC000)) {
case 0x0: // Read from ROM
*data_ptr = vector[a20addr];
//BX_INFO(("Reading from ROM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
break;
case 0x1: // Read from Shadow RAM
*data_ptr = shadow[a20addr - 0xc0000];
BX_INFO(("Reading from ShadowRAM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
break;
default:
BX_PANIC(("readPhysicalPage: default case"));
} // Switch
}
}
else {
*data_ptr = vector[a20addr];
BX_INFO(("Reading from Norm %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
}
}
else
*data_ptr = 0xff;
#endif // BX_PCI_SUPPORT == 0
addr++;
a20addr = (addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return;
}
}
#endif // #if BX_PROVIDE_CPU_MEMORY