Bochs/bochs/bios/rombios.c
Volker Ruppert 7e56eae48c - fixed SF bug #2851495: if PCI BIOS functions return without error, the
int1a_handler must complete with iret to re-enable interrupts
2009-09-28 16:36:51 +00:00

11513 lines
309 KiB
C

/////////////////////////////////////////////////////////////////////////
// $Id: rombios.c,v 1.235 2009-09-28 16:36:02 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// ROM BIOS for use with Bochs/Plex86/QEMU emulation environment
// ROM BIOS compatability entry points:
// ===================================
// $e05b ; POST Entry Point
// $e2c3 ; NMI Handler Entry Point
// $e3fe ; INT 13h Fixed Disk Services Entry Point
// $e401 ; Fixed Disk Parameter Table
// $e6f2 ; INT 19h Boot Load Service Entry Point
// $e6f5 ; Configuration Data Table
// $e729 ; Baud Rate Generator Table
// $e739 ; INT 14h Serial Communications Service Entry Point
// $e82e ; INT 16h Keyboard Service Entry Point
// $e987 ; INT 09h Keyboard Service Entry Point
// $ec59 ; INT 13h Diskette Service Entry Point
// $ef57 ; INT 0Eh Diskette Hardware ISR Entry Point
// $efc7 ; Diskette Controller Parameter Table
// $efd2 ; INT 17h Printer Service Entry Point
// $f045 ; INT 10 Functions 0-Fh Entry Point
// $f065 ; INT 10h Video Support Service Entry Point
// $f0a4 ; MDA/CGA Video Parameter Table (INT 1Dh)
// $f841 ; INT 12h Memory Size Service Entry Point
// $f84d ; INT 11h Equipment List Service Entry Point
// $f859 ; INT 15h System Services Entry Point
// $fa6e ; Character Font for 320x200 & 640x200 Graphics (lower 128 characters)
// $fe6e ; INT 1Ah Time-of-day Service Entry Point
// $fea5 ; INT 08h System Timer ISR Entry Point
// $fef3 ; Initial Interrupt Vector Offsets Loaded by POST
// $ff53 ; IRET Instruction for Dummy Interrupt Handler
// $ff54 ; INT 05h Print Screen Service Entry Point
// $fff0 ; Power-up Entry Point
// $fff5 ; ASCII Date ROM was built - 8 characters in MM/DD/YY
// $fffe ; System Model ID
// NOTES for ATA/ATAPI driver (cbbochs@free.fr)
// Features
// - supports up to 4 ATA interfaces
// - device/geometry detection
// - 16bits/32bits device access
// - pchs/lba access
// - datain/dataout/packet command support
//
// NOTES for El-Torito Boot (cbbochs@free.fr)
// - CD-ROM booting is only available if ATA/ATAPI Driver is available
// - Current code is only able to boot mono-session cds
// - Current code can not boot and emulate a hard-disk
// the bios will panic otherwise
// - Current code also use memory in EBDA segement.
// - I used cmos byte 0x3D to store extended information on boot-device
// - Code has to be modified modified to handle multiple cdrom drives
// - Here are the cdrom boot failure codes:
// 1 : no atapi device found
// 2 : no atapi cdrom found
// 3 : can not read cd - BRVD
// 4 : cd is not eltorito (BRVD)
// 5 : cd is not eltorito (ISO TAG)
// 6 : cd is not eltorito (ELTORITO TAG)
// 7 : can not read cd - boot catalog
// 8 : boot catalog : bad header
// 9 : boot catalog : bad platform
// 10 : boot catalog : bad signature
// 11 : boot catalog : bootable flag not set
// 12 : can not read cd - boot image
//
// ATA driver
// - EBDA segment.
// I used memory starting at 0x121 in the segment
// - the translation policy is defined in cmos regs 0x39 & 0x3a
//
// TODO :
//
// int74
// - needs to be reworked. Uses direct [bp] offsets. (?)
//
// int13:
// - f04 (verify sectors) isn't complete (?)
// - f02/03/04 should set current cyl,etc in BDA (?)
// - rewrite int13_relocated & clean up int13 entry code
//
// NOTES:
// - NMI access (bit7 of addr written to 70h)
//
// ATA driver
// - should handle the "don't detect" bit (cmos regs 0x3b & 0x3c)
// - could send the multiple-sector read/write commands
//
// El-Torito
// - Emulate a Hard-disk (currently only diskette can be emulated) see "FIXME ElTorito Harddisk"
// - Implement remaining int13_cdemu functions (as defined by El-Torito specs)
// - cdrom drive is hardcoded to ide 0 device 1 in several places. see "FIXME ElTorito Hardcoded"
// - int13 Fix DL when emulating a cd. In that case DL is decremented before calling real int13.
// This is ok. But DL should be reincremented afterwards.
// - Fix all "FIXME ElTorito Various"
// - should be able to boot any cdrom instead of the first one
//
// BCC Bug: find a generic way to handle the bug of #asm after an "if" (fixed in 0.16.7)
#include "rombios.h"
#define DEBUG_ATA 0
#define DEBUG_INT13_HD 0
#define DEBUG_INT13_CD 0
#define DEBUG_INT13_ET 0
#define DEBUG_INT13_FL 0
#define DEBUG_INT15 0
#define DEBUG_INT16 0
#define DEBUG_INT1A 0
#define DEBUG_INT74 0
#define DEBUG_APM 0
#define BX_CPU 3
#define BX_USE_PS2_MOUSE 1
#define BX_CALL_INT15_4F 1
#define BX_USE_EBDA 1
#define BX_SUPPORT_FLOPPY 1
#define BX_FLOPPY_ON_CNT 37 /* 2 seconds */
#define BX_PCIBIOS 1
#define BX_APM 1
#define BX_USE_ATADRV 1
#define BX_ELTORITO_BOOT 1
#define BX_MAX_ATA_INTERFACES 4
#define BX_MAX_ATA_DEVICES (BX_MAX_ATA_INTERFACES*2)
#define BX_VIRTUAL_PORTS 1 /* normal output to Bochs ports */
#define BX_DEBUG_SERIAL 0 /* output to COM1 */
/* model byte 0xFC = AT */
#define SYS_MODEL_ID 0xFC
#define SYS_SUBMODEL_ID 0x00
#define BIOS_REVISION 1
#define BIOS_CONFIG_TABLE 0xe6f5
#ifndef BIOS_BUILD_DATE
# define BIOS_BUILD_DATE "06/23/99"
#endif
// 1K of base memory used for Extended Bios Data Area (EBDA)
// EBDA is used for PS/2 mouse support, and IDE BIOS, etc.
#define EBDA_SEG 0x9FC0
#define EBDA_SIZE 1 // In KiB
#define BASE_MEM_IN_K (640 - EBDA_SIZE)
/* 256 bytes at 0x9ff00 -- 0x9ffff is used for the IPL boot table. */
#define IPL_SEG 0x9ff0
#define IPL_TABLE_OFFSET 0x0000
#define IPL_TABLE_ENTRIES 8
#define IPL_COUNT_OFFSET 0x0080 /* u16: number of valid table entries */
#define IPL_SEQUENCE_OFFSET 0x0082 /* u16: next boot device */
#define IPL_BOOTFIRST_OFFSET 0x0084 /* u16: user selected device */
#define IPL_SIZE 0xff
#define IPL_TYPE_FLOPPY 0x01
#define IPL_TYPE_HARDDISK 0x02
#define IPL_TYPE_CDROM 0x03
#define IPL_TYPE_BEV 0x80
// Sanity Checks
#if BX_USE_ATADRV && BX_CPU<3
# error The ATA/ATAPI Driver can only to be used with a 386+ cpu
#endif
#if BX_USE_ATADRV && !BX_USE_EBDA
# error ATA/ATAPI Driver can only be used if EBDA is available
#endif
#if BX_ELTORITO_BOOT && !BX_USE_ATADRV
# error El-Torito Boot can only be use if ATA/ATAPI Driver is available
#endif
#if BX_PCIBIOS && BX_CPU<3
# error PCI BIOS can only be used with 386+ cpu
#endif
#if BX_APM && BX_CPU<3
# error APM BIOS can only be used with 386+ cpu
#endif
// define this if you want to make PCIBIOS working on a specific bridge only
// undef enables PCIBIOS when at least one PCI device is found
// i440FX is emulated by Bochs and QEMU
#define PCI_FIXED_HOST_BRIDGE 0x12378086 ;; i440FX PCI bridge
// #20 is dec 20
// #$20 is hex 20 = 32
// #0x20 is hex 20 = 32
// LDA #$20
// JSR $E820
// LDD .i,S
// JSR $C682
// mov al, #$20
// all hex literals should be prefixed with '0x'
// grep "#[0-9a-fA-F][0-9a-fA-F]" rombios.c
// no mov SEG-REG, #value, must mov register into seg-reg
// grep -i "mov[ ]*.s" rombios.c
// This is for compiling with gcc2 and gcc3
#define ASM_START #asm
#define ASM_END #endasm
ASM_START
.rom
.org 0x0000
#if BX_CPU >= 3
use16 386
#else
use16 286
#endif
MACRO HALT
;; the HALT macro is called with the line number of the HALT call.
;; The line number is then sent to the PANIC_PORT, causing Bochs/Plex
;; to print a BX_PANIC message. This will normally halt the simulation
;; with a message such as "BIOS panic at rombios.c, line 4091".
;; However, users can choose to make panics non-fatal and continue.
#if BX_VIRTUAL_PORTS
mov dx,#PANIC_PORT
mov ax,#?1
out dx,ax
#else
mov dx,#0x80
mov ax,#?1
out dx,al
#endif
MEND
MACRO JMP_AP
db 0xea
dw ?2
dw ?1
MEND
MACRO SET_INT_VECTOR
mov ax, ?3
mov ?1*4, ax
mov ax, ?2
mov ?1*4+2, ax
MEND
ASM_END
typedef unsigned char Bit8u;
typedef unsigned short Bit16u;
typedef unsigned short bx_bool;
typedef unsigned long Bit32u;
void memsetb(seg,offset,value,count);
void memcpyb(dseg,doffset,sseg,soffset,count);
void memcpyd(dseg,doffset,sseg,soffset,count);
// memset of count bytes
void
memsetb(seg,offset,value,count)
Bit16u seg;
Bit16u offset;
Bit16u value;
Bit16u count;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push es
push di
mov cx, 10[bp] ; count
test cx, cx
je memsetb_end
mov ax, 4[bp] ; segment
mov es, ax
mov ax, 6[bp] ; offset
mov di, ax
mov al, 8[bp] ; value
cld
rep
stosb
memsetb_end:
pop di
pop es
pop cx
pop ax
pop bp
ASM_END
}
// memcpy of count bytes
void
memcpyb(dseg,doffset,sseg,soffset,count)
Bit16u dseg;
Bit16u doffset;
Bit16u sseg;
Bit16u soffset;
Bit16u count;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push es
push di
push ds
push si
mov cx, 12[bp] ; count
test cx, cx
je memcpyb_end
mov ax, 4[bp] ; dsegment
mov es, ax
mov ax, 6[bp] ; doffset
mov di, ax
mov ax, 8[bp] ; ssegment
mov ds, ax
mov ax, 10[bp] ; soffset
mov si, ax
cld
rep
movsb
memcpyb_end:
pop si
pop ds
pop di
pop es
pop cx
pop ax
pop bp
ASM_END
}
// memcpy of count dword
void
memcpyd(dseg,doffset,sseg,soffset,count)
Bit16u dseg;
Bit16u doffset;
Bit16u sseg;
Bit16u soffset;
Bit16u count;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push es
push di
push ds
push si
mov cx, 12[bp] ; count
test cx, cx
je memcpyd_end
mov ax, 4[bp] ; dsegment
mov es, ax
mov ax, 6[bp] ; doffset
mov di, ax
mov ax, 8[bp] ; ssegment
mov ds, ax
mov ax, 10[bp] ; soffset
mov si, ax
cld
rep
movsd
memcpyd_end:
pop si
pop ds
pop di
pop es
pop cx
pop ax
pop bp
ASM_END
}
// read_dword and write_dword functions
static Bit32u read_dword();
static void write_dword();
Bit32u
read_dword(seg, offset)
Bit16u seg;
Bit16u offset;
{
ASM_START
push bp
mov bp, sp
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, [bx]
add bx, #2
mov dx, [bx]
;; ax = return value (word)
;; dx = return value (word)
pop ds
pop bx
pop bp
ASM_END
}
void
write_dword(seg, offset, data)
Bit16u seg;
Bit16u offset;
Bit32u data;
{
ASM_START
push bp
mov bp, sp
push ax
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, 8[bp] ; data word
mov [bx], ax ; write data word
add bx, #2
mov ax, 10[bp] ; data word
mov [bx], ax ; write data word
pop ds
pop bx
pop ax
pop bp
ASM_END
}
// Bit32u (unsigned long) and long helper functions
ASM_START
;; and function
landl:
landul:
SEG SS
and ax,[di]
SEG SS
and bx,2[di]
ret
;; add function
laddl:
laddul:
SEG SS
add ax,[di]
SEG SS
adc bx,2[di]
ret
;; cmp function
lcmpl:
lcmpul:
and eax, #0x0000FFFF
shl ebx, #16
or eax, ebx
shr ebx, #16
SEG SS
cmp eax, dword ptr [di]
ret
;; sub function
lsubl:
lsubul:
SEG SS
sub ax,[di]
SEG SS
sbb bx,2[di]
ret
;; mul function
lmull:
lmulul:
and eax, #0x0000FFFF
shl ebx, #16
or eax, ebx
SEG SS
mul eax, dword ptr [di]
mov ebx, eax
shr ebx, #16
ret
;; dec function
ldecl:
ldecul:
SEG SS
dec dword ptr [bx]
ret
;; or function
lorl:
lorul:
SEG SS
or ax,[di]
SEG SS
or bx,2[di]
ret
;; inc function
lincl:
lincul:
SEG SS
inc dword ptr [bx]
ret
;; tst function
ltstl:
ltstul:
and eax, #0x0000FFFF
shl ebx, #16
or eax, ebx
shr ebx, #16
test eax, eax
ret
;; sr function
lsrul:
mov cx,di
jcxz lsr_exit
and eax, #0x0000FFFF
shl ebx, #16
or eax, ebx
lsr_loop:
shr eax, #1
loop lsr_loop
mov ebx, eax
shr ebx, #16
lsr_exit:
ret
;; sl function
lsll:
lslul:
mov cx,di
jcxz lsl_exit
and eax, #0x0000FFFF
shl ebx, #16
or eax, ebx
lsl_loop:
shl eax, #1
loop lsl_loop
mov ebx, eax
shr ebx, #16
lsl_exit:
ret
idiv_:
cwd
idiv bx
ret
idiv_u:
xor dx,dx
div bx
ret
ldivul:
and eax, #0x0000FFFF
shl ebx, #16
or eax, ebx
xor edx, edx
SEG SS
mov bx, 2[di]
shl ebx, #16
SEG SS
mov bx, [di]
div ebx
mov ebx, eax
shr ebx, #16
ret
ASM_END
// for access to RAM area which is used by interrupt vectors
// and BIOS Data Area
typedef struct {
unsigned char filler1[0x400];
unsigned char filler2[0x6c];
Bit16u ticks_low;
Bit16u ticks_high;
Bit8u midnight_flag;
} bios_data_t;
#define BiosData ((bios_data_t *) 0)
#if BX_USE_ATADRV
typedef struct {
Bit16u heads; // # heads
Bit16u cylinders; // # cylinders
Bit16u spt; // # sectors / track
} chs_t;
// DPTE definition
typedef struct {
Bit16u iobase1;
Bit16u iobase2;
Bit8u prefix;
Bit8u unused;
Bit8u irq;
Bit8u blkcount;
Bit8u dma;
Bit8u pio;
Bit16u options;
Bit16u reserved;
Bit8u revision;
Bit8u checksum;
} dpte_t;
typedef struct {
Bit8u iface; // ISA or PCI
Bit16u iobase1; // IO Base 1
Bit16u iobase2; // IO Base 2
Bit8u irq; // IRQ
} ata_channel_t;
typedef struct {
Bit8u type; // Detected type of ata (ata/atapi/none/unknown)
Bit8u device; // Detected type of attached devices (hd/cd/none)
Bit8u removable; // Removable device flag
Bit8u lock; // Locks for removable devices
Bit8u mode; // transfer mode : PIO 16/32 bits - IRQ - ISADMA - PCIDMA
Bit16u blksize; // block size
Bit8u translation; // type of translation
chs_t lchs; // Logical CHS
chs_t pchs; // Physical CHS
Bit32u sectors_low; // Total sectors count
Bit32u sectors_high;
} ata_device_t;
typedef struct {
// ATA channels info
ata_channel_t channels[BX_MAX_ATA_INTERFACES];
// ATA devices info
ata_device_t devices[BX_MAX_ATA_DEVICES];
//
// map between (bios hd id - 0x80) and ata channels
Bit8u hdcount, hdidmap[BX_MAX_ATA_DEVICES];
// map between (bios cd id - 0xE0) and ata channels
Bit8u cdcount, cdidmap[BX_MAX_ATA_DEVICES];
// Buffer for DPTE table
dpte_t dpte;
// Count of transferred sectors and bytes
Bit16u trsfsectors;
Bit32u trsfbytes;
} ata_t;
#if BX_ELTORITO_BOOT
// ElTorito Device Emulation data
typedef struct {
Bit8u active;
Bit8u media;
Bit8u emulated_drive;
Bit8u controller_index;
Bit16u device_spec;
Bit32u ilba;
Bit16u buffer_segment;
Bit16u load_segment;
Bit16u sector_count;
// Virtual device
chs_t vdevice;
} cdemu_t;
#endif // BX_ELTORITO_BOOT
// for access to EBDA area
// The EBDA structure should conform to
// http://www.frontiernet.net/~fys/rombios.htm document
// I made the ata and cdemu structs begin at 0x121 in the EBDA seg
// EBDA must be at most 768 bytes; it lives at EBDA_SEG, and the boot
// device tables are at IPL_SEG
typedef struct {
unsigned char filler1[0x3D];
// FDPT - Can be splitted in data members if needed
unsigned char fdpt0[0x10];
unsigned char fdpt1[0x10];
unsigned char filler2[0xC4];
// ATA Driver data
ata_t ata;
#if BX_ELTORITO_BOOT
// El Torito Emulation data
cdemu_t cdemu;
#endif // BX_ELTORITO_BOOT
} ebda_data_t;
#define EbdaData ((ebda_data_t *) 0)
// for access to the int13ext structure
typedef struct {
Bit8u size;
Bit8u reserved;
Bit16u count;
Bit16u offset;
Bit16u segment;
Bit32u lba1;
Bit32u lba2;
} int13ext_t;
#define Int13Ext ((int13ext_t *) 0)
// Disk Physical Table definition
typedef struct {
Bit16u size;
Bit16u infos;
Bit32u cylinders;
Bit32u heads;
Bit32u spt;
Bit32u sector_count1;
Bit32u sector_count2;
Bit16u blksize;
Bit16u dpte_offset;
Bit16u dpte_segment;
Bit16u key;
Bit8u dpi_length;
Bit8u reserved1;
Bit16u reserved2;
Bit8u host_bus[4];
Bit8u iface_type[8];
Bit8u iface_path[8];
Bit8u device_path[8];
Bit8u reserved3;
Bit8u checksum;
} dpt_t;
#define Int13DPT ((dpt_t *) 0)
#endif // BX_USE_ATADRV
typedef struct {
union {
struct {
Bit16u di, si, bp, sp;
Bit16u bx, dx, cx, ax;
} r16;
struct {
Bit16u filler[4];
Bit8u bl, bh, dl, dh, cl, ch, al, ah;
} r8;
} u;
} pusha_regs_t;
typedef struct {
union {
struct {
Bit32u edi, esi, ebp, esp;
Bit32u ebx, edx, ecx, eax;
} r32;
struct {
Bit16u di, filler1, si, filler2, bp, filler3, sp, filler4;
Bit16u bx, filler5, dx, filler6, cx, filler7, ax, filler8;
} r16;
struct {
Bit32u filler[4];
Bit8u bl, bh;
Bit16u filler1;
Bit8u dl, dh;
Bit16u filler2;
Bit8u cl, ch;
Bit16u filler3;
Bit8u al, ah;
Bit16u filler4;
} r8;
} u;
} pushad_regs_t;
typedef struct {
union {
struct {
Bit16u flags;
} r16;
struct {
Bit8u flagsl;
Bit8u flagsh;
} r8;
} u;
} flags_t;
#define SetCF(x) x.u.r8.flagsl |= 0x01
#define SetZF(x) x.u.r8.flagsl |= 0x40
#define ClearCF(x) x.u.r8.flagsl &= 0xfe
#define ClearZF(x) x.u.r8.flagsl &= 0xbf
#define GetCF(x) (x.u.r8.flagsl & 0x01)
typedef struct {
Bit16u ip;
Bit16u cs;
flags_t flags;
} iret_addr_t;
typedef struct {
Bit16u type;
Bit16u flags;
Bit32u vector;
Bit32u description;
Bit32u reserved;
} ipl_entry_t;
static Bit8u inb();
static Bit8u inb_cmos();
static void outb();
static void outb_cmos();
static Bit16u inw();
static void outw();
static void init_rtc();
static bx_bool rtc_updating();
static Bit8u read_byte();
static Bit16u read_word();
static void write_byte();
static void write_word();
static void bios_printf();
static Bit8u inhibit_mouse_int_and_events();
static void enable_mouse_int_and_events();
static Bit8u send_to_mouse_ctrl();
static Bit8u get_mouse_data();
static void set_kbd_command_byte();
static void int09_function();
static void int13_harddisk();
static void int13_cdrom();
static void int13_cdemu();
static void int13_eltorito();
static void int13_diskette_function();
static void int14_function();
static void int15_function();
static void int16_function();
static void int17_function();
static void int19_function();
static void int1a_function();
static void int70_function();
static void int74_function();
static Bit16u get_CS();
static Bit16u get_SS();
static unsigned int enqueue_key();
static unsigned int dequeue_key();
static void get_hd_geometry();
static void set_diskette_ret_status();
static void set_diskette_current_cyl();
static void determine_floppy_media();
static bx_bool floppy_drive_exists();
static bx_bool floppy_drive_recal();
static bx_bool floppy_media_known();
static bx_bool floppy_media_sense();
static bx_bool set_enable_a20();
static void debugger_on();
static void debugger_off();
static void keyboard_init();
static void keyboard_panic();
static void shutdown_status_panic();
static void nmi_handler_msg();
static void delay_ticks();
static void delay_ticks_and_check_for_keystroke();
static void interactive_bootkey();
static void print_bios_banner();
static void print_boot_device();
static void print_boot_failure();
static void print_cdromboot_failure();
# if BX_USE_ATADRV
// ATA / ATAPI driver
void ata_init();
void ata_detect();
void ata_reset();
Bit16u ata_cmd_non_data();
Bit16u ata_cmd_data_in();
Bit16u ata_cmd_data_out();
Bit16u ata_cmd_packet();
Bit16u atapi_get_sense();
Bit16u atapi_is_ready();
Bit16u atapi_is_cdrom();
#endif // BX_USE_ATADRV
#if BX_ELTORITO_BOOT
void cdemu_init();
Bit8u cdemu_isactive();
Bit8u cdemu_emulated_drive();
Bit16u cdrom_boot();
#endif // BX_ELTORITO_BOOT
static char bios_cvs_version_string[] = "$Revision: 1.235 $ $Date: 2009-09-28 16:36:02 $";
#define BIOS_COPYRIGHT_STRING "(c) 2002 MandrakeSoft S.A. Written by Kevin Lawton & the Bochs team."
#if DEBUG_ATA
# define BX_DEBUG_ATA(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_ATA(a...)
#endif
#if DEBUG_INT13_HD
# define BX_DEBUG_INT13_HD(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT13_HD(a...)
#endif
#if DEBUG_INT13_CD
# define BX_DEBUG_INT13_CD(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT13_CD(a...)
#endif
#if DEBUG_INT13_ET
# define BX_DEBUG_INT13_ET(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT13_ET(a...)
#endif
#if DEBUG_INT13_FL
# define BX_DEBUG_INT13_FL(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT13_FL(a...)
#endif
#if DEBUG_INT15
# define BX_DEBUG_INT15(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT15(a...)
#endif
#if DEBUG_INT16
# define BX_DEBUG_INT16(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT16(a...)
#endif
#if DEBUG_INT1A
# define BX_DEBUG_INT1A(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT1A(a...)
#endif
#if DEBUG_INT74
# define BX_DEBUG_INT74(a...) BX_DEBUG(a)
#else
# define BX_DEBUG_INT74(a...)
#endif
#define SET_AL(val8) AX = ((AX & 0xff00) | (val8))
#define SET_BL(val8) BX = ((BX & 0xff00) | (val8))
#define SET_CL(val8) CX = ((CX & 0xff00) | (val8))
#define SET_DL(val8) DX = ((DX & 0xff00) | (val8))
#define SET_AH(val8) AX = ((AX & 0x00ff) | ((val8) << 8))
#define SET_BH(val8) BX = ((BX & 0x00ff) | ((val8) << 8))
#define SET_CH(val8) CX = ((CX & 0x00ff) | ((val8) << 8))
#define SET_DH(val8) DX = ((DX & 0x00ff) | ((val8) << 8))
#define GET_AL() ( AX & 0x00ff )
#define GET_BL() ( BX & 0x00ff )
#define GET_CL() ( CX & 0x00ff )
#define GET_DL() ( DX & 0x00ff )
#define GET_AH() ( AX >> 8 )
#define GET_BH() ( BX >> 8 )
#define GET_CH() ( CX >> 8 )
#define GET_DH() ( DX >> 8 )
#define GET_ELDL() ( ELDX & 0x00ff )
#define GET_ELDH() ( ELDX >> 8 )
#define SET_CF() FLAGS |= 0x0001
#define CLEAR_CF() FLAGS &= 0xfffe
#define GET_CF() (FLAGS & 0x0001)
#define SET_ZF() FLAGS |= 0x0040
#define CLEAR_ZF() FLAGS &= 0xffbf
#define GET_ZF() (FLAGS & 0x0040)
#define UNSUPPORTED_FUNCTION 0x86
#define none 0
#define MAX_SCAN_CODE 0x58
static struct {
Bit16u normal;
Bit16u shift;
Bit16u control;
Bit16u alt;
Bit8u lock_flags;
} scan_to_scanascii[MAX_SCAN_CODE + 1] = {
{ none, none, none, none, none },
{ 0x011b, 0x011b, 0x011b, 0x0100, none }, /* escape */
{ 0x0231, 0x0221, none, 0x7800, none }, /* 1! */
{ 0x0332, 0x0340, 0x0300, 0x7900, none }, /* 2@ */
{ 0x0433, 0x0423, none, 0x7a00, none }, /* 3# */
{ 0x0534, 0x0524, none, 0x7b00, none }, /* 4$ */
{ 0x0635, 0x0625, none, 0x7c00, none }, /* 5% */
{ 0x0736, 0x075e, 0x071e, 0x7d00, none }, /* 6^ */
{ 0x0837, 0x0826, none, 0x7e00, none }, /* 7& */
{ 0x0938, 0x092a, none, 0x7f00, none }, /* 8* */
{ 0x0a39, 0x0a28, none, 0x8000, none }, /* 9( */
{ 0x0b30, 0x0b29, none, 0x8100, none }, /* 0) */
{ 0x0c2d, 0x0c5f, 0x0c1f, 0x8200, none }, /* -_ */
{ 0x0d3d, 0x0d2b, none, 0x8300, none }, /* =+ */
{ 0x0e08, 0x0e08, 0x0e7f, none, none }, /* backspace */
{ 0x0f09, 0x0f00, none, none, none }, /* tab */
{ 0x1071, 0x1051, 0x1011, 0x1000, 0x40 }, /* Q */
{ 0x1177, 0x1157, 0x1117, 0x1100, 0x40 }, /* W */
{ 0x1265, 0x1245, 0x1205, 0x1200, 0x40 }, /* E */
{ 0x1372, 0x1352, 0x1312, 0x1300, 0x40 }, /* R */
{ 0x1474, 0x1454, 0x1414, 0x1400, 0x40 }, /* T */
{ 0x1579, 0x1559, 0x1519, 0x1500, 0x40 }, /* Y */
{ 0x1675, 0x1655, 0x1615, 0x1600, 0x40 }, /* U */
{ 0x1769, 0x1749, 0x1709, 0x1700, 0x40 }, /* I */
{ 0x186f, 0x184f, 0x180f, 0x1800, 0x40 }, /* O */
{ 0x1970, 0x1950, 0x1910, 0x1900, 0x40 }, /* P */
{ 0x1a5b, 0x1a7b, 0x1a1b, none, none }, /* [{ */
{ 0x1b5d, 0x1b7d, 0x1b1d, none, none }, /* ]} */
{ 0x1c0d, 0x1c0d, 0x1c0a, none, none }, /* Enter */
{ none, none, none, none, none }, /* L Ctrl */
{ 0x1e61, 0x1e41, 0x1e01, 0x1e00, 0x40 }, /* A */
{ 0x1f73, 0x1f53, 0x1f13, 0x1f00, 0x40 }, /* S */
{ 0x2064, 0x2044, 0x2004, 0x2000, 0x40 }, /* D */
{ 0x2166, 0x2146, 0x2106, 0x2100, 0x40 }, /* F */
{ 0x2267, 0x2247, 0x2207, 0x2200, 0x40 }, /* G */
{ 0x2368, 0x2348, 0x2308, 0x2300, 0x40 }, /* H */
{ 0x246a, 0x244a, 0x240a, 0x2400, 0x40 }, /* J */
{ 0x256b, 0x254b, 0x250b, 0x2500, 0x40 }, /* K */
{ 0x266c, 0x264c, 0x260c, 0x2600, 0x40 }, /* L */
{ 0x273b, 0x273a, none, none, none }, /* ;: */
{ 0x2827, 0x2822, none, none, none }, /* '" */
{ 0x2960, 0x297e, none, none, none }, /* `~ */
{ none, none, none, none, none }, /* L shift */
{ 0x2b5c, 0x2b7c, 0x2b1c, none, none }, /* |\ */
{ 0x2c7a, 0x2c5a, 0x2c1a, 0x2c00, 0x40 }, /* Z */
{ 0x2d78, 0x2d58, 0x2d18, 0x2d00, 0x40 }, /* X */
{ 0x2e63, 0x2e43, 0x2e03, 0x2e00, 0x40 }, /* C */
{ 0x2f76, 0x2f56, 0x2f16, 0x2f00, 0x40 }, /* V */
{ 0x3062, 0x3042, 0x3002, 0x3000, 0x40 }, /* B */
{ 0x316e, 0x314e, 0x310e, 0x3100, 0x40 }, /* N */
{ 0x326d, 0x324d, 0x320d, 0x3200, 0x40 }, /* M */
{ 0x332c, 0x333c, none, none, none }, /* ,< */
{ 0x342e, 0x343e, none, none, none }, /* .> */
{ 0x352f, 0x353f, none, none, none }, /* /? */
{ none, none, none, none, none }, /* R Shift */
{ 0x372a, 0x372a, none, none, none }, /* * */
{ none, none, none, none, none }, /* L Alt */
{ 0x3920, 0x3920, 0x3920, 0x3920, none }, /* space */
{ none, none, none, none, none }, /* caps lock */
{ 0x3b00, 0x5400, 0x5e00, 0x6800, none }, /* F1 */
{ 0x3c00, 0x5500, 0x5f00, 0x6900, none }, /* F2 */
{ 0x3d00, 0x5600, 0x6000, 0x6a00, none }, /* F3 */
{ 0x3e00, 0x5700, 0x6100, 0x6b00, none }, /* F4 */
{ 0x3f00, 0x5800, 0x6200, 0x6c00, none }, /* F5 */
{ 0x4000, 0x5900, 0x6300, 0x6d00, none }, /* F6 */
{ 0x4100, 0x5a00, 0x6400, 0x6e00, none }, /* F7 */
{ 0x4200, 0x5b00, 0x6500, 0x6f00, none }, /* F8 */
{ 0x4300, 0x5c00, 0x6600, 0x7000, none }, /* F9 */
{ 0x4400, 0x5d00, 0x6700, 0x7100, none }, /* F10 */
{ none, none, none, none, none }, /* Num Lock */
{ none, none, none, none, none }, /* Scroll Lock */
{ 0x4700, 0x4737, 0x7700, none, 0x20 }, /* 7 Home */
{ 0x4800, 0x4838, none, none, 0x20 }, /* 8 UP */
{ 0x4900, 0x4939, 0x8400, none, 0x20 }, /* 9 PgUp */
{ 0x4a2d, 0x4a2d, none, none, none }, /* - */
{ 0x4b00, 0x4b34, 0x7300, none, 0x20 }, /* 4 Left */
{ 0x4c00, 0x4c35, none, none, 0x20 }, /* 5 */
{ 0x4d00, 0x4d36, 0x7400, none, 0x20 }, /* 6 Right */
{ 0x4e2b, 0x4e2b, none, none, none }, /* + */
{ 0x4f00, 0x4f31, 0x7500, none, 0x20 }, /* 1 End */
{ 0x5000, 0x5032, none, none, 0x20 }, /* 2 Down */
{ 0x5100, 0x5133, 0x7600, none, 0x20 }, /* 3 PgDn */
{ 0x5200, 0x5230, none, none, 0x20 }, /* 0 Ins */
{ 0x5300, 0x532e, none, none, 0x20 }, /* Del */
{ none, none, none, none, none },
{ none, none, none, none, none },
{ 0x565c, 0x567c, none, none, none }, /* \| */
{ 0x8500, 0x8700, 0x8900, 0x8b00, none }, /* F11 */
{ 0x8600, 0x8800, 0x8a00, 0x8c00, none }, /* F12 */
};
Bit8u
inb(port)
Bit16u port;
{
ASM_START
push bp
mov bp, sp
push dx
mov dx, 4[bp]
in al, dx
pop dx
pop bp
ASM_END
}
#if BX_USE_ATADRV
Bit16u
inw(port)
Bit16u port;
{
ASM_START
push bp
mov bp, sp
push dx
mov dx, 4[bp]
in ax, dx
pop dx
pop bp
ASM_END
}
#endif
void
outb(port, val)
Bit16u port;
Bit8u val;
{
ASM_START
push bp
mov bp, sp
push ax
push dx
mov dx, 4[bp]
mov al, 6[bp]
out dx, al
pop dx
pop ax
pop bp
ASM_END
}
#if BX_USE_ATADRV
void
outw(port, val)
Bit16u port;
Bit16u val;
{
ASM_START
push bp
mov bp, sp
push ax
push dx
mov dx, 4[bp]
mov ax, 6[bp]
out dx, ax
pop dx
pop ax
pop bp
ASM_END
}
#endif
void
outb_cmos(cmos_reg, val)
Bit8u cmos_reg;
Bit8u val;
{
ASM_START
push bp
mov bp, sp
mov al, 4[bp] ;; cmos_reg
out 0x70, al
mov al, 6[bp] ;; val
out 0x71, al
pop bp
ASM_END
}
Bit8u
inb_cmos(cmos_reg)
Bit8u cmos_reg;
{
ASM_START
push bp
mov bp, sp
mov al, 4[bp] ;; cmos_reg
out 0x70, al
in al, 0x71
pop bp
ASM_END
}
void
init_rtc()
{
outb_cmos(0x0a, 0x26);
outb_cmos(0x0b, 0x02);
inb_cmos(0x0c);
inb_cmos(0x0d);
}
bx_bool
rtc_updating()
{
// This function checks to see if the update-in-progress bit
// is set in CMOS Status Register A. If not, it returns 0.
// If it is set, it tries to wait until there is a transition
// to 0, and will return 0 if such a transition occurs. A 1
// is returned only after timing out. The maximum period
// that this bit should be set is constrained to 244useconds.
// The count I use below guarantees coverage or more than
// this time, with any reasonable IPS setting.
Bit16u count;
count = 25000;
while (--count != 0) {
if ( (inb_cmos(0x0a) & 0x80) == 0 )
return(0);
}
return(1); // update-in-progress never transitioned to 0
}
Bit8u
read_byte(seg, offset)
Bit16u seg;
Bit16u offset;
{
ASM_START
push bp
mov bp, sp
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov al, [bx]
;; al = return value (byte)
pop ds
pop bx
pop bp
ASM_END
}
Bit16u
read_word(seg, offset)
Bit16u seg;
Bit16u offset;
{
ASM_START
push bp
mov bp, sp
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, [bx]
;; ax = return value (word)
pop ds
pop bx
pop bp
ASM_END
}
void
write_byte(seg, offset, data)
Bit16u seg;
Bit16u offset;
Bit8u data;
{
ASM_START
push bp
mov bp, sp
push ax
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov al, 8[bp] ; data byte
mov [bx], al ; write data byte
pop ds
pop bx
pop ax
pop bp
ASM_END
}
void
write_word(seg, offset, data)
Bit16u seg;
Bit16u offset;
Bit16u data;
{
ASM_START
push bp
mov bp, sp
push ax
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, 8[bp] ; data word
mov [bx], ax ; write data word
pop ds
pop bx
pop ax
pop bp
ASM_END
}
Bit16u
get_CS()
{
ASM_START
mov ax, cs
ASM_END
}
Bit16u
get_SS()
{
ASM_START
mov ax, ss
ASM_END
}
#if BX_DEBUG_SERIAL
/* serial debug port*/
#define BX_DEBUG_PORT 0x03f8
/* data */
#define UART_RBR 0x00
#define UART_THR 0x00
/* control */
#define UART_IER 0x01
#define UART_IIR 0x02
#define UART_FCR 0x02
#define UART_LCR 0x03
#define UART_MCR 0x04
#define UART_DLL 0x00
#define UART_DLM 0x01
/* status */
#define UART_LSR 0x05
#define UART_MSR 0x06
#define UART_SCR 0x07
int uart_can_tx_byte(base_port)
Bit16u base_port;
{
return inb(base_port + UART_LSR) & 0x20;
}
void uart_wait_to_tx_byte(base_port)
Bit16u base_port;
{
while (!uart_can_tx_byte(base_port));
}
void uart_wait_until_sent(base_port)
Bit16u base_port;
{
while (!(inb(base_port + UART_LSR) & 0x40));
}
void uart_tx_byte(base_port, data)
Bit16u base_port;
Bit8u data;
{
uart_wait_to_tx_byte(base_port);
outb(base_port + UART_THR, data);
uart_wait_until_sent(base_port);
}
#endif
void
wrch(c)
Bit8u c;
{
ASM_START
push bp
mov bp, sp
push bx
mov ah, #0x0e
mov al, 4[bp]
xor bx,bx
int #0x10
pop bx
pop bp
ASM_END
}
void
send(action, c)
Bit16u action;
Bit8u c;
{
#if BX_DEBUG_SERIAL
if (c == '\n') uart_tx_byte(BX_DEBUG_PORT, '\r');
uart_tx_byte(BX_DEBUG_PORT, c);
#endif
#if BX_VIRTUAL_PORTS
if (action & BIOS_PRINTF_DEBUG) outb(DEBUG_PORT, c);
if (action & BIOS_PRINTF_INFO) outb(INFO_PORT, c);
#endif
if (action & BIOS_PRINTF_SCREEN) {
if (c == '\n') wrch('\r');
wrch(c);
}
}
void
put_int(action, val, width, neg)
Bit16u action;
short val, width;
bx_bool neg;
{
short nval = val / 10;
if (nval)
put_int(action, nval, width - 1, neg);
else {
while (--width > 0) send(action, ' ');
if (neg) send(action, '-');
}
send(action, val - (nval * 10) + '0');
}
void
put_uint(action, val, width, neg)
Bit16u action;
unsigned short val;
short width;
bx_bool neg;
{
unsigned short nval = val / 10;
if (nval)
put_uint(action, nval, width - 1, neg);
else {
while (--width > 0) send(action, ' ');
if (neg) send(action, '-');
}
send(action, val - (nval * 10) + '0');
}
void
put_luint(action, val, width, neg)
Bit16u action;
unsigned long val;
short width;
bx_bool neg;
{
unsigned long nval = val / 10;
if (nval)
put_luint(action, nval, width - 1, neg);
else {
while (--width > 0) send(action, ' ');
if (neg) send(action, '-');
}
send(action, val - (nval * 10) + '0');
}
void put_str(action, segment, offset)
Bit16u action;
Bit16u segment;
Bit16u offset;
{
Bit8u c;
while (c = read_byte(segment, offset)) {
send(action, c);
offset++;
}
}
void
delay_ticks(ticks)
Bit16u ticks;
{
long ticks_to_wait, delta;
Bit32u prev_ticks, t;
/*
* The 0:046c wraps around at 'midnight' according to a 18.2Hz clock.
* We also have to be careful about interrupt storms.
*/
ASM_START
pushf
sti
ASM_END
ticks_to_wait = ticks;
prev_ticks = read_dword(0x0, 0x46c);
do
{
ASM_START
hlt
ASM_END
t = read_dword(0x0, 0x46c);
if (t > prev_ticks)
{
delta = t - prev_ticks; /* The temp var is required or bcc screws up. */
ticks_to_wait -= delta;
}
else if (t < prev_ticks)
{
ticks_to_wait -= t; /* wrapped */
}
prev_ticks = t;
} while (ticks_to_wait > 0);
ASM_START
cli
popf
ASM_END
}
Bit8u
check_for_keystroke()
{
ASM_START
mov ax, #0x100
int #0x16
jz no_key
mov al, #1
jmp done
no_key:
xor al, al
done:
ASM_END
}
Bit8u
get_keystroke()
{
ASM_START
mov ax, #0x0
int #0x16
xchg ah, al
ASM_END
}
void
delay_ticks_and_check_for_keystroke(ticks, count)
Bit16u ticks, count;
{
Bit16u i;
for (i = 1; i <= count; i++) {
delay_ticks(ticks);
if (check_for_keystroke())
break;
}
}
//--------------------------------------------------------------------------
// bios_printf()
// A compact variable argument printf function.
//
// Supports %[format_width][length]format
// where format can be x,X,u,d,s,S,c
// and the optional length modifier is l (ell)
//--------------------------------------------------------------------------
void
bios_printf(action, s)
Bit16u action;
Bit8u *s;
{
Bit8u c, format_char;
bx_bool in_format;
short i;
Bit16u *arg_ptr;
Bit16u arg_seg, arg, nibble, hibyte, shift_count, format_width, hexadd;
arg_ptr = &s;
arg_seg = get_SS();
in_format = 0;
format_width = 0;
if ((action & BIOS_PRINTF_DEBHALT) == BIOS_PRINTF_DEBHALT) {
#if BX_VIRTUAL_PORTS
outb(PANIC_PORT2, 0x00);
#endif
bios_printf (BIOS_PRINTF_SCREEN, "FATAL: ");
}
while (c = read_byte(get_CS(), s)) {
if ( c == '%' ) {
in_format = 1;
format_width = 0;
}
else if (in_format) {
if ( (c>='0') && (c<='9') ) {
format_width = (format_width * 10) + (c - '0');
}
else {
arg_ptr++; // increment to next arg
arg = read_word(arg_seg, arg_ptr);
if (c == 'x' || c == 'X') {
if (format_width == 0)
format_width = 4;
if (c == 'x')
hexadd = 'a';
else
hexadd = 'A';
for (i=format_width-1; i>=0; i--) {
nibble = (arg >> (4 * i)) & 0x000f;
send (action, (nibble<=9)? (nibble+'0') : (nibble-10+hexadd));
}
}
else if (c == 'u') {
put_uint(action, arg, format_width, 0);
}
else if (c == 'l') {
s++;
c = read_byte(get_CS(), s); /* is it ld,lx,lu? */
arg_ptr++; /* increment to next arg */
hibyte = read_word(arg_seg, arg_ptr);
if (c == 'd') {
if (hibyte & 0x8000)
put_luint(action, 0L-(((Bit32u) hibyte << 16) | arg), format_width-1, 1);
else
put_luint(action, ((Bit32u) hibyte << 16) | arg, format_width, 0);
}
else if (c == 'u') {
put_luint(action, ((Bit32u) hibyte << 16) | arg, format_width, 0);
}
else if (c == 'x' || c == 'X')
{
if (format_width == 0)
format_width = 8;
if (c == 'x')
hexadd = 'a';
else
hexadd = 'A';
for (i=format_width-1; i>=0; i--) {
nibble = ((((Bit32u) hibyte <<16) | arg) >> (4 * i)) & 0x000f;
send (action, (nibble<=9)? (nibble+'0') : (nibble-10+hexadd));
}
}
}
else if (c == 'd') {
if (arg & 0x8000)
put_int(action, -arg, format_width - 1, 1);
else
put_int(action, arg, format_width, 0);
}
else if (c == 's') {
put_str(action, get_CS(), arg);
}
else if (c == 'S') {
hibyte = arg;
arg_ptr++;
arg = read_word(arg_seg, arg_ptr);
put_str(action, hibyte, arg);
}
else if (c == 'c') {
send(action, arg);
}
else
BX_PANIC("bios_printf: unknown format\n");
in_format = 0;
}
}
else {
send(action, c);
}
s ++;
}
if (action & BIOS_PRINTF_HALT) {
// freeze in a busy loop.
ASM_START
cli
halt2_loop:
hlt
jmp halt2_loop
ASM_END
}
}
//--------------------------------------------------------------------------
// keyboard_init
//--------------------------------------------------------------------------
// this file is based on LinuxBIOS implementation of keyboard.c
// could convert to #asm to gain space
void
keyboard_init()
{
Bit16u max;
/* ------------------- Flush buffers ------------------------*/
/* Wait until buffer is empty */
max=0xffff;
while ( (inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x00);
/* flush incoming keys */
max=0x2000;
while (--max > 0) {
outb(0x80, 0x00);
if (inb(0x64) & 0x01) {
inb(0x60);
max = 0x2000;
}
}
// Due to timer issues, and if the IPS setting is > 15000000,
// the incoming keys might not be flushed here. That will
// cause a panic a few lines below. See sourceforge bug report :
// [ 642031 ] FATAL: Keyboard RESET error:993
/* ------------------- controller side ----------------------*/
/* send cmd = 0xAA, self test 8042 */
outb(0x64, 0xaa);
/* Wait until buffer is empty */
max=0xffff;
while ( (inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x00);
if (max==0x0) keyboard_panic(00);
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x01);
if (max==0x0) keyboard_panic(01);
/* read self-test result, 0x55 should be returned from 0x60 */
if ((inb(0x60) != 0x55)){
keyboard_panic(991);
}
/* send cmd = 0xAB, keyboard interface test */
outb(0x64,0xab);
/* Wait until buffer is empty */
max=0xffff;
while ((inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x10);
if (max==0x0) keyboard_panic(10);
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x11);
if (max==0x0) keyboard_panic(11);
/* read keyboard interface test result, */
/* 0x00 should be returned form 0x60 */
if ((inb(0x60) != 0x00)) {
keyboard_panic(992);
}
/* Enable Keyboard clock */
outb(0x64,0xae);
outb(0x64,0xa8);
/* ------------------- keyboard side ------------------------*/
/* reset kerboard and self test (keyboard side) */
outb(0x60, 0xff);
/* Wait until buffer is empty */
max=0xffff;
while ((inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x20);
if (max==0x0) keyboard_panic(20);
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x21);
if (max==0x0) keyboard_panic(21);
/* keyboard should return ACK */
if ((inb(0x60) != 0xfa)) {
keyboard_panic(993);
}
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x31);
if (max==0x0) keyboard_panic(31);
if ((inb(0x60) != 0xaa)) {
keyboard_panic(994);
}
/* Disable keyboard */
outb(0x60, 0xf5);
/* Wait until buffer is empty */
max=0xffff;
while ((inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x40);
if (max==0x0) keyboard_panic(40);
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x41);
if (max==0x0) keyboard_panic(41);
/* keyboard should return ACK */
if ((inb(0x60) != 0xfa)) {
keyboard_panic(995);
}
/* Write Keyboard Mode */
outb(0x64, 0x60);
/* Wait until buffer is empty */
max=0xffff;
while ((inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x50);
if (max==0x0) keyboard_panic(50);
/* send cmd: scan code convert, disable mouse, enable IRQ 1 */
outb(0x60, 0x61);
/* Wait until buffer is empty */
max=0xffff;
while ((inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x60);
if (max==0x0) keyboard_panic(60);
/* Enable keyboard */
outb(0x60, 0xf4);
/* Wait until buffer is empty */
max=0xffff;
while ((inb(0x64) & 0x02) && (--max>0)) outb(0x80, 0x70);
if (max==0x0) keyboard_panic(70);
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x71);
if (max==0x0) keyboard_panic(70);
/* keyboard should return ACK */
if ((inb(0x60) != 0xfa)) {
keyboard_panic(996);
}
outb(0x80, 0x77);
}
//--------------------------------------------------------------------------
// keyboard_panic
//--------------------------------------------------------------------------
void
keyboard_panic(status)
Bit16u status;
{
// If you're getting a 993 keyboard panic here,
// please see the comment in keyboard_init
BX_PANIC("Keyboard error:%u\n",status);
}
//--------------------------------------------------------------------------
// shutdown_status_panic
// called when the shutdown statsu is not implemented, displays the status
//--------------------------------------------------------------------------
void
shutdown_status_panic(status)
Bit16u status;
{
BX_PANIC("Unimplemented shutdown status: %02x\n",(Bit8u)status);
}
void s3_resume_panic()
{
BX_PANIC("Returned from s3_resume.\n");
}
//--------------------------------------------------------------------------
// print_bios_banner
// displays a the bios version
//--------------------------------------------------------------------------
void
print_bios_banner()
{
printf(BX_APPNAME" BIOS - build: %s\n%s\nOptions: ",
BIOS_BUILD_DATE, bios_cvs_version_string);
printf(
#if BX_APM
"apmbios "
#endif
#if BX_PCIBIOS
"pcibios "
#endif
#if BX_ELTORITO_BOOT
"eltorito "
#endif
#if BX_ROMBIOS32
"rombios32 "
#endif
"\n\n");
}
//--------------------------------------------------------------------------
// BIOS Boot Specification 1.0.1 compatibility
//
// Very basic support for the BIOS Boot Specification, which allows expansion
// ROMs to register themselves as boot devices, instead of just stealing the
// INT 19h boot vector.
//
// This is a hack: to do it properly requires a proper PnP BIOS and we aren't
// one; we just lie to the option ROMs to make them behave correctly.
// We also don't support letting option ROMs register as bootable disk
// drives (BCVs), only as bootable devices (BEVs).
//
// http://www.phoenix.com/en/Customer+Services/White+Papers-Specs/pc+industry+specifications.htm
//--------------------------------------------------------------------------
static char drivetypes[][10]={"", "Floppy","Hard Disk","CD-Rom", "Network"};
static void
init_boot_vectors()
{
ipl_entry_t e;
Bit16u count = 0;
Bit16u ss = get_SS();
/* Clear out the IPL table. */
memsetb(IPL_SEG, IPL_TABLE_OFFSET, 0, IPL_SIZE);
/* User selected device not set */
write_word(IPL_SEG, IPL_BOOTFIRST_OFFSET, 0xFFFF);
/* Floppy drive */
e.type = IPL_TYPE_FLOPPY; e.flags = 0; e.vector = 0; e.description = 0; e.reserved = 0;
memcpyb(IPL_SEG, IPL_TABLE_OFFSET + count * sizeof (e), ss, &e, sizeof (e));
count++;
/* First HDD */
e.type = IPL_TYPE_HARDDISK; e.flags = 0; e.vector = 0; e.description = 0; e.reserved = 0;
memcpyb(IPL_SEG, IPL_TABLE_OFFSET + count * sizeof (e), ss, &e, sizeof (e));
count++;
#if BX_ELTORITO_BOOT
/* CDROM */
e.type = IPL_TYPE_CDROM; e.flags = 0; e.vector = 0; e.description = 0; e.reserved = 0;
memcpyb(IPL_SEG, IPL_TABLE_OFFSET + count * sizeof (e), ss, &e, sizeof (e));
count++;
#endif
/* Remember how many devices we have */
write_word(IPL_SEG, IPL_COUNT_OFFSET, count);
/* Not tried booting anything yet */
write_word(IPL_SEG, IPL_SEQUENCE_OFFSET, 0xffff);
}
static Bit8u
get_boot_vector(i, e)
Bit16u i; ipl_entry_t *e;
{
Bit16u count;
Bit16u ss = get_SS();
/* Get the count of boot devices, and refuse to overrun the array */
count = read_word(IPL_SEG, IPL_COUNT_OFFSET);
if (i >= count) return 0;
/* OK to read this device */
memcpyb(ss, e, IPL_SEG, IPL_TABLE_OFFSET + i * sizeof (*e), sizeof (*e));
return 1;
}
#if BX_ELTORITO_BOOT
void
interactive_bootkey()
{
ipl_entry_t e;
Bit16u count;
char description[33];
Bit8u scan_code;
Bit8u i;
Bit16u ss = get_SS();
Bit16u valid_choice = 0;
while (check_for_keystroke())
get_keystroke();
printf("Press F12 for boot menu.\n\n");
delay_ticks_and_check_for_keystroke(11, 5); /* ~3 seconds */
if (check_for_keystroke())
{
scan_code = get_keystroke();
if (scan_code == 0x86) /* F12 */
{
while (check_for_keystroke())
get_keystroke();
printf("Select boot device:\n\n");
count = read_word(IPL_SEG, IPL_COUNT_OFFSET);
for (i = 0; i < count; i++)
{
memcpyb(ss, &e, IPL_SEG, IPL_TABLE_OFFSET + i * sizeof (e), sizeof (e));
printf("%d. ", i+1);
switch(e.type)
{
case IPL_TYPE_FLOPPY:
case IPL_TYPE_HARDDISK:
case IPL_TYPE_CDROM:
printf("%s\n", drivetypes[e.type]);
break;
case IPL_TYPE_BEV:
printf("%s", drivetypes[4]);
if (e.description != 0)
{
memcpyb(ss, &description, (Bit16u)(e.description >> 16), (Bit16u)(e.description & 0xffff), 32);
description[32] = 0;
printf(" [%S]", ss, description);
}
printf("\n");
break;
}
}
count++;
while (!valid_choice) {
scan_code = get_keystroke();
if (scan_code == 0x01 || scan_code == 0x58) /* ESC or F12 */
{
valid_choice = 1;
}
else if (scan_code <= count)
{
valid_choice = 1;
scan_code -= 1;
/* Set user selected device */
write_word(IPL_SEG, IPL_BOOTFIRST_OFFSET, scan_code);
}
}
printf("\n");
}
}
}
#endif // BX_ELTORITO_BOOT
//--------------------------------------------------------------------------
// print_boot_device
// displays the boot device
//--------------------------------------------------------------------------
void
print_boot_device(e)
ipl_entry_t *e;
{
Bit16u type;
char description[33];
Bit16u ss = get_SS();
type = e->type;
/* NIC appears as type 0x80 */
if (type == IPL_TYPE_BEV) type = 0x4;
if (type == 0 || type > 0x4) BX_PANIC("Bad drive type\n");
printf("Booting from %s", drivetypes[type]);
/* print product string if BEV */
if (type == 4 && e->description != 0) {
/* first 32 bytes are significant */
memcpyb(ss, &description, (Bit16u)(e->description >> 16), (Bit16u)(e->description & 0xffff), 32);
/* terminate string */
description[32] = 0;
printf(" [%S]", ss, description);
}
printf("...\n");
}
//--------------------------------------------------------------------------
// print_boot_failure
// displays the reason why boot failed
//--------------------------------------------------------------------------
void
print_boot_failure(type, reason)
Bit16u type; Bit8u reason;
{
if (type == 0 || type > 0x3) BX_PANIC("Bad drive type\n");
printf("Boot failed");
if (type < 4) {
/* Report the reason too */
if (reason==0)
printf(": not a bootable disk");
else
printf(": could not read the boot disk");
}
printf("\n\n");
}
//--------------------------------------------------------------------------
// print_cdromboot_failure
// displays the reason why boot failed
//--------------------------------------------------------------------------
void
print_cdromboot_failure( code )
Bit16u code;
{
bios_printf(BIOS_PRINTF_SCREEN | BIOS_PRINTF_INFO, "CDROM boot failure code : %04x\n",code);
return;
}
void
nmi_handler_msg()
{
BX_PANIC("NMI Handler called\n");
}
void
int18_panic_msg()
{
BX_PANIC("INT18: BOOT FAILURE\n");
}
void
log_bios_start()
{
#if BX_DEBUG_SERIAL
outb(BX_DEBUG_PORT+UART_LCR, 0x03); /* setup for serial logging: 8N1 */
#endif
BX_INFO("%s\n", bios_cvs_version_string);
}
bx_bool
set_enable_a20(val)
bx_bool val;
{
Bit8u oldval;
// Use PS2 System Control port A to set A20 enable
// get current setting first
oldval = inb(0x92);
// change A20 status
if (val)
outb(0x92, oldval | 0x02);
else
outb(0x92, oldval & 0xfd);
return((oldval & 0x02) != 0);
}
void
debugger_on()
{
outb(0xfedc, 0x01);
}
void
debugger_off()
{
outb(0xfedc, 0x00);
}
int
s3_resume()
{
Bit32u s3_wakeup_vector;
Bit8u s3_resume_flag;
s3_resume_flag = read_byte(0x40, 0xb0);
s3_wakeup_vector = read_dword(0x40, 0xb2);
BX_INFO("S3 resume called %x 0x%lx\n", s3_resume_flag, s3_wakeup_vector);
if (s3_resume_flag != 0xFE || !s3_wakeup_vector)
return 0;
write_byte(0x40, 0xb0, 0);
/* setup wakeup vector */
write_word(0x40, 0xb6, (s3_wakeup_vector & 0xF)); /* IP */
write_word(0x40, 0xb8, (s3_wakeup_vector >> 4)); /* CS */
BX_INFO("S3 resume jump to %x:%x\n", (s3_wakeup_vector >> 4),
(s3_wakeup_vector & 0xF));
ASM_START
jmpf [0x04b6]
ASM_END
return 1;
}
#if BX_USE_ATADRV
// ---------------------------------------------------------------------------
// Start of ATA/ATAPI Driver
// ---------------------------------------------------------------------------
// Global defines -- ATA register and register bits.
// command block & control block regs
#define ATA_CB_DATA 0 // data reg in/out pio_base_addr1+0
#define ATA_CB_ERR 1 // error in pio_base_addr1+1
#define ATA_CB_FR 1 // feature reg out pio_base_addr1+1
#define ATA_CB_SC 2 // sector count in/out pio_base_addr1+2
#define ATA_CB_SN 3 // sector number in/out pio_base_addr1+3
#define ATA_CB_CL 4 // cylinder low in/out pio_base_addr1+4
#define ATA_CB_CH 5 // cylinder high in/out pio_base_addr1+5
#define ATA_CB_DH 6 // device head in/out pio_base_addr1+6
#define ATA_CB_STAT 7 // primary status in pio_base_addr1+7
#define ATA_CB_CMD 7 // command out pio_base_addr1+7
#define ATA_CB_ASTAT 6 // alternate status in pio_base_addr2+6
#define ATA_CB_DC 6 // device control out pio_base_addr2+6
#define ATA_CB_DA 7 // device address in pio_base_addr2+7
#define ATA_CB_ER_ICRC 0x80 // ATA Ultra DMA bad CRC
#define ATA_CB_ER_BBK 0x80 // ATA bad block
#define ATA_CB_ER_UNC 0x40 // ATA uncorrected error
#define ATA_CB_ER_MC 0x20 // ATA media change
#define ATA_CB_ER_IDNF 0x10 // ATA id not found
#define ATA_CB_ER_MCR 0x08 // ATA media change request
#define ATA_CB_ER_ABRT 0x04 // ATA command aborted
#define ATA_CB_ER_NTK0 0x02 // ATA track 0 not found
#define ATA_CB_ER_NDAM 0x01 // ATA address mark not found
#define ATA_CB_ER_P_SNSKEY 0xf0 // ATAPI sense key (mask)
#define ATA_CB_ER_P_MCR 0x08 // ATAPI Media Change Request
#define ATA_CB_ER_P_ABRT 0x04 // ATAPI command abort
#define ATA_CB_ER_P_EOM 0x02 // ATAPI End of Media
#define ATA_CB_ER_P_ILI 0x01 // ATAPI Illegal Length Indication
// ATAPI Interrupt Reason bits in the Sector Count reg (CB_SC)
#define ATA_CB_SC_P_TAG 0xf8 // ATAPI tag (mask)
#define ATA_CB_SC_P_REL 0x04 // ATAPI release
#define ATA_CB_SC_P_IO 0x02 // ATAPI I/O
#define ATA_CB_SC_P_CD 0x01 // ATAPI C/D
// bits 7-4 of the device/head (CB_DH) reg
#define ATA_CB_DH_DEV0 0xa0 // select device 0
#define ATA_CB_DH_DEV1 0xb0 // select device 1
#define ATA_CB_DH_LBA 0x40 // use LBA
// status reg (CB_STAT and CB_ASTAT) bits
#define ATA_CB_STAT_BSY 0x80 // busy
#define ATA_CB_STAT_RDY 0x40 // ready
#define ATA_CB_STAT_DF 0x20 // device fault
#define ATA_CB_STAT_WFT 0x20 // write fault (old name)
#define ATA_CB_STAT_SKC 0x10 // seek complete
#define ATA_CB_STAT_SERV 0x10 // service
#define ATA_CB_STAT_DRQ 0x08 // data request
#define ATA_CB_STAT_CORR 0x04 // corrected
#define ATA_CB_STAT_IDX 0x02 // index
#define ATA_CB_STAT_ERR 0x01 // error (ATA)
#define ATA_CB_STAT_CHK 0x01 // check (ATAPI)
// device control reg (CB_DC) bits
#define ATA_CB_DC_HD15 0x08 // bit should always be set to one
#define ATA_CB_DC_SRST 0x04 // soft reset
#define ATA_CB_DC_NIEN 0x02 // disable interrupts
// Most mandtory and optional ATA commands (from ATA-3),
#define ATA_CMD_CFA_ERASE_SECTORS 0xC0
#define ATA_CMD_CFA_REQUEST_EXT_ERR_CODE 0x03
#define ATA_CMD_CFA_TRANSLATE_SECTOR 0x87
#define ATA_CMD_CFA_WRITE_MULTIPLE_WO_ERASE 0xCD
#define ATA_CMD_CFA_WRITE_SECTORS_WO_ERASE 0x38
#define ATA_CMD_CHECK_POWER_MODE1 0xE5
#define ATA_CMD_CHECK_POWER_MODE2 0x98
#define ATA_CMD_DEVICE_RESET 0x08
#define ATA_CMD_EXECUTE_DEVICE_DIAGNOSTIC 0x90
#define ATA_CMD_FLUSH_CACHE 0xE7
#define ATA_CMD_FORMAT_TRACK 0x50
#define ATA_CMD_IDENTIFY_DEVICE 0xEC
#define ATA_CMD_IDENTIFY_DEVICE_PACKET 0xA1
#define ATA_CMD_IDENTIFY_PACKET_DEVICE 0xA1
#define ATA_CMD_IDLE1 0xE3
#define ATA_CMD_IDLE2 0x97
#define ATA_CMD_IDLE_IMMEDIATE1 0xE1
#define ATA_CMD_IDLE_IMMEDIATE2 0x95
#define ATA_CMD_INITIALIZE_DRIVE_PARAMETERS 0x91
#define ATA_CMD_INITIALIZE_DEVICE_PARAMETERS 0x91
#define ATA_CMD_NOP 0x00
#define ATA_CMD_PACKET 0xA0
#define ATA_CMD_READ_BUFFER 0xE4
#define ATA_CMD_READ_DMA 0xC8
#define ATA_CMD_READ_DMA_QUEUED 0xC7
#define ATA_CMD_READ_MULTIPLE 0xC4
#define ATA_CMD_READ_SECTORS 0x20
#define ATA_CMD_READ_VERIFY_SECTORS 0x40
#define ATA_CMD_RECALIBRATE 0x10
#define ATA_CMD_REQUEST_SENSE 0x03
#define ATA_CMD_SEEK 0x70
#define ATA_CMD_SET_FEATURES 0xEF
#define ATA_CMD_SET_MULTIPLE_MODE 0xC6
#define ATA_CMD_SLEEP1 0xE6
#define ATA_CMD_SLEEP2 0x99
#define ATA_CMD_STANDBY1 0xE2
#define ATA_CMD_STANDBY2 0x96
#define ATA_CMD_STANDBY_IMMEDIATE1 0xE0
#define ATA_CMD_STANDBY_IMMEDIATE2 0x94
#define ATA_CMD_WRITE_BUFFER 0xE8
#define ATA_CMD_WRITE_DMA 0xCA
#define ATA_CMD_WRITE_DMA_QUEUED 0xCC
#define ATA_CMD_WRITE_MULTIPLE 0xC5
#define ATA_CMD_WRITE_SECTORS 0x30
#define ATA_CMD_WRITE_VERIFY 0x3C
#define ATA_IFACE_NONE 0x00
#define ATA_IFACE_ISA 0x00
#define ATA_IFACE_PCI 0x01
#define ATA_TYPE_NONE 0x00
#define ATA_TYPE_UNKNOWN 0x01
#define ATA_TYPE_ATA 0x02
#define ATA_TYPE_ATAPI 0x03
#define ATA_DEVICE_NONE 0x00
#define ATA_DEVICE_HD 0xFF
#define ATA_DEVICE_CDROM 0x05
#define ATA_MODE_NONE 0x00
#define ATA_MODE_PIO16 0x00
#define ATA_MODE_PIO32 0x01
#define ATA_MODE_ISADMA 0x02
#define ATA_MODE_PCIDMA 0x03
#define ATA_MODE_USEIRQ 0x10
#define ATA_TRANSLATION_NONE 0
#define ATA_TRANSLATION_LBA 1
#define ATA_TRANSLATION_LARGE 2
#define ATA_TRANSLATION_RECHS 3
#define ATA_DATA_NO 0x00
#define ATA_DATA_IN 0x01
#define ATA_DATA_OUT 0x02
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : initialization
// ---------------------------------------------------------------------------
void ata_init( )
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u channel, device;
// Channels info init.
for (channel=0; channel<BX_MAX_ATA_INTERFACES; channel++) {
write_byte(ebda_seg,&EbdaData->ata.channels[channel].iface,ATA_IFACE_NONE);
write_word(ebda_seg,&EbdaData->ata.channels[channel].iobase1,0x0);
write_word(ebda_seg,&EbdaData->ata.channels[channel].iobase2,0x0);
write_byte(ebda_seg,&EbdaData->ata.channels[channel].irq,0);
}
// Devices info init.
for (device=0; device<BX_MAX_ATA_DEVICES; device++) {
write_byte(ebda_seg,&EbdaData->ata.devices[device].type,ATA_TYPE_NONE);
write_byte(ebda_seg,&EbdaData->ata.devices[device].device,ATA_DEVICE_NONE);
write_byte(ebda_seg,&EbdaData->ata.devices[device].removable,0);
write_byte(ebda_seg,&EbdaData->ata.devices[device].lock,0);
write_byte(ebda_seg,&EbdaData->ata.devices[device].mode,ATA_MODE_NONE);
write_word(ebda_seg,&EbdaData->ata.devices[device].blksize,0);
write_byte(ebda_seg,&EbdaData->ata.devices[device].translation,ATA_TRANSLATION_NONE);
write_word(ebda_seg,&EbdaData->ata.devices[device].lchs.heads,0);
write_word(ebda_seg,&EbdaData->ata.devices[device].lchs.cylinders,0);
write_word(ebda_seg,&EbdaData->ata.devices[device].lchs.spt,0);
write_word(ebda_seg,&EbdaData->ata.devices[device].pchs.heads,0);
write_word(ebda_seg,&EbdaData->ata.devices[device].pchs.cylinders,0);
write_word(ebda_seg,&EbdaData->ata.devices[device].pchs.spt,0);
write_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_low,0L);
write_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_high,0L);
}
// hdidmap and cdidmap init.
for (device=0; device<BX_MAX_ATA_DEVICES; device++) {
write_byte(ebda_seg,&EbdaData->ata.hdidmap[device],BX_MAX_ATA_DEVICES);
write_byte(ebda_seg,&EbdaData->ata.cdidmap[device],BX_MAX_ATA_DEVICES);
}
write_byte(ebda_seg,&EbdaData->ata.hdcount,0);
write_byte(ebda_seg,&EbdaData->ata.cdcount,0);
}
#define TIMEOUT 0
#define BSY 1
#define NOT_BSY 2
#define NOT_BSY_DRQ 3
#define NOT_BSY_NOT_DRQ 4
#define NOT_BSY_RDY 5
#define IDE_TIMEOUT 32000u //32 seconds max for IDE ops
int await_ide();
static int await_ide(when_done,base,timeout)
Bit8u when_done;
Bit16u base;
Bit16u timeout;
{
Bit32u time=0,last=0;
Bit16u status;
Bit8u result;
status = inb(base + ATA_CB_STAT); // for the times you're supposed to throw one away
for(;;) {
status = inb(base+ATA_CB_STAT);
time++;
if (when_done == BSY)
result = status & ATA_CB_STAT_BSY;
else if (when_done == NOT_BSY)
result = !(status & ATA_CB_STAT_BSY);
else if (when_done == NOT_BSY_DRQ)
result = !(status & ATA_CB_STAT_BSY) && (status & ATA_CB_STAT_DRQ);
else if (when_done == NOT_BSY_NOT_DRQ)
result = !(status & ATA_CB_STAT_BSY) && !(status & ATA_CB_STAT_DRQ);
else if (when_done == NOT_BSY_RDY)
result = !(status & ATA_CB_STAT_BSY) && (status & ATA_CB_STAT_RDY);
else if (when_done == TIMEOUT)
result = 0;
if (result) return 0;
if (time>>16 != last) // mod 2048 each 16 ms
{
last = time >>16;
BX_DEBUG_ATA("await_ide: (TIMEOUT,BSY,!BSY,!BSY_DRQ,!BSY_!DRQ,!BSY_RDY) %d time= %ld timeout= %d\n",when_done,time>>11, timeout);
}
if (status & ATA_CB_STAT_ERR)
{
BX_DEBUG_ATA("await_ide: ERROR (TIMEOUT,BSY,!BSY,!BSY_DRQ,!BSY_!DRQ,!BSY_RDY) %d time= %ld timeout= %d\n",when_done,time>>11, timeout);
return -1;
}
if ((timeout == 0) || ((time>>11) > timeout)) break;
}
BX_INFO("IDE time out\n");
return -1;
}
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : device detection
// ---------------------------------------------------------------------------
void ata_detect( )
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u hdcount, cdcount, device, type;
Bit8u buffer[0x0200];
#if BX_MAX_ATA_INTERFACES > 0
write_byte(ebda_seg,&EbdaData->ata.channels[0].iface,ATA_IFACE_ISA);
write_word(ebda_seg,&EbdaData->ata.channels[0].iobase1,0x1f0);
write_word(ebda_seg,&EbdaData->ata.channels[0].iobase2,0x3f0);
write_byte(ebda_seg,&EbdaData->ata.channels[0].irq,14);
#endif
#if BX_MAX_ATA_INTERFACES > 1
write_byte(ebda_seg,&EbdaData->ata.channels[1].iface,ATA_IFACE_ISA);
write_word(ebda_seg,&EbdaData->ata.channels[1].iobase1,0x170);
write_word(ebda_seg,&EbdaData->ata.channels[1].iobase2,0x370);
write_byte(ebda_seg,&EbdaData->ata.channels[1].irq,15);
#endif
#if BX_MAX_ATA_INTERFACES > 2
write_byte(ebda_seg,&EbdaData->ata.channels[2].iface,ATA_IFACE_ISA);
write_word(ebda_seg,&EbdaData->ata.channels[2].iobase1,0x1e8);
write_word(ebda_seg,&EbdaData->ata.channels[2].iobase2,0x3e0);
write_byte(ebda_seg,&EbdaData->ata.channels[2].irq,12);
#endif
#if BX_MAX_ATA_INTERFACES > 3
write_byte(ebda_seg,&EbdaData->ata.channels[3].iface,ATA_IFACE_ISA);
write_word(ebda_seg,&EbdaData->ata.channels[3].iobase1,0x168);
write_word(ebda_seg,&EbdaData->ata.channels[3].iobase2,0x360);
write_byte(ebda_seg,&EbdaData->ata.channels[3].irq,11);
#endif
#if BX_MAX_ATA_INTERFACES > 4
#error Please fill the ATA interface informations
#endif
// Device detection
hdcount=cdcount=0;
for(device=0; device<BX_MAX_ATA_DEVICES; device++) {
Bit16u iobase1, iobase2;
Bit8u channel, slave, shift;
Bit8u sc, sn, cl, ch, st;
channel = device / 2;
slave = device % 2;
iobase1 =read_word(ebda_seg,&EbdaData->ata.channels[channel].iobase1);
iobase2 =read_word(ebda_seg,&EbdaData->ata.channels[channel].iobase2);
// Disable interrupts
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15 | ATA_CB_DC_NIEN);
// Look for device
outb(iobase1+ATA_CB_DH, slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0);
outb(iobase1+ATA_CB_SC, 0x55);
outb(iobase1+ATA_CB_SN, 0xaa);
outb(iobase1+ATA_CB_SC, 0xaa);
outb(iobase1+ATA_CB_SN, 0x55);
outb(iobase1+ATA_CB_SC, 0x55);
outb(iobase1+ATA_CB_SN, 0xaa);
// If we found something
sc = inb(iobase1+ATA_CB_SC);
sn = inb(iobase1+ATA_CB_SN);
if ( (sc == 0x55) && (sn == 0xaa) ) {
write_byte(ebda_seg,&EbdaData->ata.devices[device].type,ATA_TYPE_UNKNOWN);
// reset the channel
ata_reset(device);
// check for ATA or ATAPI
outb(iobase1+ATA_CB_DH, slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0);
sc = inb(iobase1+ATA_CB_SC);
sn = inb(iobase1+ATA_CB_SN);
if ((sc==0x01) && (sn==0x01)) {
cl = inb(iobase1+ATA_CB_CL);
ch = inb(iobase1+ATA_CB_CH);
st = inb(iobase1+ATA_CB_STAT);
if ((cl==0x14) && (ch==0xeb)) {
write_byte(ebda_seg,&EbdaData->ata.devices[device].type,ATA_TYPE_ATAPI);
} else if ((cl==0x00) && (ch==0x00) && (st!=0x00)) {
write_byte(ebda_seg,&EbdaData->ata.devices[device].type,ATA_TYPE_ATA);
} else if ((cl==0xff) && (ch==0xff)) {
write_byte(ebda_seg,&EbdaData->ata.devices[device].type,ATA_TYPE_NONE);
}
}
}
type=read_byte(ebda_seg,&EbdaData->ata.devices[device].type);
// Now we send a IDENTIFY command to ATA device
if(type == ATA_TYPE_ATA) {
Bit32u sectors_low, sectors_high;
Bit16u cylinders, heads, spt, blksize;
Bit8u translation, removable, mode;
//Temporary values to do the transfer
write_byte(ebda_seg,&EbdaData->ata.devices[device].device,ATA_DEVICE_HD);
write_byte(ebda_seg,&EbdaData->ata.devices[device].mode, ATA_MODE_PIO16);
if (ata_cmd_data_in(device,ATA_CMD_IDENTIFY_DEVICE, 1, 0, 0, 0, 0L, 0L, get_SS(),buffer) !=0 )
BX_PANIC("ata-detect: Failed to detect ATA device\n");
removable = (read_byte(get_SS(),buffer+0) & 0x80) ? 1 : 0;
mode = read_byte(get_SS(),buffer+96) ? ATA_MODE_PIO32 : ATA_MODE_PIO16;
blksize = read_word(get_SS(),buffer+10);
cylinders = read_word(get_SS(),buffer+(1*2)); // word 1
heads = read_word(get_SS(),buffer+(3*2)); // word 3
spt = read_word(get_SS(),buffer+(6*2)); // word 6
if (read_word(get_SS(),buffer+(83*2)) & (1 << 10)) { // word 83 - lba48 support
sectors_low = read_dword(get_SS(),buffer+(100*2)); // word 100 and word 101
sectors_high = read_dword(get_SS(),buffer+(102*2)); // word 102 and word 103
} else {
sectors_low = read_dword(get_SS(),buffer+(60*2)); // word 60 and word 61
sectors_high = 0;
}
write_byte(ebda_seg,&EbdaData->ata.devices[device].device,ATA_DEVICE_HD);
write_byte(ebda_seg,&EbdaData->ata.devices[device].removable, removable);
write_byte(ebda_seg,&EbdaData->ata.devices[device].mode, mode);
write_word(ebda_seg,&EbdaData->ata.devices[device].blksize, blksize);
write_word(ebda_seg,&EbdaData->ata.devices[device].pchs.heads, heads);
write_word(ebda_seg,&EbdaData->ata.devices[device].pchs.cylinders, cylinders);
write_word(ebda_seg,&EbdaData->ata.devices[device].pchs.spt, spt);
write_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_low, sectors_low);
write_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_high, sectors_high);
BX_INFO("ata%d-%d: PCHS=%u/%d/%d translation=", channel, slave,cylinders, heads, spt);
translation = inb_cmos(0x39 + channel/2);
for (shift=device%4; shift>0; shift--) translation >>= 2;
translation &= 0x03;
write_byte(ebda_seg,&EbdaData->ata.devices[device].translation, translation);
switch (translation) {
case ATA_TRANSLATION_NONE:
BX_INFO("none");
break;
case ATA_TRANSLATION_LBA:
BX_INFO("lba");
break;
case ATA_TRANSLATION_LARGE:
BX_INFO("large");
break;
case ATA_TRANSLATION_RECHS:
BX_INFO("r-echs");
break;
}
switch (translation) {
case ATA_TRANSLATION_NONE:
break;
case ATA_TRANSLATION_LBA:
spt = 63;
sectors_low /= 63;
heads = sectors_low / 1024;
if (heads>128) heads = 255;
else if (heads>64) heads = 128;
else if (heads>32) heads = 64;
else if (heads>16) heads = 32;
else heads=16;
cylinders = sectors_low / heads;
break;
case ATA_TRANSLATION_RECHS:
// Take care not to overflow
if (heads==16) {
if(cylinders>61439) cylinders=61439;
heads=15;
cylinders = (Bit16u)((Bit32u)(cylinders)*16/15);
}
// then go through the large bitshift process
case ATA_TRANSLATION_LARGE:
while(cylinders > 1024) {
cylinders >>= 1;
heads <<= 1;
// If we max out the head count
if (heads > 127) break;
}
break;
}
// clip to 1024 cylinders in lchs
if (cylinders > 1024) cylinders=1024;
BX_INFO(" LCHS=%d/%d/%d\n", cylinders, heads, spt);
write_word(ebda_seg,&EbdaData->ata.devices[device].lchs.heads, heads);
write_word(ebda_seg,&EbdaData->ata.devices[device].lchs.cylinders, cylinders);
write_word(ebda_seg,&EbdaData->ata.devices[device].lchs.spt, spt);
// fill hdidmap
write_byte(ebda_seg,&EbdaData->ata.hdidmap[hdcount], device);
hdcount++;
}
// Now we send a IDENTIFY command to ATAPI device
if(type == ATA_TYPE_ATAPI) {
Bit8u type, removable, mode;
Bit16u blksize;
//Temporary values to do the transfer
write_byte(ebda_seg,&EbdaData->ata.devices[device].device,ATA_DEVICE_CDROM);
write_byte(ebda_seg,&EbdaData->ata.devices[device].mode, ATA_MODE_PIO16);
if (ata_cmd_data_in(device,ATA_CMD_IDENTIFY_DEVICE_PACKET, 1, 0, 0, 0, 0L, 0L, get_SS(),buffer) != 0)
BX_PANIC("ata-detect: Failed to detect ATAPI device\n");
type = read_byte(get_SS(),buffer+1) & 0x1f;
removable = (read_byte(get_SS(),buffer+0) & 0x80) ? 1 : 0;
mode = read_byte(get_SS(),buffer+96) ? ATA_MODE_PIO32 : ATA_MODE_PIO16;
blksize = 2048;
write_byte(ebda_seg,&EbdaData->ata.devices[device].device, type);
write_byte(ebda_seg,&EbdaData->ata.devices[device].removable, removable);
write_byte(ebda_seg,&EbdaData->ata.devices[device].mode, mode);
write_word(ebda_seg,&EbdaData->ata.devices[device].blksize, blksize);
// fill cdidmap
write_byte(ebda_seg,&EbdaData->ata.cdidmap[cdcount], device);
cdcount++;
}
{
Bit32u sizeinmb;
Bit16u ataversion;
Bit8u c, i, version, model[41];
switch (type) {
case ATA_TYPE_ATA:
sizeinmb = (read_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_high) << 21)
| (read_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_low) >> 11);
case ATA_TYPE_ATAPI:
// Read ATA/ATAPI version
ataversion=((Bit16u)(read_byte(get_SS(),buffer+161))<<8)|read_byte(get_SS(),buffer+160);
for(version=15;version>0;version--) {
if((ataversion&(1<<version))!=0)
break;
}
// Read model name
for(i=0;i<20;i++) {
write_byte(get_SS(),model+(i*2),read_byte(get_SS(),buffer+(i*2)+54+1));
write_byte(get_SS(),model+(i*2)+1,read_byte(get_SS(),buffer+(i*2)+54));
}
// Reformat
write_byte(get_SS(),model+40,0x00);
for(i=39;i>0;i--){
if(read_byte(get_SS(),model+i)==0x20)
write_byte(get_SS(),model+i,0x00);
else break;
}
if (i>36) {
write_byte(get_SS(),model+36,0x00);
for(i=35;i>32;i--){
write_byte(get_SS(),model+i,0x2E);
}
}
break;
}
switch (type) {
case ATA_TYPE_ATA:
printf("ata%d %s: ",channel,slave?" slave":"master");
i=0;
while(c=read_byte(get_SS(),model+i++))
printf("%c",c);
if (sizeinmb < (1UL<<16))
printf(" ATA-%d Hard-Disk (%4u MBytes)\n", version, (Bit16u)sizeinmb);
else
printf(" ATA-%d Hard-Disk (%4u GBytes)\n", version, (Bit16u)(sizeinmb>>10));
break;
case ATA_TYPE_ATAPI:
printf("ata%d %s: ",channel,slave?" slave":"master");
i=0; while(c=read_byte(get_SS(),model+i++)) printf("%c",c);
if(read_byte(ebda_seg,&EbdaData->ata.devices[device].device)==ATA_DEVICE_CDROM)
printf(" ATAPI-%d CD-Rom/DVD-Rom\n",version);
else
printf(" ATAPI-%d Device\n",version);
break;
case ATA_TYPE_UNKNOWN:
printf("ata%d %s: Unknown device\n",channel,slave?" slave":"master");
break;
}
}
}
// Store the devices counts
write_byte(ebda_seg,&EbdaData->ata.hdcount, hdcount);
write_byte(ebda_seg,&EbdaData->ata.cdcount, cdcount);
write_byte(0x40,0x75, hdcount);
printf("\n");
// FIXME : should use bios=cmos|auto|disable bits
// FIXME : should know about translation bits
// FIXME : move hard_drive_post here
}
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : software reset
// ---------------------------------------------------------------------------
// ATA-3
// 8.2.1 Software reset - Device 0
void ata_reset(device)
Bit16u device;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit16u iobase1, iobase2;
Bit8u channel, slave, sn, sc;
Bit8u type;
Bit16u max;
channel = device / 2;
slave = device % 2;
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
iobase2 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase2);
// Reset
// 8.2.1 (a) -- set SRST in DC
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST);
// 8.2.1 (b) -- wait for BSY
await_ide(BSY, iobase1, 20);
// 8.2.1 (f) -- clear SRST
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15 | ATA_CB_DC_NIEN);
type=read_byte(ebda_seg,&EbdaData->ata.devices[device].type);
if (type != ATA_TYPE_NONE) {
// 8.2.1 (g) -- check for sc==sn==0x01
// select device
outb(iobase1+ATA_CB_DH, slave?ATA_CB_DH_DEV1:ATA_CB_DH_DEV0);
sc = inb(iobase1+ATA_CB_SC);
sn = inb(iobase1+ATA_CB_SN);
if ( (sc==0x01) && (sn==0x01) ) {
if (type == ATA_TYPE_ATA) //ATA
await_ide(NOT_BSY_RDY, iobase1, IDE_TIMEOUT);
else //ATAPI
await_ide(NOT_BSY, iobase1, IDE_TIMEOUT);
}
// 8.2.1 (h) -- wait for not BSY
await_ide(NOT_BSY, iobase1, IDE_TIMEOUT);
}
// Enable interrupts
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15);
}
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : execute a non data command
// ---------------------------------------------------------------------------
Bit16u ata_cmd_non_data()
{return 0;}
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : execute a data-in command
// ---------------------------------------------------------------------------
// returns
// 0 : no error
// 1 : BUSY bit set
// 2 : read error
// 3 : expected DRQ=1
// 4 : no sectors left to read/verify
// 5 : more sectors to read/verify
// 6 : no sectors left to write
// 7 : more sectors to write
Bit16u ata_cmd_data_in(device, command, count, cylinder, head, sector, lba_low, lba_high, segment, offset)
Bit16u device, command, count, cylinder, head, sector, segment, offset;
Bit32u lba_low, lba_high;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit16u iobase1, iobase2, blksize;
Bit8u channel, slave;
Bit8u status, current, mode;
channel = device / 2;
slave = device % 2;
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
iobase2 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase2);
mode = read_byte(ebda_seg, &EbdaData->ata.devices[device].mode);
blksize = 0x200; // was = read_word(ebda_seg, &EbdaData->ata.devices[device].blksize);
if (mode == ATA_MODE_PIO32) blksize>>=2;
else blksize>>=1;
// Reset count of transferred data
write_word(ebda_seg, &EbdaData->ata.trsfsectors,0);
write_dword(ebda_seg, &EbdaData->ata.trsfbytes,0L);
current = 0;
status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_BSY) return 1;
outb(iobase2 + ATA_CB_DC, ATA_CB_DC_HD15 | ATA_CB_DC_NIEN);
// sector will be 0 only on lba access. Convert to lba-chs
if (sector == 0) {
if ((count >= 1 << 8) || lba_high || (lba_low + count >= 1UL << 28)) {
outb(iobase1 + ATA_CB_FR, 0x00);
outb(iobase1 + ATA_CB_SC, (count >> 8) & 0xff);
outb(iobase1 + ATA_CB_SN, lba_low >> 24);
outb(iobase1 + ATA_CB_CL, lba_high & 0xff);
outb(iobase1 + ATA_CB_CH, lba_high >> 8);
command |= 0x04;
count &= (1UL << 8) - 1;
lba_low &= (1UL << 24) - 1;
}
sector = (Bit16u) (lba_low & 0x000000ffL);
cylinder = (Bit16u) ((lba_low>>8) & 0x0000ffffL);
head = ((Bit16u) ((lba_low>>24) & 0x0000000fL)) | ATA_CB_DH_LBA;
}
outb(iobase1 + ATA_CB_FR, 0x00);
outb(iobase1 + ATA_CB_SC, count);
outb(iobase1 + ATA_CB_SN, sector);
outb(iobase1 + ATA_CB_CL, cylinder & 0x00ff);
outb(iobase1 + ATA_CB_CH, cylinder >> 8);
outb(iobase1 + ATA_CB_DH, (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0) | (Bit8u) head );
outb(iobase1 + ATA_CB_CMD, command);
await_ide(NOT_BSY_DRQ, iobase1, IDE_TIMEOUT);
status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_ERR) {
BX_DEBUG_ATA("ata_cmd_data_in : read error\n");
return 2;
} else if ( !(status & ATA_CB_STAT_DRQ) ) {
BX_DEBUG_ATA("ata_cmd_data_in : DRQ not set (status %02x)\n", (unsigned) status);
return 3;
}
// FIXME : move seg/off translation here
ASM_START
sti ;; enable higher priority interrupts
ASM_END
while (1) {
ASM_START
push bp
mov bp, sp
mov di, _ata_cmd_data_in.offset + 2[bp]
mov ax, _ata_cmd_data_in.segment + 2[bp]
mov cx, _ata_cmd_data_in.blksize + 2[bp]
;; adjust if there will be an overrun. 2K max sector size
cmp di, #0xf800 ;;
jbe ata_in_no_adjust
ata_in_adjust:
sub di, #0x0800 ;; sub 2 kbytes from offset
add ax, #0x0080 ;; add 2 Kbytes to segment
ata_in_no_adjust:
mov es, ax ;; segment in es
mov dx, _ata_cmd_data_in.iobase1 + 2[bp] ;; ATA data read port
mov ah, _ata_cmd_data_in.mode + 2[bp]
cmp ah, #ATA_MODE_PIO32
je ata_in_32
ata_in_16:
rep
insw ;; CX words transfered from port(DX) to ES:[DI]
jmp ata_in_done
ata_in_32:
rep
insd ;; CX dwords transfered from port(DX) to ES:[DI]
ata_in_done:
mov _ata_cmd_data_in.offset + 2[bp], di
mov _ata_cmd_data_in.segment + 2[bp], es
pop bp
ASM_END
current++;
write_word(ebda_seg, &EbdaData->ata.trsfsectors,current);
count--;
await_ide(NOT_BSY, iobase1, IDE_TIMEOUT);
status = inb(iobase1 + ATA_CB_STAT);
if (count == 0) {
if ( (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR) )
!= ATA_CB_STAT_RDY ) {
BX_DEBUG_ATA("ata_cmd_data_in : no sectors left (status %02x)\n", (unsigned) status);
return 4;
}
break;
}
else {
if ( (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR) )
!= (ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ) ) {
BX_DEBUG_ATA("ata_cmd_data_in : more sectors left (status %02x)\n", (unsigned) status);
return 5;
}
continue;
}
}
// Enable interrupts
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15);
return 0;
}
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : execute a data-out command
// ---------------------------------------------------------------------------
// returns
// 0 : no error
// 1 : BUSY bit set
// 2 : read error
// 3 : expected DRQ=1
// 4 : no sectors left to read/verify
// 5 : more sectors to read/verify
// 6 : no sectors left to write
// 7 : more sectors to write
Bit16u ata_cmd_data_out(device, command, count, cylinder, head, sector, lba_low, lba_high, segment, offset)
Bit16u device, command, count, cylinder, head, sector, segment, offset;
Bit32u lba_low, lba_high;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit16u iobase1, iobase2, blksize;
Bit8u channel, slave;
Bit8u status, current, mode;
channel = device / 2;
slave = device % 2;
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
iobase2 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase2);
mode = read_byte(ebda_seg, &EbdaData->ata.devices[device].mode);
blksize = 0x200; // was = read_word(ebda_seg, &EbdaData->ata.devices[device].blksize);
if (mode == ATA_MODE_PIO32) blksize>>=2;
else blksize>>=1;
// Reset count of transferred data
write_word(ebda_seg, &EbdaData->ata.trsfsectors,0);
write_dword(ebda_seg, &EbdaData->ata.trsfbytes,0L);
current = 0;
status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_BSY) return 1;
outb(iobase2 + ATA_CB_DC, ATA_CB_DC_HD15 | ATA_CB_DC_NIEN);
// sector will be 0 only on lba access. Convert to lba-chs
if (sector == 0) {
if ((count >= 1 << 8) || lba_high || (lba_low + count >= 1UL << 28)) {
outb(iobase1 + ATA_CB_FR, 0x00);
outb(iobase1 + ATA_CB_SC, (count >> 8) & 0xff);
outb(iobase1 + ATA_CB_SN, lba_low >> 24);
outb(iobase1 + ATA_CB_CL, lba_high & 0xff);
outb(iobase1 + ATA_CB_CH, lba_high >> 8);
command |= 0x04;
count &= (1UL << 8) - 1;
lba_low &= (1UL << 24) - 1;
}
sector = (Bit16u) (lba_low & 0x000000ffL);
cylinder = (Bit16u) ((lba_low>>8) & 0x0000ffffL);
head = ((Bit16u) ((lba_low>>24) & 0x0000000fL)) | ATA_CB_DH_LBA;
}
outb(iobase1 + ATA_CB_FR, 0x00);
outb(iobase1 + ATA_CB_SC, count);
outb(iobase1 + ATA_CB_SN, sector);
outb(iobase1 + ATA_CB_CL, cylinder & 0x00ff);
outb(iobase1 + ATA_CB_CH, cylinder >> 8);
outb(iobase1 + ATA_CB_DH, (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0) | (Bit8u) head );
outb(iobase1 + ATA_CB_CMD, command);
await_ide(NOT_BSY_DRQ, iobase1, IDE_TIMEOUT);
status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_ERR) {
BX_DEBUG_ATA("ata_cmd_data_out : read error\n");
return 2;
} else if ( !(status & ATA_CB_STAT_DRQ) ) {
BX_DEBUG_ATA("ata_cmd_data_out : DRQ not set (status %02x)\n", (unsigned) status);
return 3;
}
// FIXME : move seg/off translation here
ASM_START
sti ;; enable higher priority interrupts
ASM_END
while (1) {
ASM_START
push bp
mov bp, sp
mov si, _ata_cmd_data_out.offset + 2[bp]
mov ax, _ata_cmd_data_out.segment + 2[bp]
mov cx, _ata_cmd_data_out.blksize + 2[bp]
;; adjust if there will be an overrun. 2K max sector size
cmp si, #0xf800 ;;
jbe ata_out_no_adjust
ata_out_adjust:
sub si, #0x0800 ;; sub 2 kbytes from offset
add ax, #0x0080 ;; add 2 Kbytes to segment
ata_out_no_adjust:
mov es, ax ;; segment in es
mov dx, _ata_cmd_data_out.iobase1 + 2[bp] ;; ATA data write port
mov ah, _ata_cmd_data_out.mode + 2[bp]
cmp ah, #ATA_MODE_PIO32
je ata_out_32
ata_out_16:
seg ES
rep
outsw ;; CX words transfered from port(DX) to ES:[SI]
jmp ata_out_done
ata_out_32:
seg ES
rep
outsd ;; CX dwords transfered from port(DX) to ES:[SI]
ata_out_done:
mov _ata_cmd_data_out.offset + 2[bp], si
mov _ata_cmd_data_out.segment + 2[bp], es
pop bp
ASM_END
current++;
write_word(ebda_seg, &EbdaData->ata.trsfsectors,current);
count--;
status = inb(iobase1 + ATA_CB_STAT);
if (count == 0) {
if ( (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR) )
!= ATA_CB_STAT_RDY ) {
BX_DEBUG_ATA("ata_cmd_data_out : no sectors left (status %02x)\n", (unsigned) status);
return 6;
}
break;
}
else {
if ( (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR) )
!= (ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ) ) {
BX_DEBUG_ATA("ata_cmd_data_out : more sectors left (status %02x)\n", (unsigned) status);
return 7;
}
continue;
}
}
// Enable interrupts
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15);
return 0;
}
// ---------------------------------------------------------------------------
// ATA/ATAPI driver : execute a packet command
// ---------------------------------------------------------------------------
// returns
// 0 : no error
// 1 : error in parameters
// 2 : BUSY bit set
// 3 : error
// 4 : not ready
Bit16u ata_cmd_packet(device, cmdlen, cmdseg, cmdoff, header, length, inout, bufseg, bufoff)
Bit8u cmdlen,inout;
Bit16u device,cmdseg, cmdoff, bufseg, bufoff;
Bit16u header;
Bit32u length;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit16u iobase1, iobase2;
Bit16u lcount, lbefore, lafter, count;
Bit8u channel, slave;
Bit8u status, mode, lmode;
Bit32u total, transfer;
channel = device / 2;
slave = device % 2;
// Data out is not supported yet
if (inout == ATA_DATA_OUT) {
BX_INFO("ata_cmd_packet: DATA_OUT not supported yet\n");
return 1;
}
// The header length must be even
if (header & 1) {
BX_DEBUG_ATA("ata_cmd_packet : header must be even (%04x)\n",header);
return 1;
}
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
iobase2 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase2);
mode = read_byte(ebda_seg, &EbdaData->ata.devices[device].mode);
transfer= 0L;
if (cmdlen < 12) cmdlen=12;
if (cmdlen > 12) cmdlen=16;
cmdlen>>=1;
// Reset count of transferred data
write_word(ebda_seg, &EbdaData->ata.trsfsectors,0);
write_dword(ebda_seg, &EbdaData->ata.trsfbytes,0L);
status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_BSY) return 2;
outb(iobase2 + ATA_CB_DC, ATA_CB_DC_HD15 | ATA_CB_DC_NIEN);
outb(iobase1 + ATA_CB_FR, 0x00);
outb(iobase1 + ATA_CB_SC, 0x00);
outb(iobase1 + ATA_CB_SN, 0x00);
outb(iobase1 + ATA_CB_CL, 0xfff0 & 0x00ff);
outb(iobase1 + ATA_CB_CH, 0xfff0 >> 8);
outb(iobase1 + ATA_CB_DH, slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0);
outb(iobase1 + ATA_CB_CMD, ATA_CMD_PACKET);
// Device should ok to receive command
await_ide(NOT_BSY_DRQ, iobase1, IDE_TIMEOUT);
status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_ERR) {
BX_DEBUG_ATA("ata_cmd_packet : error, status is %02x\n",status);
return 3;
} else if ( !(status & ATA_CB_STAT_DRQ) ) {
BX_DEBUG_ATA("ata_cmd_packet : DRQ not set (status %02x)\n", (unsigned) status);
return 4;
}
// Normalize address
cmdseg += (cmdoff / 16);
cmdoff %= 16;
// Send command to device
ASM_START
sti ;; enable higher priority interrupts
push bp
mov bp, sp
mov si, _ata_cmd_packet.cmdoff + 2[bp]
mov ax, _ata_cmd_packet.cmdseg + 2[bp]
mov cx, _ata_cmd_packet.cmdlen + 2[bp]
mov es, ax ;; segment in es
mov dx, _ata_cmd_packet.iobase1 + 2[bp] ;; ATA data write port
seg ES
rep
outsw ;; CX words transfered from port(DX) to ES:[SI]
pop bp
ASM_END
if (inout == ATA_DATA_NO) {
await_ide(NOT_BSY, iobase1, IDE_TIMEOUT);
status = inb(iobase1 + ATA_CB_STAT);
}
else {
Bit16u loops = 0;
Bit8u sc;
while (1) {
if (loops == 0) {//first time through
status = inb(iobase2 + ATA_CB_ASTAT);
await_ide(NOT_BSY_DRQ, iobase1, IDE_TIMEOUT);
}
else
await_ide(NOT_BSY, iobase1, IDE_TIMEOUT);
loops++;
status = inb(iobase1 + ATA_CB_STAT);
sc = inb(iobase1 + ATA_CB_SC);
// Check if command completed
if(((inb(iobase1 + ATA_CB_SC)&0x7)==0x3) &&
((status & (ATA_CB_STAT_RDY | ATA_CB_STAT_ERR)) == ATA_CB_STAT_RDY)) break;
if (status & ATA_CB_STAT_ERR) {
BX_DEBUG_ATA("ata_cmd_packet : error (status %02x)\n",status);
return 3;
}
// Normalize address
bufseg += (bufoff / 16);
bufoff %= 16;
// Get the byte count
lcount = ((Bit16u)(inb(iobase1 + ATA_CB_CH))<<8)+inb(iobase1 + ATA_CB_CL);
// adjust to read what we want
if(header>lcount) {
lbefore=lcount;
header-=lcount;
lcount=0;
}
else {
lbefore=header;
header=0;
lcount-=lbefore;
}
if(lcount>length) {
lafter=lcount-length;
lcount=length;
length=0;
}
else {
lafter=0;
length-=lcount;
}
// Save byte count
count = lcount;
BX_DEBUG_ATA("Trying to read %04x bytes (%04x %04x %04x) ",lbefore+lcount+lafter,lbefore,lcount,lafter);
BX_DEBUG_ATA("to 0x%04x:0x%04x\n",bufseg,bufoff);
// If counts not dividable by 4, use 16bits mode
lmode = mode;
if (lbefore & 0x03) lmode=ATA_MODE_PIO16;
if (lcount & 0x03) lmode=ATA_MODE_PIO16;
if (lafter & 0x03) lmode=ATA_MODE_PIO16;
// adds an extra byte if count are odd. before is always even
if (lcount & 0x01) {
lcount+=1;
if ((lafter > 0) && (lafter & 0x01)) {
lafter-=1;
}
}
if (lmode == ATA_MODE_PIO32) {
lcount>>=2; lbefore>>=2; lafter>>=2;
}
else {
lcount>>=1; lbefore>>=1; lafter>>=1;
}
; // FIXME bcc bug
ASM_START
push bp
mov bp, sp
mov dx, _ata_cmd_packet.iobase1 + 2[bp] ;; ATA data read port
mov cx, _ata_cmd_packet.lbefore + 2[bp]
jcxz ata_packet_no_before
mov ah, _ata_cmd_packet.lmode + 2[bp]
cmp ah, #ATA_MODE_PIO32
je ata_packet_in_before_32
ata_packet_in_before_16:
in ax, dx
loop ata_packet_in_before_16
jmp ata_packet_no_before
ata_packet_in_before_32:
push eax
ata_packet_in_before_32_loop:
in eax, dx
loop ata_packet_in_before_32_loop
pop eax
ata_packet_no_before:
mov cx, _ata_cmd_packet.lcount + 2[bp]
jcxz ata_packet_after
mov di, _ata_cmd_packet.bufoff + 2[bp]
mov ax, _ata_cmd_packet.bufseg + 2[bp]
mov es, ax
mov ah, _ata_cmd_packet.lmode + 2[bp]
cmp ah, #ATA_MODE_PIO32
je ata_packet_in_32
ata_packet_in_16:
rep
insw ;; CX words transfered tp port(DX) to ES:[DI]
jmp ata_packet_after
ata_packet_in_32:
rep
insd ;; CX dwords transfered to port(DX) to ES:[DI]
ata_packet_after:
mov cx, _ata_cmd_packet.lafter + 2[bp]
jcxz ata_packet_done
mov ah, _ata_cmd_packet.lmode + 2[bp]
cmp ah, #ATA_MODE_PIO32
je ata_packet_in_after_32
ata_packet_in_after_16:
in ax, dx
loop ata_packet_in_after_16
jmp ata_packet_done
ata_packet_in_after_32:
push eax
ata_packet_in_after_32_loop:
in eax, dx
loop ata_packet_in_after_32_loop
pop eax
ata_packet_done:
pop bp
ASM_END
// Compute new buffer address
bufoff += count;
// Save transferred bytes count
transfer += count;
write_dword(ebda_seg, &EbdaData->ata.trsfbytes,transfer);
}
}
// Final check, device must be ready
if ( (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR) )
!= ATA_CB_STAT_RDY ) {
BX_DEBUG_ATA("ata_cmd_packet : not ready (status %02x)\n", (unsigned) status);
return 4;
}
// Enable interrupts
outb(iobase2+ATA_CB_DC, ATA_CB_DC_HD15);
return 0;
}
// ---------------------------------------------------------------------------
// End of ATA/ATAPI Driver
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Start of ATA/ATAPI generic functions
// ---------------------------------------------------------------------------
Bit16u
atapi_get_sense(device, seg, asc, ascq)
Bit16u device;
{
Bit8u atacmd[12];
Bit8u buffer[18];
Bit8u i;
memsetb(get_SS(),atacmd,0,12);
// Request SENSE
atacmd[0]=ATA_CMD_REQUEST_SENSE;
atacmd[4]=sizeof(buffer);
if (ata_cmd_packet(device, 12, get_SS(), atacmd, 0, 18L, ATA_DATA_IN, get_SS(), buffer) != 0)
return 0x0002;
write_byte(seg,asc,buffer[12]);
write_byte(seg,ascq,buffer[13]);
return 0;
}
Bit16u
atapi_is_ready(device)
Bit16u device;
{
Bit8u packet[12];
Bit8u buf[8];
Bit32u block_len;
Bit32u sectors;
Bit32u timeout; //measured in ms
Bit32u time;
Bit8u asc, ascq;
Bit8u in_progress;
Bit16u ebda_seg = read_word(0x0040,0x000E);
if (read_byte(ebda_seg,&EbdaData->ata.devices[device].type) != ATA_TYPE_ATAPI) {
printf("not implemented for non-ATAPI device\n");
return -1;
}
BX_DEBUG_ATA("ata_detect_medium: begin\n");
memsetb(get_SS(),packet, 0, sizeof packet);
packet[0] = 0x25; /* READ CAPACITY */
/* Retry READ CAPACITY 50 times unless MEDIUM NOT PRESENT
* is reported by the device. If the device reports "IN PROGRESS",
* 30 seconds is added. */
timeout = 5000;
time = 0;
in_progress = 0;
while (time < timeout) {
if (ata_cmd_packet(device, sizeof(packet), get_SS(), packet, 0, 8L, ATA_DATA_IN, get_SS(), buf) == 0)
goto ok;
if (atapi_get_sense(device, get_SS(), &asc, &ascq) == 0) {
if (asc == 0x3a) { /* MEDIUM NOT PRESENT */
BX_DEBUG_ATA("Device reports MEDIUM NOT PRESENT\n");
return -1;
}
if (asc == 0x04 && ascq == 0x01 && !in_progress) {
/* IN PROGRESS OF BECOMING READY */
printf("Waiting for device to detect medium... ");
/* Allow 30 seconds more */
timeout = 30000;
in_progress = 1;
}
}
time += 100;
}
BX_DEBUG_ATA("read capacity failed\n");
return -1;
ok:
block_len = (Bit32u) buf[4] << 24
| (Bit32u) buf[5] << 16
| (Bit32u) buf[6] << 8
| (Bit32u) buf[7] << 0;
BX_DEBUG_ATA("block_len=%u\n", block_len);
if (block_len!= 2048 && block_len!= 512)
{
printf("Unsupported sector size %u\n", block_len);
return -1;
}
write_dword(ebda_seg,&EbdaData->ata.devices[device].blksize, block_len);
sectors = (Bit32u) buf[0] << 24
| (Bit32u) buf[1] << 16
| (Bit32u) buf[2] << 8
| (Bit32u) buf[3] << 0;
BX_DEBUG_ATA("sectors=%u\n", sectors);
if (block_len == 2048)
sectors <<= 2; /* # of sectors in 512-byte "soft" sector */
if (sectors != read_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_low))
printf("%dMB medium detected\n", sectors>>(20-9));
write_dword(ebda_seg,&EbdaData->ata.devices[device].sectors_low, sectors);
return 0;
}
Bit16u
atapi_is_cdrom(device)
Bit8u device;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
if (device >= BX_MAX_ATA_DEVICES)
return 0;
if (read_byte(ebda_seg,&EbdaData->ata.devices[device].type) != ATA_TYPE_ATAPI)
return 0;
if (read_byte(ebda_seg,&EbdaData->ata.devices[device].device) != ATA_DEVICE_CDROM)
return 0;
return 1;
}
// ---------------------------------------------------------------------------
// End of ATA/ATAPI generic functions
// ---------------------------------------------------------------------------
#endif // BX_USE_ATADRV
#if BX_ELTORITO_BOOT
// ---------------------------------------------------------------------------
// Start of El-Torito boot functions
// ---------------------------------------------------------------------------
void
cdemu_init()
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
// the only important data is this one for now
write_byte(ebda_seg,&EbdaData->cdemu.active,0x00);
}
Bit8u
cdemu_isactive()
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
return(read_byte(ebda_seg,&EbdaData->cdemu.active));
}
Bit8u
cdemu_emulated_drive()
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
return(read_byte(ebda_seg,&EbdaData->cdemu.emulated_drive));
}
static char isotag[6]="CD001";
static char eltorito[24]="EL TORITO SPECIFICATION";
//
// Returns ah: emulated drive, al: error code
//
Bit16u
cdrom_boot()
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u atacmd[12], buffer[2048];
Bit32u lba;
Bit16u boot_segment, nbsectors, i, error;
Bit8u device;
// Find out the first cdrom
for (device=0; device<BX_MAX_ATA_DEVICES;device++) {
if (atapi_is_cdrom(device)) break;
}
// if not found
if(device >= BX_MAX_ATA_DEVICES) return 2;
if(error = atapi_is_ready(device) != 0)
BX_INFO("ata_is_ready returned %d\n",error);
// Read the Boot Record Volume Descriptor
memsetb(get_SS(),atacmd,0,12);
atacmd[0]=0x28; // READ command
atacmd[7]=(0x01 & 0xff00) >> 8; // Sectors
atacmd[8]=(0x01 & 0x00ff); // Sectors
atacmd[2]=(0x11 & 0xff000000) >> 24; // LBA
atacmd[3]=(0x11 & 0x00ff0000) >> 16;
atacmd[4]=(0x11 & 0x0000ff00) >> 8;
atacmd[5]=(0x11 & 0x000000ff);
if((error = ata_cmd_packet(device, 12, get_SS(), atacmd, 0, 2048L, ATA_DATA_IN, get_SS(), buffer)) != 0)
return 3;
// Validity checks
if(buffer[0]!=0) return 4;
for(i=0;i<5;i++){
if(buffer[1+i]!=read_byte(0xf000,&isotag[i])) return 5;
}
for(i=0;i<23;i++)
if(buffer[7+i]!=read_byte(0xf000,&eltorito[i])) return 6;
// ok, now we calculate the Boot catalog address
lba=buffer[0x4A]*0x1000000+buffer[0x49]*0x10000+buffer[0x48]*0x100+buffer[0x47];
// And we read the Boot Catalog
memsetb(get_SS(),atacmd,0,12);
atacmd[0]=0x28; // READ command
atacmd[7]=(0x01 & 0xff00) >> 8; // Sectors
atacmd[8]=(0x01 & 0x00ff); // Sectors
atacmd[2]=(lba & 0xff000000) >> 24; // LBA
atacmd[3]=(lba & 0x00ff0000) >> 16;
atacmd[4]=(lba & 0x0000ff00) >> 8;
atacmd[5]=(lba & 0x000000ff);
if((error = ata_cmd_packet(device, 12, get_SS(), atacmd, 0, 2048L, ATA_DATA_IN, get_SS(), buffer)) != 0)
return 7;
// Validation entry
if(buffer[0x00]!=0x01)return 8; // Header
if(buffer[0x01]!=0x00)return 9; // Platform
if(buffer[0x1E]!=0x55)return 10; // key 1
if(buffer[0x1F]!=0xAA)return 10; // key 2
// Initial/Default Entry
if(buffer[0x20]!=0x88)return 11; // Bootable
write_byte(ebda_seg,&EbdaData->cdemu.media,buffer[0x21]);
if(buffer[0x21]==0){
// FIXME ElTorito Hardcoded. cdrom is hardcoded as device 0xE0.
// Win2000 cd boot needs to know it booted from cd
write_byte(ebda_seg,&EbdaData->cdemu.emulated_drive,0xE0);
}
else if(buffer[0x21]<4)
write_byte(ebda_seg,&EbdaData->cdemu.emulated_drive,0x00);
else
write_byte(ebda_seg,&EbdaData->cdemu.emulated_drive,0x80);
write_byte(ebda_seg,&EbdaData->cdemu.controller_index,device/2);
write_byte(ebda_seg,&EbdaData->cdemu.device_spec,device%2);
boot_segment=buffer[0x23]*0x100+buffer[0x22];
if(boot_segment==0x0000)boot_segment=0x07C0;
write_word(ebda_seg,&EbdaData->cdemu.load_segment,boot_segment);
write_word(ebda_seg,&EbdaData->cdemu.buffer_segment,0x0000);
nbsectors=buffer[0x27]*0x100+buffer[0x26];
write_word(ebda_seg,&EbdaData->cdemu.sector_count,nbsectors);
lba=buffer[0x2B]*0x1000000+buffer[0x2A]*0x10000+buffer[0x29]*0x100+buffer[0x28];
write_dword(ebda_seg,&EbdaData->cdemu.ilba,lba);
// And we read the image in memory
memsetb(get_SS(),atacmd,0,12);
atacmd[0]=0x28; // READ command
atacmd[7]=((1+(nbsectors-1)/4) & 0xff00) >> 8; // Sectors
atacmd[8]=((1+(nbsectors-1)/4) & 0x00ff); // Sectors
atacmd[2]=(lba & 0xff000000) >> 24; // LBA
atacmd[3]=(lba & 0x00ff0000) >> 16;
atacmd[4]=(lba & 0x0000ff00) >> 8;
atacmd[5]=(lba & 0x000000ff);
if((error = ata_cmd_packet(device, 12, get_SS(), atacmd, 0, nbsectors*512L, ATA_DATA_IN, boot_segment,0)) != 0)
return 12;
// Remember the media type
switch(read_byte(ebda_seg,&EbdaData->cdemu.media)) {
case 0x01: // 1.2M floppy
write_word(ebda_seg,&EbdaData->cdemu.vdevice.spt,15);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.cylinders,80);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.heads,2);
break;
case 0x02: // 1.44M floppy
write_word(ebda_seg,&EbdaData->cdemu.vdevice.spt,18);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.cylinders,80);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.heads,2);
break;
case 0x03: // 2.88M floppy
write_word(ebda_seg,&EbdaData->cdemu.vdevice.spt,36);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.cylinders,80);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.heads,2);
break;
case 0x04: // Harddrive
write_word(ebda_seg,&EbdaData->cdemu.vdevice.spt,read_byte(boot_segment,446+6)&0x3f);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.cylinders,
(read_byte(boot_segment,446+6)<<2) + read_byte(boot_segment,446+7) + 1);
write_word(ebda_seg,&EbdaData->cdemu.vdevice.heads,read_byte(boot_segment,446+5) + 1);
break;
}
if(read_byte(ebda_seg,&EbdaData->cdemu.media)!=0) {
// Increase bios installed hardware number of devices
if(read_byte(ebda_seg,&EbdaData->cdemu.emulated_drive)==0x00)
write_byte(0x40,0x10,read_byte(0x40,0x10)|0x41);
else
write_byte(ebda_seg, &EbdaData->ata.hdcount, read_byte(ebda_seg, &EbdaData->ata.hdcount) + 1);
}
// everything is ok, so from now on, the emulation is active
if(read_byte(ebda_seg,&EbdaData->cdemu.media)!=0)
write_byte(ebda_seg,&EbdaData->cdemu.active,0x01);
// return the boot drive + no error
return (read_byte(ebda_seg,&EbdaData->cdemu.emulated_drive)*0x100)+0;
}
// ---------------------------------------------------------------------------
// End of El-Torito boot functions
// ---------------------------------------------------------------------------
#endif // BX_ELTORITO_BOOT
void int14_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
Bit16u addr,timer,val16;
Bit8u counter;
ASM_START
sti
ASM_END
addr = read_word(0x0040, (regs.u.r16.dx << 1));
counter = read_byte(0x0040, 0x007C + regs.u.r16.dx);
if ((regs.u.r16.dx < 4) && (addr > 0)) {
switch (regs.u.r8.ah) {
case 0:
outb(addr+3, inb(addr+3) | 0x80);
if (regs.u.r8.al & 0xE0 == 0) {
outb(addr, 0x17);
outb(addr+1, 0x04);
} else {
val16 = 0x600 >> ((regs.u.r8.al & 0xE0) >> 5);
outb(addr, val16 & 0xFF);
outb(addr+1, val16 >> 8);
}
outb(addr+3, regs.u.r8.al & 0x1F);
regs.u.r8.ah = inb(addr+5);
regs.u.r8.al = inb(addr+6);
ClearCF(iret_addr.flags);
break;
case 1:
timer = read_word(0x0040, 0x006C);
while (((inb(addr+5) & 0x60) != 0x60) && (counter)) {
val16 = read_word(0x0040, 0x006C);
if (val16 != timer) {
timer = val16;
counter--;
}
}
if (counter > 0) {
outb(addr, regs.u.r8.al);
regs.u.r8.ah = inb(addr+5);
} else {
regs.u.r8.ah = 0x80;
}
ClearCF(iret_addr.flags);
break;
case 2:
timer = read_word(0x0040, 0x006C);
while (((inb(addr+5) & 0x01) == 0) && (counter)) {
val16 = read_word(0x0040, 0x006C);
if (val16 != timer) {
timer = val16;
counter--;
}
}
if (counter > 0) {
regs.u.r8.ah = inb(addr+5);
regs.u.r8.al = inb(addr);
} else {
regs.u.r8.ah = 0x80;
}
ClearCF(iret_addr.flags);
break;
case 3:
regs.u.r8.ah = inb(addr+5);
regs.u.r8.al = inb(addr+6);
ClearCF(iret_addr.flags);
break;
default:
SetCF(iret_addr.flags); // Unsupported
}
} else {
SetCF(iret_addr.flags); // Unsupported
}
}
void
int15_function(regs, ES, DS, FLAGS)
pusha_regs_t regs; // REGS pushed via pusha
Bit16u ES, DS, FLAGS;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
bx_bool prev_a20_enable;
Bit16u base15_00;
Bit8u base23_16;
Bit16u ss;
Bit16u BX,CX,DX;
Bit16u bRegister;
Bit8u irqDisable;
BX_DEBUG_INT15("int15 AX=%04x\n",regs.u.r16.ax);
switch (regs.u.r8.ah) {
case 0x24: /* A20 Control */
switch (regs.u.r8.al) {
case 0x00:
set_enable_a20(0);
CLEAR_CF();
regs.u.r8.ah = 0;
break;
case 0x01:
set_enable_a20(1);
CLEAR_CF();
regs.u.r8.ah = 0;
break;
case 0x02:
regs.u.r8.al = (inb(0x92) >> 1) & 0x01;
CLEAR_CF();
regs.u.r8.ah = 0;
break;
case 0x03:
CLEAR_CF();
regs.u.r8.ah = 0;
regs.u.r16.bx = 3;
break;
default:
BX_INFO("int15: Func 24h, subfunc %02xh, A20 gate control not supported\n", (unsigned) regs.u.r8.al);
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
break;
case 0x41:
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
case 0x4f:
/* keyboard intercept */
#if BX_CPU < 2
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
#else
// nop
#endif
SET_CF();
break;
case 0x52: // removable media eject
CLEAR_CF();
regs.u.r8.ah = 0; // "ok ejection may proceed"
break;
case 0x83: {
if( regs.u.r8.al == 0 ) {
// Set Interval requested.
if( ( read_byte( 0x40, 0xA0 ) & 1 ) == 0 ) {
// Interval not already set.
write_byte( 0x40, 0xA0, 1 ); // Set status byte.
write_word( 0x40, 0x98, ES ); // Byte location, segment
write_word( 0x40, 0x9A, regs.u.r16.bx ); // Byte location, offset
write_word( 0x40, 0x9C, regs.u.r16.dx ); // Low word, delay
write_word( 0x40, 0x9E, regs.u.r16.cx ); // High word, delay.
CLEAR_CF( );
irqDisable = inb( 0xA1 );
outb( 0xA1, irqDisable & 0xFE );
bRegister = inb_cmos( 0xB ); // Unmask IRQ8 so INT70 will get through.
outb_cmos( 0xB, bRegister | 0x40 ); // Turn on the Periodic Interrupt timer
} else {
// Interval already set.
BX_DEBUG_INT15("int15: Func 83h, failed, already waiting.\n" );
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
} else if( regs.u.r8.al == 1 ) {
// Clear Interval requested
write_byte( 0x40, 0xA0, 0 ); // Clear status byte
CLEAR_CF( );
bRegister = inb_cmos( 0xB );
outb_cmos( 0xB, bRegister & ~0x40 ); // Turn off the Periodic Interrupt timer
} else {
BX_DEBUG_INT15("int15: Func 83h, failed.\n" );
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
regs.u.r8.al--;
}
break;
}
case 0x87:
#if BX_CPU < 3
# error "Int15 function 87h not supported on < 80386"
#endif
// +++ should probably have descriptor checks
// +++ should have exception handlers
// turn off interrupts
ASM_START
cli
ASM_END
prev_a20_enable = set_enable_a20(1); // enable A20 line
// 128K max of transfer on 386+ ???
// source == destination ???
// ES:SI points to descriptor table
// offset use initially comments
// ==============================================
// 00..07 Unused zeros Null descriptor
// 08..0f GDT zeros filled in by BIOS
// 10..17 source ssssssss source of data
// 18..1f dest dddddddd destination of data
// 20..27 CS zeros filled in by BIOS
// 28..2f SS zeros filled in by BIOS
//es:si
//eeee0
//0ssss
//-----
// check for access rights of source & dest here
// Initialize GDT descriptor
base15_00 = (ES << 4) + regs.u.r16.si;
base23_16 = ES >> 12;
if (base15_00 < (ES<<4))
base23_16++;
write_word(ES, regs.u.r16.si+0x08+0, 47); // limit 15:00 = 6 * 8bytes/descriptor
write_word(ES, regs.u.r16.si+0x08+2, base15_00);// base 15:00
write_byte(ES, regs.u.r16.si+0x08+4, base23_16);// base 23:16
write_byte(ES, regs.u.r16.si+0x08+5, 0x93); // access
write_word(ES, regs.u.r16.si+0x08+6, 0x0000); // base 31:24/reserved/limit 19:16
// Initialize CS descriptor
write_word(ES, regs.u.r16.si+0x20+0, 0xffff);// limit 15:00 = normal 64K limit
write_word(ES, regs.u.r16.si+0x20+2, 0x0000);// base 15:00
write_byte(ES, regs.u.r16.si+0x20+4, 0x000f);// base 23:16
write_byte(ES, regs.u.r16.si+0x20+5, 0x9b); // access
write_word(ES, regs.u.r16.si+0x20+6, 0x0000);// base 31:24/reserved/limit 19:16
// Initialize SS descriptor
ss = get_SS();
base15_00 = ss << 4;
base23_16 = ss >> 12;
write_word(ES, regs.u.r16.si+0x28+0, 0xffff); // limit 15:00 = normal 64K limit
write_word(ES, regs.u.r16.si+0x28+2, base15_00);// base 15:00
write_byte(ES, regs.u.r16.si+0x28+4, base23_16);// base 23:16
write_byte(ES, regs.u.r16.si+0x28+5, 0x93); // access
write_word(ES, regs.u.r16.si+0x28+6, 0x0000); // base 31:24/reserved/limit 19:16
CX = regs.u.r16.cx;
ASM_START
// Compile generates locals offset info relative to SP.
// Get CX (word count) from stack.
mov bx, sp
SEG SS
mov cx, _int15_function.CX [bx]
// since we need to set SS:SP, save them to the BDA
// for future restore
push eax
xor eax, eax
mov ds, ax
mov 0x0469, ss
mov 0x0467, sp
SEG ES
lgdt [si + 0x08]
SEG CS
lidt [pmode_IDT_info]
;; perhaps do something with IDT here
;; set PE bit in CR0
mov eax, cr0
or al, #0x01
mov cr0, eax
;; far jump to flush CPU queue after transition to protected mode
JMP_AP(0x0020, protected_mode)
protected_mode:
;; GDT points to valid descriptor table, now load SS, DS, ES
mov ax, #0x28 ;; 101 000 = 5th descriptor in table, TI=GDT, RPL=00
mov ss, ax
mov ax, #0x10 ;; 010 000 = 2nd descriptor in table, TI=GDT, RPL=00
mov ds, ax
mov ax, #0x18 ;; 011 000 = 3rd descriptor in table, TI=GDT, RPL=00
mov es, ax
xor si, si
xor di, di
cld
rep
movsw ;; move CX words from DS:SI to ES:DI
;; make sure DS and ES limits are 64KB
mov ax, #0x28
mov ds, ax
mov es, ax
;; reset PG bit in CR0 ???
mov eax, cr0
and al, #0xFE
mov cr0, eax
;; far jump to flush CPU queue after transition to real mode
JMP_AP(0xf000, real_mode)
real_mode:
;; restore IDT to normal real-mode defaults
SEG CS
lidt [rmode_IDT_info]
// restore SS:SP from the BDA
xor ax, ax
mov ds, ax
mov ss, 0x0469
mov sp, 0x0467
pop eax
ASM_END
set_enable_a20(prev_a20_enable);
// turn back on interrupts
ASM_START
sti
ASM_END
regs.u.r8.ah = 0;
CLEAR_CF();
break;
case 0x88:
// Get the amount of extended memory (above 1M)
#if BX_CPU < 2
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
SET_CF();
#else
regs.u.r8.al = inb_cmos(0x30);
regs.u.r8.ah = inb_cmos(0x31);
// According to Ralf Brown's interrupt the limit should be 15M,
// but real machines mostly return max. 63M.
if(regs.u.r16.ax > 0xffc0)
regs.u.r16.ax = 0xffc0;
CLEAR_CF();
#endif
break;
case 0x89:
// Switch to Protected Mode.
// ES:DI points to user-supplied GDT
// BH/BL contains starting interrupt numbers for PIC0/PIC1
// This subfunction does not return!
// turn off interrupts
ASM_START
cli
ASM_END
set_enable_a20(1); // enable A20 line; we're supposed to fail if that fails
// Initialize CS descriptor for BIOS
write_word(ES, regs.u.r16.si+0x38+0, 0xffff);// limit 15:00 = normal 64K limit
write_word(ES, regs.u.r16.si+0x38+2, 0x0000);// base 15:00
write_byte(ES, regs.u.r16.si+0x38+4, 0x000f);// base 23:16 (hardcoded to f000:0000)
write_byte(ES, regs.u.r16.si+0x38+5, 0x9b); // access
write_word(ES, regs.u.r16.si+0x38+6, 0x0000);// base 31:24/reserved/limit 19:16
BX = regs.u.r16.bx;
ASM_START
// Compiler generates locals offset info relative to SP.
// Get BX (PIC offsets) from stack.
mov bx, sp
SEG SS
mov bx, _int15_function.BX [bx]
// Program PICs
mov al, #0x11 ; send initialisation commands
out 0x20, al
out 0xa0, al
mov al, bh
out 0x21, al
mov al, bl
out 0xa1, al
mov al, #0x04
out 0x21, al
mov al, #0x02
out 0xa1, al
mov al, #0x01
out 0x21, al
out 0xa1, al
mov al, #0xff ; mask all IRQs, user must re-enable
out 0x21, al
out 0xa1, al
// Load GDT and IDT from supplied data
SEG ES
lgdt [si + 0x08]
SEG ES
lidt [si + 0x10]
// set PE bit in CR0
mov eax, cr0
or al, #0x01
mov cr0, eax
// far jump to flush CPU queue after transition to protected mode
JMP_AP(0x0038, protmode_switch)
protmode_switch:
;; GDT points to valid descriptor table, now load SS, DS, ES
mov ax, #0x28
mov ss, ax
mov ax, #0x18
mov ds, ax
mov ax, #0x20
mov es, ax
// unwind the stack - this will break if calling sequence changes!
mov sp,bp
add sp,#4 ; skip return address
popa ; restore regs
pop ax ; skip saved es
pop ax ; skip saved ds
pop ax ; skip saved flags
// return to caller - note that we do not use IRET because
// we cannot enable interrupts
pop cx ; get return offset
pop ax ; skip return segment
pop ax ; skip flags
mov ax, #0x30 ; ah must be 0 on successful exit
push ax
push cx ; re-create modified ret address on stack
retf
ASM_END
break;
case 0x90:
/* Device busy interrupt. Called by Int 16h when no key available */
break;
case 0x91:
/* Interrupt complete. Called by Int 16h when key becomes available */
break;
case 0xbf:
BX_INFO("*** int 15h function AH=bf not yet supported!\n");
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
case 0xC0:
#if 0
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
#endif
CLEAR_CF();
regs.u.r8.ah = 0;
regs.u.r16.bx = BIOS_CONFIG_TABLE;
ES = 0xF000;
break;
case 0xc1:
ES = ebda_seg;
CLEAR_CF();
break;
case 0xd8:
bios_printf(BIOS_PRINTF_DEBUG, "EISA BIOS not present\n");
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
default:
BX_INFO("*** int 15h function AX=%04x, BX=%04x not yet supported!\n",
(unsigned) regs.u.r16.ax, (unsigned) regs.u.r16.bx);
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
}
}
#if BX_USE_PS2_MOUSE
void
int15_function_mouse(regs, ES, DS, FLAGS)
pusha_regs_t regs; // REGS pushed via pusha
Bit16u ES, DS, FLAGS;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u mouse_flags_1, mouse_flags_2;
Bit16u mouse_driver_seg;
Bit16u mouse_driver_offset;
Bit8u comm_byte, prev_command_byte;
Bit8u ret, mouse_data1, mouse_data2, mouse_data3;
BX_DEBUG_INT15("int15 AX=%04x\n",regs.u.r16.ax);
switch (regs.u.r8.ah) {
case 0xC2:
// Return Codes status in AH
// =========================
// 00: success
// 01: invalid subfunction (AL > 7)
// 02: invalid input value (out of allowable range)
// 03: interface error
// 04: resend command received from mouse controller,
// device driver should attempt command again
// 05: cannot enable mouse, since no far call has been installed
// 80/86: mouse service not implemented
switch (regs.u.r8.al) {
case 0: // Disable/Enable Mouse
BX_DEBUG_INT15("case 0:\n");
switch (regs.u.r8.bh) {
case 0: // Disable Mouse
BX_DEBUG_INT15("case 0: disable mouse\n");
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xF5); // disable mouse command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if ( (ret == 0) || (mouse_data1 == 0xFA) ) {
CLEAR_CF();
regs.u.r8.ah = 0;
return;
}
}
// error
SET_CF();
regs.u.r8.ah = ret;
return;
break;
case 1: // Enable Mouse
BX_DEBUG_INT15("case 1: enable mouse\n");
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
if ( (mouse_flags_2 & 0x80) == 0 ) {
BX_DEBUG_INT15("INT 15h C2 Enable Mouse, no far call handler\n");
SET_CF(); // error
regs.u.r8.ah = 5; // no far call installed
return;
}
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xF4); // enable mouse command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if ( (ret == 0) && (mouse_data1 == 0xFA) ) {
enable_mouse_int_and_events(); // turn IRQ12 and packet generation on
CLEAR_CF();
regs.u.r8.ah = 0;
return;
}
}
SET_CF();
regs.u.r8.ah = ret;
return;
default: // invalid subfunction
BX_DEBUG_INT15("INT 15h C2 AL=0, BH=%02x\n", (unsigned) regs.u.r8.bh);
SET_CF(); // error
regs.u.r8.ah = 1; // invalid subfunction
return;
}
break;
case 1: // Reset Mouse
case 5: // Initialize Mouse
BX_DEBUG_INT15("case 1 or 5:\n");
if (regs.u.r8.al == 5) {
if (regs.u.r8.bh != 3) {
SET_CF();
regs.u.r8.ah = 0x02; // invalid input
return;
}
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
mouse_flags_2 = (mouse_flags_2 & 0x00) | regs.u.r8.bh;
mouse_flags_1 = 0x00;
write_byte(ebda_seg, 0x0026, mouse_flags_1);
write_byte(ebda_seg, 0x0027, mouse_flags_2);
}
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xFF); // reset mouse command
if (ret == 0) {
ret = get_mouse_data(&mouse_data3);
// if no mouse attached, it will return RESEND
if (mouse_data3 == 0xfe) {
SET_CF();
return;
}
if (mouse_data3 != 0xfa)
BX_PANIC("Mouse reset returned %02x (should be ack)\n", (unsigned)mouse_data3);
if ( ret == 0 ) {
ret = get_mouse_data(&mouse_data1);
if ( ret == 0 ) {
ret = get_mouse_data(&mouse_data2);
if ( ret == 0 ) {
// turn IRQ12 and packet generation on
enable_mouse_int_and_events();
CLEAR_CF();
regs.u.r8.ah = 0;
regs.u.r8.bl = mouse_data1;
regs.u.r8.bh = mouse_data2;
return;
}
}
}
}
// error
SET_CF();
regs.u.r8.ah = ret;
return;
case 2: // Set Sample Rate
BX_DEBUG_INT15("case 2:\n");
switch (regs.u.r8.bh) {
case 0: mouse_data1 = 10; break; // 10 reports/sec
case 1: mouse_data1 = 20; break; // 20 reports/sec
case 2: mouse_data1 = 40; break; // 40 reports/sec
case 3: mouse_data1 = 60; break; // 60 reports/sec
case 4: mouse_data1 = 80; break; // 80 reports/sec
case 5: mouse_data1 = 100; break; // 100 reports/sec (default)
case 6: mouse_data1 = 200; break; // 200 reports/sec
default: mouse_data1 = 0;
}
if (mouse_data1 > 0) {
ret = send_to_mouse_ctrl(0xF3); // set sample rate command
if (ret == 0) {
ret = get_mouse_data(&mouse_data2);
ret = send_to_mouse_ctrl(mouse_data1);
ret = get_mouse_data(&mouse_data2);
CLEAR_CF();
regs.u.r8.ah = 0;
} else {
// error
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
} else {
// error
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
break;
case 3: // Set Resolution
BX_DEBUG_INT15("case 3:\n");
// BH:
// 0 = 25 dpi, 1 count per millimeter
// 1 = 50 dpi, 2 counts per millimeter
// 2 = 100 dpi, 4 counts per millimeter
// 3 = 200 dpi, 8 counts per millimeter
comm_byte = inhibit_mouse_int_and_events(); // disable IRQ12 and packets
if (regs.u.r8.bh < 4) {
ret = send_to_mouse_ctrl(0xE8); // set resolution command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if (mouse_data1 != 0xfa)
BX_PANIC("Mouse status returned %02x (should be ack)\n", (unsigned)mouse_data1);
ret = send_to_mouse_ctrl(regs.u.r8.bh);
ret = get_mouse_data(&mouse_data1);
if (mouse_data1 != 0xfa)
BX_PANIC("Mouse status returned %02x (should be ack)\n", (unsigned)mouse_data1);
CLEAR_CF();
regs.u.r8.ah = 0;
} else {
// error
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
} else {
// error
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
set_kbd_command_byte(comm_byte); // restore IRQ12 and serial enable
break;
case 4: // Get Device ID
BX_DEBUG_INT15("case 4:\n");
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xF2); // get mouse ID command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
ret = get_mouse_data(&mouse_data2);
CLEAR_CF();
regs.u.r8.ah = 0;
regs.u.r8.bh = mouse_data2;
} else {
// error
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
break;
case 6: // Return Status & Set Scaling Factor...
BX_DEBUG_INT15("case 6:\n");
switch (regs.u.r8.bh) {
case 0: // Return Status
comm_byte = inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xE9); // get mouse info command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if (mouse_data1 != 0xfa)
BX_PANIC("Mouse status returned %02x (should be ack)\n", (unsigned)mouse_data1);
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if (ret == 0) {
ret = get_mouse_data(&mouse_data2);
if (ret == 0) {
ret = get_mouse_data(&mouse_data3);
if (ret == 0) {
CLEAR_CF();
regs.u.r8.ah = 0;
regs.u.r8.bl = mouse_data1;
regs.u.r8.cl = mouse_data2;
regs.u.r8.dl = mouse_data3;
set_kbd_command_byte(comm_byte); // restore IRQ12 and serial enable
return;
}
}
}
}
}
// error
SET_CF();
regs.u.r8.ah = ret;
set_kbd_command_byte(comm_byte); // restore IRQ12 and serial enable
return;
case 1: // Set Scaling Factor to 1:1
case 2: // Set Scaling Factor to 2:1
comm_byte = inhibit_mouse_int_and_events(); // disable IRQ12 and packets
if (regs.u.r8.bh == 1) {
ret = send_to_mouse_ctrl(0xE6);
} else {
ret = send_to_mouse_ctrl(0xE7);
}
if (ret == 0) {
get_mouse_data(&mouse_data1);
ret = (mouse_data1 != 0xFA);
}
if (ret == 0) {
CLEAR_CF();
regs.u.r8.ah = 0;
} else {
// error
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
}
set_kbd_command_byte(comm_byte); // restore IRQ12 and serial enable
break;
default:
BX_PANIC("INT 15h C2 AL=6, BH=%02x\n", (unsigned) regs.u.r8.bh);
}
break;
case 7: // Set Mouse Handler Address
BX_DEBUG_INT15("case 7:\n");
mouse_driver_seg = ES;
mouse_driver_offset = regs.u.r16.bx;
write_word(ebda_seg, 0x0022, mouse_driver_offset);
write_word(ebda_seg, 0x0024, mouse_driver_seg);
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
if (mouse_driver_offset == 0 && mouse_driver_seg == 0) {
/* remove handler */
if ( (mouse_flags_2 & 0x80) != 0 ) {
mouse_flags_2 &= ~0x80;
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
}
}
else {
/* install handler */
mouse_flags_2 |= 0x80;
}
write_byte(ebda_seg, 0x0027, mouse_flags_2);
CLEAR_CF();
regs.u.r8.ah = 0;
break;
default:
BX_DEBUG_INT15("case default:\n");
regs.u.r8.ah = 1; // invalid function
SET_CF();
}
break;
default:
BX_INFO("*** int 15h function AX=%04x, BX=%04x not yet supported!\n",
(unsigned) regs.u.r16.ax, (unsigned) regs.u.r16.bx);
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
}
}
#endif // BX_USE_PS2_MOUSE
void set_e820_range(ES, DI, start, end, extra_start, extra_end, type)
Bit16u ES;
Bit16u DI;
Bit32u start;
Bit32u end;
Bit8u extra_start;
Bit8u extra_end;
Bit16u type;
{
write_word(ES, DI, start);
write_word(ES, DI+2, start >> 16);
write_word(ES, DI+4, extra_start);
write_word(ES, DI+6, 0x00);
end -= start;
extra_end -= extra_start;
write_word(ES, DI+8, end);
write_word(ES, DI+10, end >> 16);
write_word(ES, DI+12, extra_end);
write_word(ES, DI+14, 0x0000);
write_word(ES, DI+16, type);
write_word(ES, DI+18, 0x0);
}
void
int15_function32(regs, ES, DS, FLAGS)
pushad_regs_t regs; // REGS pushed via pushad
Bit16u ES, DS, FLAGS;
{
Bit32u extended_memory_size=0; // 64bits long
Bit32u extra_lowbits_memory_size=0;
Bit16u CX,DX;
Bit8u extra_highbits_memory_size=0;
BX_DEBUG_INT15("int15 AX=%04x\n",regs.u.r16.ax);
switch (regs.u.r8.ah) {
case 0x86:
// Wait for CX:DX microseconds. currently using the
// refresh request port 0x61 bit4, toggling every 15usec
CX = regs.u.r16.cx;
DX = regs.u.r16.dx;
ASM_START
sti
;; Get the count in eax
mov bx, sp
SEG SS
mov ax, _int15_function32.CX [bx]
shl eax, #16
SEG SS
mov ax, _int15_function32.DX [bx]
;; convert to numbers of 15usec ticks
mov ebx, #15
xor edx, edx
div eax, ebx
mov ecx, eax
;; wait for ecx number of refresh requests
in al, #0x61
and al,#0x10
mov ah, al
or ecx, ecx
je int1586_tick_end
int1586_tick:
in al, #0x61
and al,#0x10
cmp al, ah
je int1586_tick
mov ah, al
dec ecx
jnz int1586_tick
int1586_tick_end:
ASM_END
break;
case 0xe8:
switch(regs.u.r8.al) {
case 0x20: // coded by osmaker aka K.J.
if(regs.u.r32.edx == 0x534D4150)
{
extended_memory_size = inb_cmos(0x35);
extended_memory_size <<= 8;
extended_memory_size |= inb_cmos(0x34);
extended_memory_size *= 64;
// greater than EFF00000???
if(extended_memory_size > 0x3bc000) {
extended_memory_size = 0x3bc000; // everything after this is reserved memory until we get to 0x100000000
}
extended_memory_size *= 1024;
extended_memory_size += (16L * 1024 * 1024);
if(extended_memory_size <= (16L * 1024 * 1024)) {
extended_memory_size = inb_cmos(0x31);
extended_memory_size <<= 8;
extended_memory_size |= inb_cmos(0x30);
extended_memory_size *= 1024;
extended_memory_size += (1L * 1024 * 1024);
}
extra_lowbits_memory_size = inb_cmos(0x5c);
extra_lowbits_memory_size <<= 8;
extra_lowbits_memory_size |= inb_cmos(0x5b);
extra_lowbits_memory_size *= 64;
extra_lowbits_memory_size *= 1024;
extra_highbits_memory_size = inb_cmos(0x5d);
switch(regs.u.r16.bx)
{
case 0:
set_e820_range(ES, regs.u.r16.di,
0x0000000L, 0x0009f000L, 0, 0, 1);
regs.u.r32.ebx = 1;
break;
case 1:
set_e820_range(ES, regs.u.r16.di,
0x0009f000L, 0x000a0000L, 0, 0, 2);
regs.u.r32.ebx = 2;
break;
case 2:
set_e820_range(ES, regs.u.r16.di,
0x000e8000L, 0x00100000L, 0, 0, 2);
regs.u.r32.ebx = 3;
break;
case 3:
#if BX_ROMBIOS32
set_e820_range(ES, regs.u.r16.di,
0x00100000L,
extended_memory_size - ACPI_DATA_SIZE, 0, 0, 1);
regs.u.r32.ebx = 4;
#else
set_e820_range(ES, regs.u.r16.di,
0x00100000L,
extended_memory_size, 0, 0, 1);
regs.u.r32.ebx = 5;
#endif
break;
case 4:
set_e820_range(ES, regs.u.r16.di,
extended_memory_size - ACPI_DATA_SIZE,
extended_memory_size, 0, 0, 3); // ACPI RAM
regs.u.r32.ebx = 5;
break;
case 5:
/* 256KB BIOS area at the end of 4 GB */
set_e820_range(ES, regs.u.r16.di,
0xfffc0000L, 0x00000000L, 0, 0, 2);
if (extra_highbits_memory_size || extra_lowbits_memory_size)
regs.u.r32.ebx = 6;
else
regs.u.r32.ebx = 0;
break;
case 6:
/* Maping of memory above 4 GB */
set_e820_range(ES, regs.u.r16.di, 0x00000000L,
extra_lowbits_memory_size, 1, extra_highbits_memory_size
+ 1, 1);
regs.u.r32.ebx = 0;
break;
default: /* AX=E820, DX=534D4150, BX unrecognized */
goto int15_unimplemented;
break;
}
regs.u.r32.eax = 0x534D4150;
regs.u.r32.ecx = 0x14;
CLEAR_CF();
} else {
// if DX != 0x534D4150)
goto int15_unimplemented;
}
break;
case 0x01:
// do we have any reason to fail here ?
CLEAR_CF();
// my real system sets ax and bx to 0
// this is confirmed by Ralph Brown list
// but syslinux v1.48 is known to behave
// strangely if ax is set to 0
// regs.u.r16.ax = 0;
// regs.u.r16.bx = 0;
// Get the amount of extended memory (above 1M)
regs.u.r8.cl = inb_cmos(0x30);
regs.u.r8.ch = inb_cmos(0x31);
// limit to 15M
if(regs.u.r16.cx > 0x3c00)
{
regs.u.r16.cx = 0x3c00;
}
// Get the amount of extended memory above 16M in 64k blocs
regs.u.r8.dl = inb_cmos(0x34);
regs.u.r8.dh = inb_cmos(0x35);
// Set configured memory equal to extended memory
regs.u.r16.ax = regs.u.r16.cx;
regs.u.r16.bx = regs.u.r16.dx;
break;
default: /* AH=0xE8?? but not implemented */
goto int15_unimplemented;
}
break;
int15_unimplemented:
// fall into the default
default:
BX_INFO("*** int 15h function AX=%04x, BX=%04x not yet supported!\n",
(unsigned) regs.u.r16.ax, (unsigned) regs.u.r16.bx);
SET_CF();
regs.u.r8.ah = UNSUPPORTED_FUNCTION;
break;
}
}
void
int16_function(DI, SI, BP, SP, BX, DX, CX, AX, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, FLAGS;
{
Bit8u scan_code, ascii_code, shift_flags, led_flags, count;
Bit16u kbd_code, max;
BX_DEBUG_INT16("int16: AX=%04x BX=%04x CX=%04x DX=%04x \n", AX, BX, CX, DX);
shift_flags = read_byte(0x0040, 0x17);
led_flags = read_byte(0x0040, 0x97);
if ((((shift_flags >> 4) & 0x07) ^ (led_flags & 0x07)) != 0) {
ASM_START
cli
ASM_END
outb(0x60, 0xed);
while ((inb(0x64) & 0x01) == 0) outb(0x80, 0x21);
if ((inb(0x60) == 0xfa)) {
led_flags &= 0xf8;
led_flags |= ((shift_flags >> 4) & 0x07);
outb(0x60, led_flags & 0x07);
while ((inb(0x64) & 0x01) == 0) outb(0x80, 0x21);
inb(0x60);
write_byte(0x0040, 0x97, led_flags);
}
ASM_START
sti
ASM_END
}
switch (GET_AH()) {
case 0x00: /* read keyboard input */
if ( !dequeue_key(&scan_code, &ascii_code, 1) ) {
BX_PANIC("KBD: int16h: out of keyboard input\n");
}
if (scan_code !=0 && ascii_code == 0xF0) ascii_code = 0;
else if (ascii_code == 0xE0) ascii_code = 0;
AX = (scan_code << 8) | ascii_code;
break;
case 0x01: /* check keyboard status */
if ( !dequeue_key(&scan_code, &ascii_code, 0) ) {
SET_ZF();
return;
}
if (scan_code !=0 && ascii_code == 0xF0) ascii_code = 0;
else if (ascii_code == 0xE0) ascii_code = 0;
AX = (scan_code << 8) | ascii_code;
CLEAR_ZF();
break;
case 0x02: /* get shift flag status */
shift_flags = read_byte(0x0040, 0x17);
SET_AL(shift_flags);
break;
case 0x05: /* store key-stroke into buffer */
if ( !enqueue_key(GET_CH(), GET_CL()) ) {
SET_AL(1);
}
else {
SET_AL(0);
}
break;
case 0x09: /* GET KEYBOARD FUNCTIONALITY */
// bit Bochs Description
// 7 0 reserved
// 6 0 INT 16/AH=20h-22h supported (122-key keyboard support)
// 5 1 INT 16/AH=10h-12h supported (enhanced keyboard support)
// 4 1 INT 16/AH=0Ah supported
// 3 0 INT 16/AX=0306h supported
// 2 0 INT 16/AX=0305h supported
// 1 0 INT 16/AX=0304h supported
// 0 0 INT 16/AX=0300h supported
//
SET_AL(0x30);
break;
case 0x0A: /* GET KEYBOARD ID */
count = 2;
kbd_code = 0x0;
outb(0x60, 0xf2);
/* Wait for data */
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x00);
if (max>0x0) {
if ((inb(0x60) == 0xfa)) {
do {
max=0xffff;
while ( ((inb(0x64) & 0x01) == 0) && (--max>0) ) outb(0x80, 0x00);
if (max>0x0) {
kbd_code >>= 8;
kbd_code |= (inb(0x60) << 8);
}
} while (--count>0);
}
}
BX=kbd_code;
break;
case 0x10: /* read MF-II keyboard input */
if ( !dequeue_key(&scan_code, &ascii_code, 1) ) {
BX_PANIC("KBD: int16h: out of keyboard input\n");
}
if (scan_code !=0 && ascii_code == 0xF0) ascii_code = 0;
AX = (scan_code << 8) | ascii_code;
break;
case 0x11: /* check MF-II keyboard status */
if ( !dequeue_key(&scan_code, &ascii_code, 0) ) {
SET_ZF();
return;
}
if (scan_code !=0 && ascii_code == 0xF0) ascii_code = 0;
AX = (scan_code << 8) | ascii_code;
CLEAR_ZF();
break;
case 0x12: /* get extended keyboard status */
shift_flags = read_byte(0x0040, 0x17);
SET_AL(shift_flags);
shift_flags = read_byte(0x0040, 0x18) & 0x73;
shift_flags |= read_byte(0x0040, 0x96) & 0x0c;
SET_AH(shift_flags);
BX_DEBUG_INT16("int16: func 12 sending %04x\n",AX);
break;
case 0x92: /* keyboard capability check called by DOS 5.0+ keyb */
SET_AH(0x80); // function int16 ah=0x10-0x12 supported
break;
case 0xA2: /* 122 keys capability check called by DOS 5.0+ keyb */
// don't change AH : function int16 ah=0x20-0x22 NOT supported
break;
case 0x6F:
if (GET_AL() == 0x08)
SET_AH(0x02); // unsupported, aka normal keyboard
default:
BX_INFO("KBD: unsupported int 16h function %02x\n", GET_AH());
}
}
unsigned int
dequeue_key(scan_code, ascii_code, incr)
Bit8u *scan_code;
Bit8u *ascii_code;
unsigned int incr;
{
Bit16u buffer_start, buffer_end, buffer_head, buffer_tail;
Bit16u ss;
Bit8u acode, scode;
#if BX_CPU < 2
buffer_start = 0x001E;
buffer_end = 0x003E;
#else
buffer_start = read_word(0x0040, 0x0080);
buffer_end = read_word(0x0040, 0x0082);
#endif
buffer_head = read_word(0x0040, 0x001a);
buffer_tail = read_word(0x0040, 0x001c);
if (buffer_head != buffer_tail) {
ss = get_SS();
acode = read_byte(0x0040, buffer_head);
scode = read_byte(0x0040, buffer_head+1);
write_byte(ss, ascii_code, acode);
write_byte(ss, scan_code, scode);
if (incr) {
buffer_head += 2;
if (buffer_head >= buffer_end)
buffer_head = buffer_start;
write_word(0x0040, 0x001a, buffer_head);
}
return(1);
}
else {
return(0);
}
}
static char panic_msg_keyb_buffer_full[] = "%s: keyboard input buffer full\n";
Bit8u
inhibit_mouse_int_and_events()
{
Bit8u command_byte, prev_command_byte;
// Turn off IRQ generation and aux data line
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"inhibmouse");
outb(0x64, 0x20); // get command byte
while ( (inb(0x64) & 0x01) != 0x01 );
prev_command_byte = inb(0x60);
command_byte = prev_command_byte;
//while ( (inb(0x64) & 0x02) );
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"inhibmouse");
command_byte &= 0xfd; // turn off IRQ 12 generation
command_byte |= 0x20; // disable mouse serial clock line
outb(0x64, 0x60); // write command byte
outb(0x60, command_byte);
return(prev_command_byte);
}
void
enable_mouse_int_and_events()
{
Bit8u command_byte;
// Turn on IRQ generation and aux data line
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"enabmouse");
outb(0x64, 0x20); // get command byte
while ( (inb(0x64) & 0x01) != 0x01 );
command_byte = inb(0x60);
//while ( (inb(0x64) & 0x02) );
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"enabmouse");
command_byte |= 0x02; // turn on IRQ 12 generation
command_byte &= 0xdf; // enable mouse serial clock line
outb(0x64, 0x60); // write command byte
outb(0x60, command_byte);
}
Bit8u
send_to_mouse_ctrl(sendbyte)
Bit8u sendbyte;
{
Bit8u response;
// wait for chance to write to ctrl
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"sendmouse");
outb(0x64, 0xD4);
outb(0x60, sendbyte);
return(0);
}
Bit8u
get_mouse_data(data)
Bit8u *data;
{
Bit8u response;
Bit16u ss;
while ((inb(0x64) & 0x21) != 0x21) { }
response = inb(0x60);
ss = get_SS();
write_byte(ss, data, response);
return(0);
}
void
set_kbd_command_byte(command_byte)
Bit8u command_byte;
{
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"setkbdcomm");
outb(0x64, 0xD4);
outb(0x64, 0x60); // write command byte
outb(0x60, command_byte);
}
void
int09_function(DI, SI, BP, SP, BX, DX, CX, AX)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX;
{
Bit8u scancode, asciicode, shift_flags;
Bit8u mf2_flags, mf2_state;
//
// DS has been set to F000 before call
//
scancode = GET_AL();
if (scancode == 0) {
BX_INFO("KBD: int09 handler: AL=0\n");
return;
}
shift_flags = read_byte(0x0040, 0x17);
mf2_flags = read_byte(0x0040, 0x18);
mf2_state = read_byte(0x0040, 0x96);
asciicode = 0;
switch (scancode) {
case 0x3a: /* Caps Lock press */
shift_flags ^= 0x40;
write_byte(0x0040, 0x17, shift_flags);
mf2_flags |= 0x40;
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0xba: /* Caps Lock release */
mf2_flags &= ~0x40;
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0x2a: /* L Shift press */
shift_flags |= 0x02;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0xaa: /* L Shift release */
shift_flags &= ~0x02;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0x36: /* R Shift press */
shift_flags |= 0x01;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0xb6: /* R Shift release */
shift_flags &= ~0x01;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0x1d: /* Ctrl press */
if ((mf2_state & 0x01) == 0) {
shift_flags |= 0x04;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x02) {
mf2_state |= 0x04;
write_byte(0x0040, 0x96, mf2_state);
} else {
mf2_flags |= 0x01;
write_byte(0x0040, 0x18, mf2_flags);
}
}
break;
case 0x9d: /* Ctrl release */
if ((mf2_state & 0x01) == 0) {
shift_flags &= ~0x04;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x02) {
mf2_state &= ~0x04;
write_byte(0x0040, 0x96, mf2_state);
} else {
mf2_flags &= ~0x01;
write_byte(0x0040, 0x18, mf2_flags);
}
}
break;
case 0x38: /* Alt press */
shift_flags |= 0x08;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x02) {
mf2_state |= 0x08;
write_byte(0x0040, 0x96, mf2_state);
} else {
mf2_flags |= 0x02;
write_byte(0x0040, 0x18, mf2_flags);
}
break;
case 0xb8: /* Alt release */
shift_flags &= ~0x08;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x02) {
mf2_state &= ~0x08;
write_byte(0x0040, 0x96, mf2_state);
} else {
mf2_flags &= ~0x02;
write_byte(0x0040, 0x18, mf2_flags);
}
break;
case 0x45: /* Num Lock press */
if ((mf2_state & 0x03) == 0) {
mf2_flags |= 0x20;
write_byte(0x0040, 0x18, mf2_flags);
shift_flags ^= 0x20;
write_byte(0x0040, 0x17, shift_flags);
}
break;
case 0xc5: /* Num Lock release */
if ((mf2_state & 0x03) == 0) {
mf2_flags &= ~0x20;
write_byte(0x0040, 0x18, mf2_flags);
}
break;
case 0x46: /* Scroll Lock press */
mf2_flags |= 0x10;
write_byte(0x0040, 0x18, mf2_flags);
shift_flags ^= 0x10;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0xc6: /* Scroll Lock release */
mf2_flags &= ~0x10;
write_byte(0x0040, 0x18, mf2_flags);
break;
default:
if (scancode & 0x80) {
break; /* toss key releases ... */
}
if (scancode > MAX_SCAN_CODE) {
BX_INFO("KBD: int09h_handler(): unknown scancode read: 0x%02x!\n", scancode);
return;
}
if (shift_flags & 0x08) { /* ALT */
asciicode = scan_to_scanascii[scancode].alt;
scancode = scan_to_scanascii[scancode].alt >> 8;
} else if (shift_flags & 0x04) { /* CONTROL */
asciicode = scan_to_scanascii[scancode].control;
scancode = scan_to_scanascii[scancode].control >> 8;
} else if (((mf2_state & 0x02) > 0) && ((scancode >= 0x47) && (scancode <= 0x53))) {
/* extended keys handling */
asciicode = 0xe0;
scancode = scan_to_scanascii[scancode].normal >> 8;
} else if (shift_flags & 0x03) { /* LSHIFT + RSHIFT */
/* check if lock state should be ignored
* because a SHIFT key are pressed */
if (shift_flags & scan_to_scanascii[scancode].lock_flags) {
asciicode = scan_to_scanascii[scancode].normal;
scancode = scan_to_scanascii[scancode].normal >> 8;
} else {
asciicode = scan_to_scanascii[scancode].shift;
scancode = scan_to_scanascii[scancode].shift >> 8;
}
} else {
/* check if lock is on */
if (shift_flags & scan_to_scanascii[scancode].lock_flags) {
asciicode = scan_to_scanascii[scancode].shift;
scancode = scan_to_scanascii[scancode].shift >> 8;
} else {
asciicode = scan_to_scanascii[scancode].normal;
scancode = scan_to_scanascii[scancode].normal >> 8;
}
}
if (scancode==0 && asciicode==0) {
BX_INFO("KBD: int09h_handler(): scancode & asciicode are zero?\n");
}
enqueue_key(scancode, asciicode);
break;
}
if ((scancode & 0x7f) != 0x1d) {
mf2_state &= ~0x01;
}
mf2_state &= ~0x02;
write_byte(0x0040, 0x96, mf2_state);
}
unsigned int
enqueue_key(scan_code, ascii_code)
Bit8u scan_code, ascii_code;
{
Bit16u buffer_start, buffer_end, buffer_head, buffer_tail, temp_tail;
#if BX_CPU < 2
buffer_start = 0x001E;
buffer_end = 0x003E;
#else
buffer_start = read_word(0x0040, 0x0080);
buffer_end = read_word(0x0040, 0x0082);
#endif
buffer_head = read_word(0x0040, 0x001A);
buffer_tail = read_word(0x0040, 0x001C);
temp_tail = buffer_tail;
buffer_tail += 2;
if (buffer_tail >= buffer_end)
buffer_tail = buffer_start;
if (buffer_tail == buffer_head) {
return(0);
}
write_byte(0x0040, temp_tail, ascii_code);
write_byte(0x0040, temp_tail+1, scan_code);
write_word(0x0040, 0x001C, buffer_tail);
return(1);
}
void
int74_function(make_farcall, Z, Y, X, status)
Bit16u make_farcall, Z, Y, X, status;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u in_byte, index, package_count;
Bit8u mouse_flags_1, mouse_flags_2;
BX_DEBUG_INT74("entering int74_function\n");
make_farcall = 0;
in_byte = inb(0x64);
if ((in_byte & 0x21) != 0x21) {
return;
}
in_byte = inb(0x60);
BX_DEBUG_INT74("int74: read byte %02x\n", in_byte);
mouse_flags_1 = read_byte(ebda_seg, 0x0026);
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
if ((mouse_flags_2 & 0x80) != 0x80) {
return;
}
package_count = mouse_flags_2 & 0x07;
index = mouse_flags_1 & 0x07;
write_byte(ebda_seg, 0x28 + index, in_byte);
if ( (index+1) >= package_count ) {
BX_DEBUG_INT74("int74_function: make_farcall=1\n");
status = read_byte(ebda_seg, 0x0028 + 0);
X = read_byte(ebda_seg, 0x0028 + 1);
Y = read_byte(ebda_seg, 0x0028 + 2);
Z = 0;
mouse_flags_1 = 0;
// check if far call handler installed
if (mouse_flags_2 & 0x80)
make_farcall = 1;
}
else {
mouse_flags_1++;
}
write_byte(ebda_seg, 0x0026, mouse_flags_1);
}
#define SET_DISK_RET_STATUS(status) write_byte(0x0040, 0x0074, status)
#if BX_USE_ATADRV
void
int13_harddisk(EHAX, DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u EHAX, DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit32u lba_low, lba_high;
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit16u cylinder, head, sector;
Bit16u segment, offset;
Bit16u npc, nph, npspt, nlc, nlh, nlspt;
Bit16u size, count;
Bit8u device, status;
BX_DEBUG_INT13_HD("int13_harddisk: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
write_byte(0x0040, 0x008e, 0); // clear completion flag
// basic check : device has to be defined
if ( (GET_ELDL() < 0x80) || (GET_ELDL() >= 0x80 + BX_MAX_ATA_DEVICES) ) {
BX_INFO("int13_harddisk: function %02x, ELDL out of range %02x\n", GET_AH(), GET_ELDL());
goto int13_fail;
}
// Get the ata channel
device=read_byte(ebda_seg,&EbdaData->ata.hdidmap[GET_ELDL()-0x80]);
// basic check : device has to be valid
if (device >= BX_MAX_ATA_DEVICES) {
BX_INFO("int13_harddisk: function %02x, unmapped device for ELDL=%02x\n", GET_AH(), GET_ELDL());
goto int13_fail;
}
switch (GET_AH()) {
case 0x00: /* disk controller reset */
ata_reset (device);
goto int13_success;
break;
case 0x01: /* read disk status */
status = read_byte(0x0040, 0x0074);
SET_AH(status);
SET_DISK_RET_STATUS(0);
/* set CF if error status read */
if (status) goto int13_fail_nostatus;
else goto int13_success_noah;
break;
case 0x02: // read disk sectors
case 0x03: // write disk sectors
case 0x04: // verify disk sectors
count = GET_AL();
cylinder = GET_CH();
cylinder |= ( ((Bit16u) GET_CL()) << 2) & 0x300;
sector = (GET_CL() & 0x3f);
head = GET_DH();
segment = ES;
offset = BX;
if ((count > 128) || (count == 0) || (sector == 0)) {
BX_INFO("int13_harddisk: function %02x, parameter out of range!\n",GET_AH());
goto int13_fail;
}
nlc = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.cylinders);
nlh = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.heads);
nlspt = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.spt);
// sanity check on cyl heads, sec
if( (cylinder >= nlc) || (head >= nlh) || (sector > nlspt) ) {
BX_INFO("int13_harddisk: function %02x, parameters out of range %04x/%04x/%04x!\n", GET_AH(), cylinder, head, sector);
goto int13_fail;
}
// FIXME verify
if (GET_AH() == 0x04) goto int13_success;
nph = read_word(ebda_seg, &EbdaData->ata.devices[device].pchs.heads);
npspt = read_word(ebda_seg, &EbdaData->ata.devices[device].pchs.spt);
// if needed, translate lchs to lba, and execute command
if ( (nph != nlh) || (npspt != nlspt)) {
lba_low = ((((Bit32u)cylinder * (Bit32u)nlh) + (Bit32u)head) * (Bit32u)nlspt) + (Bit32u)sector - 1;
lba_high = 0;
sector = 0; // this forces the command to be lba
}
if (GET_AH() == 0x02)
status=ata_cmd_data_in(device, ATA_CMD_READ_SECTORS, count, cylinder, head, sector, lba_low, lba_high, segment, offset);
else
status=ata_cmd_data_out(device, ATA_CMD_WRITE_SECTORS, count, cylinder, head, sector, lba_low, lba_high, segment, offset);
// Set nb of sector transferred
SET_AL(read_word(ebda_seg, &EbdaData->ata.trsfsectors));
if (status != 0) {
BX_INFO("int13_harddisk: function %02x, error %02x !\n",GET_AH(),status);
SET_AH(0x0c);
goto int13_fail_noah;
}
goto int13_success;
break;
case 0x05: /* format disk track */
BX_INFO("format disk track called\n");
goto int13_success;
return;
break;
case 0x08: /* read disk drive parameters */
// Get logical geometry from table
nlc = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.cylinders);
nlh = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.heads);
nlspt = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.spt);
count = read_byte(ebda_seg, &EbdaData->ata.hdcount);
nlc = nlc - 2; /* 0 based, last sector not used */
SET_AL(0);
SET_CH(nlc & 0xff);
SET_CL(((nlc >> 2) & 0xc0) | (nlspt & 0x3f));
SET_DH(nlh - 1);
SET_DL(count); /* FIXME returns 0, 1, or n hard drives */
// FIXME should set ES & DI
goto int13_success;
break;
case 0x10: /* check drive ready */
// should look at 40:8E also???
// Read the status from controller
status = inb(read_word(ebda_seg, &EbdaData->ata.channels[device/2].iobase1) + ATA_CB_STAT);
if ( (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY)) == ATA_CB_STAT_RDY ) {
goto int13_success;
}
else {
SET_AH(0xAA);
goto int13_fail_noah;
}
break;
case 0x15: /* read disk drive size */
// Get logical geometry from table
nlc = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.cylinders);
nlh = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.heads);
nlspt = read_word(ebda_seg, &EbdaData->ata.devices[device].lchs.spt);
// Compute sector count seen by int13
lba_low = (Bit32u)(nlc - 1) * (Bit32u)nlh * (Bit32u)nlspt;
CX = lba_low >> 16;
DX = lba_low & 0xffff;
SET_AH(3); // hard disk accessible
goto int13_success_noah;
break;
case 0x41: // IBM/MS installation check
BX=0xaa55; // install check
SET_AH(0x30); // EDD 3.0
CX=0x0007; // ext disk access and edd, removable supported
goto int13_success_noah;
break;
case 0x42: // IBM/MS extended read
case 0x43: // IBM/MS extended write
case 0x44: // IBM/MS verify
case 0x47: // IBM/MS extended seek
count=read_word(DS, SI+(Bit16u)&Int13Ext->count);
segment=read_word(DS, SI+(Bit16u)&Int13Ext->segment);
offset=read_word(DS, SI+(Bit16u)&Int13Ext->offset);
// Get 32 msb lba and check
lba_high=read_dword(DS, SI+(Bit16u)&Int13Ext->lba2);
if (lba_high > read_dword(ebda_seg, &EbdaData->ata.devices[device].sectors_high) ) {
BX_INFO("int13_harddisk: function %02x. LBA out of range\n",GET_AH());
goto int13_fail;
}
// Get 32 lsb lba and check
lba_low=read_dword(DS, SI+(Bit16u)&Int13Ext->lba1);
if (lba_high == read_dword(ebda_seg, &EbdaData->ata.devices[device].sectors_high)
&& lba_low >= read_dword(ebda_seg, &EbdaData->ata.devices[device].sectors_low) ) {
BX_INFO("int13_harddisk: function %02x. LBA out of range\n",GET_AH());
goto int13_fail;
}
// If verify or seek
if (( GET_AH() == 0x44 ) || ( GET_AH() == 0x47 ))
goto int13_success;
// Execute the command
if (GET_AH() == 0x42)
status=ata_cmd_data_in(device, ATA_CMD_READ_SECTORS, count, 0, 0, 0, lba_low, lba_high, segment, offset);
else
status=ata_cmd_data_out(device, ATA_CMD_WRITE_SECTORS, count, 0, 0, 0, lba_low, lba_high, segment, offset);
count=read_word(ebda_seg, &EbdaData->ata.trsfsectors);
write_word(DS, SI+(Bit16u)&Int13Ext->count, count);
if (status != 0) {
BX_INFO("int13_harddisk: function %02x, error %02x !\n",GET_AH(),status);
SET_AH(0x0c);
goto int13_fail_noah;
}
goto int13_success;
break;
case 0x45: // IBM/MS lock/unlock drive
case 0x49: // IBM/MS extended media change
goto int13_success; // Always success for HD
break;
case 0x46: // IBM/MS eject media
SET_AH(0xb2); // Volume Not Removable
goto int13_fail_noah; // Always fail for HD
break;
case 0x48: // IBM/MS get drive parameters
size=read_word(DS,SI+(Bit16u)&Int13DPT->size);
// Buffer is too small
if(size < 0x1a)
goto int13_fail;
// EDD 1.x
if(size >= 0x1a) {
Bit16u blksize;
npc = read_word(ebda_seg, &EbdaData->ata.devices[device].pchs.cylinders);
nph = read_word(ebda_seg, &EbdaData->ata.devices[device].pchs.heads);
npspt = read_word(ebda_seg, &EbdaData->ata.devices[device].pchs.spt);
lba_low = read_dword(ebda_seg, &EbdaData->ata.devices[device].sectors_low);
lba_high = read_dword(ebda_seg, &EbdaData->ata.devices[device].sectors_high);
blksize = read_word(ebda_seg, &EbdaData->ata.devices[device].blksize);
write_word(DS, SI+(Bit16u)&Int13DPT->size, 0x1a);
if (lba_high || (lba_low/npspt)/nph > 0x3fff)
{
write_word(DS, SI+(Bit16u)&Int13DPT->infos, 0x00); // geometry is invalid
write_dword(DS, SI+(Bit16u)&Int13DPT->cylinders, 0x3fff);
}
else
{
write_word(DS, SI+(Bit16u)&Int13DPT->infos, 0x02); // geometry is valid
write_dword(DS, SI+(Bit16u)&Int13DPT->cylinders, (Bit32u)npc);
}
write_dword(DS, SI+(Bit16u)&Int13DPT->heads, (Bit32u)nph);
write_dword(DS, SI+(Bit16u)&Int13DPT->spt, (Bit32u)npspt);
write_dword(DS, SI+(Bit16u)&Int13DPT->sector_count1, lba_low);
write_dword(DS, SI+(Bit16u)&Int13DPT->sector_count2, lba_high);
write_word(DS, SI+(Bit16u)&Int13DPT->blksize, blksize);
}
// EDD 2.x
if(size >= 0x1e) {
Bit8u channel, dev, irq, mode, checksum, i, translation;
Bit16u iobase1, iobase2, options;
write_word(DS, SI+(Bit16u)&Int13DPT->size, 0x1e);
write_word(DS, SI+(Bit16u)&Int13DPT->dpte_segment, ebda_seg);
write_word(DS, SI+(Bit16u)&Int13DPT->dpte_offset, &EbdaData->ata.dpte);
// Fill in dpte
channel = device / 2;
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
iobase2 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase2);
irq = read_byte(ebda_seg, &EbdaData->ata.channels[channel].irq);
mode = read_byte(ebda_seg, &EbdaData->ata.devices[device].mode);
translation = read_byte(ebda_seg, &EbdaData->ata.devices[device].translation);
options = (translation==ATA_TRANSLATION_NONE?0:1)<<3; // chs translation
options |= (1<<4); // lba translation
options |= (mode==ATA_MODE_PIO32?1:0)<<7;
options |= (translation==ATA_TRANSLATION_LBA?1:0)<<9;
options |= (translation==ATA_TRANSLATION_RECHS?3:0)<<9;
write_word(ebda_seg, &EbdaData->ata.dpte.iobase1, iobase1);
write_word(ebda_seg, &EbdaData->ata.dpte.iobase2, iobase2 + ATA_CB_DC);
write_byte(ebda_seg, &EbdaData->ata.dpte.prefix, (0xe | (device % 2))<<4 );
write_byte(ebda_seg, &EbdaData->ata.dpte.unused, 0xcb );
write_byte(ebda_seg, &EbdaData->ata.dpte.irq, irq );
write_byte(ebda_seg, &EbdaData->ata.dpte.blkcount, 1 );
write_byte(ebda_seg, &EbdaData->ata.dpte.dma, 0 );
write_byte(ebda_seg, &EbdaData->ata.dpte.pio, 0 );
write_word(ebda_seg, &EbdaData->ata.dpte.options, options);
write_word(ebda_seg, &EbdaData->ata.dpte.reserved, 0);
if (size >=0x42)
write_byte(ebda_seg, &EbdaData->ata.dpte.revision, 0x11);
else
write_byte(ebda_seg, &EbdaData->ata.dpte.revision, 0x10);
checksum=0;
for (i=0; i<15; i++) checksum+=read_byte(ebda_seg, ((Bit8u*)(&EbdaData->ata.dpte)) + i);
checksum = ~checksum;
write_byte(ebda_seg, &EbdaData->ata.dpte.checksum, checksum);
}
// EDD 3.x
if(size >= 0x42) {
Bit8u channel, iface, checksum, i;
Bit16u iobase1;
channel = device / 2;
iface = read_byte(ebda_seg, &EbdaData->ata.channels[channel].iface);
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
write_word(DS, SI+(Bit16u)&Int13DPT->size, 0x42);
write_word(DS, SI+(Bit16u)&Int13DPT->key, 0xbedd);
write_byte(DS, SI+(Bit16u)&Int13DPT->dpi_length, 0x24);
write_byte(DS, SI+(Bit16u)&Int13DPT->reserved1, 0);
write_word(DS, SI+(Bit16u)&Int13DPT->reserved2, 0);
if (iface==ATA_IFACE_ISA) {
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[0], 'I');
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[1], 'S');
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[2], 'A');
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[3], 0);
}
else {
// FIXME PCI
}
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[0], 'A');
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[1], 'T');
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[2], 'A');
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[3], 0);
if (iface==ATA_IFACE_ISA) {
write_word(DS, SI+(Bit16u)&Int13DPT->iface_path[0], iobase1);
write_word(DS, SI+(Bit16u)&Int13DPT->iface_path[2], 0);
write_dword(DS, SI+(Bit16u)&Int13DPT->iface_path[4], 0L);
}
else {
// FIXME PCI
}
write_byte(DS, SI+(Bit16u)&Int13DPT->device_path[0], device%2);
write_byte(DS, SI+(Bit16u)&Int13DPT->device_path[1], 0);
write_word(DS, SI+(Bit16u)&Int13DPT->device_path[2], 0);
write_dword(DS, SI+(Bit16u)&Int13DPT->device_path[4], 0L);
checksum=0;
for (i=30; i<64; i++) checksum+=read_byte(DS, SI + i);
checksum = ~checksum;
write_byte(DS, SI+(Bit16u)&Int13DPT->checksum, checksum);
}
goto int13_success;
break;
case 0x4e: // // IBM/MS set hardware configuration
// DMA, prefetch, PIO maximum not supported
switch (GET_AL()) {
case 0x01:
case 0x03:
case 0x04:
case 0x06:
goto int13_success;
break;
default:
goto int13_fail;
}
break;
case 0x09: /* initialize drive parameters */
case 0x0c: /* seek to specified cylinder */
case 0x0d: /* alternate disk reset */
case 0x11: /* recalibrate */
case 0x14: /* controller internal diagnostic */
BX_INFO("int13_harddisk: function %02xh unimplemented, returns success\n", GET_AH());
goto int13_success;
break;
case 0x0a: /* read disk sectors with ECC */
case 0x0b: /* write disk sectors with ECC */
case 0x18: // set media type for format
case 0x50: // IBM/MS send packet command
default:
BX_INFO("int13_harddisk: function %02xh unsupported, returns fail\n", GET_AH());
goto int13_fail;
break;
}
int13_fail:
SET_AH(0x01); // defaults to invalid function in AH or invalid parameter
int13_fail_noah:
SET_DISK_RET_STATUS(GET_AH());
int13_fail_nostatus:
SET_CF(); // error occurred
return;
int13_success:
SET_AH(0x00); // no error
int13_success_noah:
SET_DISK_RET_STATUS(0x00);
CLEAR_CF(); // no error
}
// ---------------------------------------------------------------------------
// Start of int13 for cdrom
// ---------------------------------------------------------------------------
void
int13_cdrom(EHBX, DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u EHBX, DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u device, status, locks;
Bit8u atacmd[12];
Bit32u lba;
Bit16u count, segment, offset, i, size;
BX_DEBUG_INT13_CD("int13_cdrom: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
SET_DISK_RET_STATUS(0x00);
/* basic check : device should be 0xE0+ */
if( (GET_ELDL() < 0xE0) || (GET_ELDL() >= 0xE0+BX_MAX_ATA_DEVICES) ) {
BX_INFO("int13_cdrom: function %02x, ELDL out of range %02x\n", GET_AH(), GET_ELDL());
goto int13_fail;
}
// Get the ata channel
device=read_byte(ebda_seg,&EbdaData->ata.cdidmap[GET_ELDL()-0xE0]);
/* basic check : device has to be valid */
if (device >= BX_MAX_ATA_DEVICES) {
BX_INFO("int13_cdrom: function %02x, unmapped device for ELDL=%02x\n", GET_AH(), GET_ELDL());
goto int13_fail;
}
switch (GET_AH()) {
// all those functions return SUCCESS
case 0x00: /* disk controller reset */
case 0x09: /* initialize drive parameters */
case 0x0c: /* seek to specified cylinder */
case 0x0d: /* alternate disk reset */
case 0x10: /* check drive ready */
case 0x11: /* recalibrate */
case 0x14: /* controller internal diagnostic */
case 0x16: /* detect disk change */
goto int13_success;
break;
// all those functions return disk write-protected
case 0x03: /* write disk sectors */
case 0x05: /* format disk track */
case 0x43: // IBM/MS extended write
SET_AH(0x03);
goto int13_fail_noah;
break;
case 0x01: /* read disk status */
status = read_byte(0x0040, 0x0074);
SET_AH(status);
SET_DISK_RET_STATUS(0);
/* set CF if error status read */
if (status) goto int13_fail_nostatus;
else goto int13_success_noah;
break;
case 0x15: /* read disk drive size */
SET_AH(0x02);
goto int13_fail_noah;
break;
case 0x41: // IBM/MS installation check
BX=0xaa55; // install check
SET_AH(0x30); // EDD 2.1
CX=0x0007; // ext disk access, removable and edd
goto int13_success_noah;
break;
case 0x42: // IBM/MS extended read
case 0x44: // IBM/MS verify sectors
case 0x47: // IBM/MS extended seek
count=read_word(DS, SI+(Bit16u)&Int13Ext->count);
segment=read_word(DS, SI+(Bit16u)&Int13Ext->segment);
offset=read_word(DS, SI+(Bit16u)&Int13Ext->offset);
// Can't use 64 bits lba
lba=read_dword(DS, SI+(Bit16u)&Int13Ext->lba2);
if (lba != 0L) {
BX_PANIC("int13_cdrom: function %02x. Can't use 64bits lba\n",GET_AH());
goto int13_fail;
}
// Get 32 bits lba
lba=read_dword(DS, SI+(Bit16u)&Int13Ext->lba1);
// If verify or seek
if ((GET_AH() == 0x44) || (GET_AH() == 0x47))
goto int13_success;
memsetb(get_SS(),atacmd,0,12);
atacmd[0]=0x28; // READ command
atacmd[7]=(count & 0xff00) >> 8; // Sectors
atacmd[8]=(count & 0x00ff); // Sectors
atacmd[2]=(lba & 0xff000000) >> 24; // LBA
atacmd[3]=(lba & 0x00ff0000) >> 16;
atacmd[4]=(lba & 0x0000ff00) >> 8;
atacmd[5]=(lba & 0x000000ff);
status = ata_cmd_packet(device, 12, get_SS(), atacmd, 0, count*2048L, ATA_DATA_IN, segment,offset);
count = (Bit16u)(read_dword(ebda_seg, &EbdaData->ata.trsfbytes) >> 11);
write_word(DS, SI+(Bit16u)&Int13Ext->count, count);
if (status != 0) {
BX_INFO("int13_cdrom: function %02x, status %02x !\n",GET_AH(),status);
SET_AH(0x0c);
goto int13_fail_noah;
}
goto int13_success;
break;
case 0x45: // IBM/MS lock/unlock drive
if (GET_AL() > 2) goto int13_fail;
locks = read_byte(ebda_seg, &EbdaData->ata.devices[device].lock);
switch (GET_AL()) {
case 0 : // lock
if (locks == 0xff) {
SET_AH(0xb4);
SET_AL(1);
goto int13_fail_noah;
}
write_byte(ebda_seg, &EbdaData->ata.devices[device].lock, ++locks);
SET_AL(1);
break;
case 1 : // unlock
if (locks == 0x00) {
SET_AH(0xb0);
SET_AL(0);
goto int13_fail_noah;
}
write_byte(ebda_seg, &EbdaData->ata.devices[device].lock, --locks);
SET_AL(locks==0?0:1);
break;
case 2 : // status
SET_AL(locks==0?0:1);
break;
}
goto int13_success;
break;
case 0x46: // IBM/MS eject media
locks = read_byte(ebda_seg, &EbdaData->ata.devices[device].lock);
if (locks != 0) {
SET_AH(0xb1); // media locked
goto int13_fail_noah;
}
// FIXME should handle 0x31 no media in device
// FIXME should handle 0xb5 valid request failed
// Call removable media eject
ASM_START
push bp
mov bp, sp
mov ah, #0x52
int #0x15
mov _int13_cdrom.status + 2[bp], ah
jnc int13_cdrom_rme_end
mov _int13_cdrom.status, #1
int13_cdrom_rme_end:
pop bp
ASM_END
if (status != 0) {
SET_AH(0xb1); // media locked
goto int13_fail_noah;
}
goto int13_success;
break;
case 0x48: // IBM/MS get drive parameters
size = read_word(DS,SI+(Bit16u)&Int13Ext->size);
// Buffer is too small
if(size < 0x1a)
goto int13_fail;
// EDD 1.x
if(size >= 0x1a) {
Bit16u cylinders, heads, spt, blksize;
blksize = read_word(ebda_seg, &EbdaData->ata.devices[device].blksize);
write_word(DS, SI+(Bit16u)&Int13DPT->size, 0x1a);
write_word(DS, SI+(Bit16u)&Int13DPT->infos, 0x74); // removable, media change, lockable, max values
write_dword(DS, SI+(Bit16u)&Int13DPT->cylinders, 0xffffffff);
write_dword(DS, SI+(Bit16u)&Int13DPT->heads, 0xffffffff);
write_dword(DS, SI+(Bit16u)&Int13DPT->spt, 0xffffffff);
write_dword(DS, SI+(Bit16u)&Int13DPT->sector_count1, 0xffffffff); // FIXME should be Bit64
write_dword(DS, SI+(Bit16u)&Int13DPT->sector_count2, 0xffffffff);
write_word(DS, SI+(Bit16u)&Int13DPT->blksize, blksize);
}
// EDD 2.x
if(size >= 0x1e) {
Bit8u channel, dev, irq, mode, checksum, i;
Bit16u iobase1, iobase2, options;
write_word(DS, SI+(Bit16u)&Int13DPT->size, 0x1e);
write_word(DS, SI+(Bit16u)&Int13DPT->dpte_segment, ebda_seg);
write_word(DS, SI+(Bit16u)&Int13DPT->dpte_offset, &EbdaData->ata.dpte);
// Fill in dpte
channel = device / 2;
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
iobase2 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase2);
irq = read_byte(ebda_seg, &EbdaData->ata.channels[channel].irq);
mode = read_byte(ebda_seg, &EbdaData->ata.devices[device].mode);
// FIXME atapi device
options = (1<<4); // lba translation
options |= (1<<5); // removable device
options |= (1<<6); // atapi device
options |= (mode==ATA_MODE_PIO32?1:0<<7);
write_word(ebda_seg, &EbdaData->ata.dpte.iobase1, iobase1);
write_word(ebda_seg, &EbdaData->ata.dpte.iobase2, iobase2 + ATA_CB_DC);
write_byte(ebda_seg, &EbdaData->ata.dpte.prefix, (0xe | (device % 2))<<4 );
write_byte(ebda_seg, &EbdaData->ata.dpte.unused, 0xcb );
write_byte(ebda_seg, &EbdaData->ata.dpte.irq, irq );
write_byte(ebda_seg, &EbdaData->ata.dpte.blkcount, 1 );
write_byte(ebda_seg, &EbdaData->ata.dpte.dma, 0 );
write_byte(ebda_seg, &EbdaData->ata.dpte.pio, 0 );
write_word(ebda_seg, &EbdaData->ata.dpte.options, options);
write_word(ebda_seg, &EbdaData->ata.dpte.reserved, 0);
write_byte(ebda_seg, &EbdaData->ata.dpte.revision, 0x11);
checksum=0;
for (i=0; i<15; i++) checksum+=read_byte(ebda_seg, ((Bit8u*)(&EbdaData->ata.dpte)) + i);
checksum = ~checksum;
write_byte(ebda_seg, &EbdaData->ata.dpte.checksum, checksum);
}
// EDD 3.x
if(size >= 0x42) {
Bit8u channel, iface, checksum, i;
Bit16u iobase1;
channel = device / 2;
iface = read_byte(ebda_seg, &EbdaData->ata.channels[channel].iface);
iobase1 = read_word(ebda_seg, &EbdaData->ata.channels[channel].iobase1);
write_word(DS, SI+(Bit16u)&Int13DPT->size, 0x42);
write_word(DS, SI+(Bit16u)&Int13DPT->key, 0xbedd);
write_byte(DS, SI+(Bit16u)&Int13DPT->dpi_length, 0x24);
write_byte(DS, SI+(Bit16u)&Int13DPT->reserved1, 0);
write_word(DS, SI+(Bit16u)&Int13DPT->reserved2, 0);
if (iface==ATA_IFACE_ISA) {
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[0], 'I');
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[1], 'S');
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[2], 'A');
write_byte(DS, SI+(Bit16u)&Int13DPT->host_bus[3], 0);
}
else {
// FIXME PCI
}
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[0], 'A');
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[1], 'T');
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[2], 'A');
write_byte(DS, SI+(Bit16u)&Int13DPT->iface_type[3], 0);
if (iface==ATA_IFACE_ISA) {
write_word(DS, SI+(Bit16u)&Int13DPT->iface_path[0], iobase1);
write_word(DS, SI+(Bit16u)&Int13DPT->iface_path[2], 0);
write_dword(DS, SI+(Bit16u)&Int13DPT->iface_path[4], 0L);
}
else {
// FIXME PCI
}
write_byte(DS, SI+(Bit16u)&Int13DPT->device_path[0], device%2);
write_byte(DS, SI+(Bit16u)&Int13DPT->device_path[1], 0);
write_word(DS, SI+(Bit16u)&Int13DPT->device_path[2], 0);
write_dword(DS, SI+(Bit16u)&Int13DPT->device_path[4], 0L);
checksum=0;
for (i=30; i<64; i++) checksum+=read_byte(DS, SI + i);
checksum = ~checksum;
write_byte(DS, SI+(Bit16u)&Int13DPT->checksum, checksum);
}
goto int13_success;
break;
case 0x49: // IBM/MS extended media change
// always send changed ??
SET_AH(06);
goto int13_fail_nostatus;
break;
case 0x4e: // // IBM/MS set hardware configuration
// DMA, prefetch, PIO maximum not supported
switch (GET_AL()) {
case 0x01:
case 0x03:
case 0x04:
case 0x06:
goto int13_success;
break;
default:
goto int13_fail;
}
break;
// all those functions return unimplemented
case 0x02: /* read sectors */
case 0x04: /* verify sectors */
case 0x08: /* read disk drive parameters */
case 0x0a: /* read disk sectors with ECC */
case 0x0b: /* write disk sectors with ECC */
case 0x18: /* set media type for format */
case 0x50: // ? - send packet command
default:
BX_INFO("int13_cdrom: unsupported AH=%02x\n", GET_AH());
goto int13_fail;
break;
}
int13_fail:
SET_AH(0x01); // defaults to invalid function in AH or invalid parameter
int13_fail_noah:
SET_DISK_RET_STATUS(GET_AH());
int13_fail_nostatus:
SET_CF(); // error occurred
return;
int13_success:
SET_AH(0x00); // no error
int13_success_noah:
SET_DISK_RET_STATUS(0x00);
CLEAR_CF(); // no error
}
// ---------------------------------------------------------------------------
// End of int13 for cdrom
// ---------------------------------------------------------------------------
#if BX_ELTORITO_BOOT
// ---------------------------------------------------------------------------
// Start of int13 for eltorito functions
// ---------------------------------------------------------------------------
void
int13_eltorito(DS, ES, DI, SI, BP, SP, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u DS, ES, DI, SI, BP, SP, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
BX_DEBUG_INT13_ET("int13_eltorito: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
// BX_DEBUG_INT13_ET("int13_eltorito: SS=%04x DS=%04x ES=%04x DI=%04x SI=%04x\n",get_SS(), DS, ES, DI, SI);
switch (GET_AH()) {
// FIXME ElTorito Various. Should be implemented
case 0x4a: // ElTorito - Initiate disk emu
case 0x4c: // ElTorito - Initiate disk emu and boot
case 0x4d: // ElTorito - Return Boot catalog
BX_PANIC("Int13 eltorito call with AX=%04x. Please report\n",AX);
goto int13_fail;
break;
case 0x4b: // ElTorito - Terminate disk emu
// FIXME ElTorito Hardcoded
write_byte(DS,SI+0x00,0x13);
write_byte(DS,SI+0x01,read_byte(ebda_seg,&EbdaData->cdemu.media));
write_byte(DS,SI+0x02,read_byte(ebda_seg,&EbdaData->cdemu.emulated_drive));
write_byte(DS,SI+0x03,read_byte(ebda_seg,&EbdaData->cdemu.controller_index));
write_dword(DS,SI+0x04,read_dword(ebda_seg,&EbdaData->cdemu.ilba));
write_word(DS,SI+0x08,read_word(ebda_seg,&EbdaData->cdemu.device_spec));
write_word(DS,SI+0x0a,read_word(ebda_seg,&EbdaData->cdemu.buffer_segment));
write_word(DS,SI+0x0c,read_word(ebda_seg,&EbdaData->cdemu.load_segment));
write_word(DS,SI+0x0e,read_word(ebda_seg,&EbdaData->cdemu.sector_count));
write_byte(DS,SI+0x10,read_byte(ebda_seg,&EbdaData->cdemu.vdevice.cylinders));
write_byte(DS,SI+0x11,read_byte(ebda_seg,&EbdaData->cdemu.vdevice.spt));
write_byte(DS,SI+0x12,read_byte(ebda_seg,&EbdaData->cdemu.vdevice.heads));
// If we have to terminate emulation
if(GET_AL() == 0x00) {
// FIXME ElTorito Various. Should be handled accordingly to spec
write_byte(ebda_seg,&EbdaData->cdemu.active, 0x00); // bye bye
}
goto int13_success;
break;
default:
BX_INFO("int13_eltorito: unsupported AH=%02x\n", GET_AH());
goto int13_fail;
break;
}
int13_fail:
SET_AH(0x01); // defaults to invalid function in AH or invalid parameter
SET_DISK_RET_STATUS(GET_AH());
SET_CF(); // error occurred
return;
int13_success:
SET_AH(0x00); // no error
SET_DISK_RET_STATUS(0x00);
CLEAR_CF(); // no error
}
// ---------------------------------------------------------------------------
// End of int13 for eltorito functions
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Start of int13 when emulating a device from the cd
// ---------------------------------------------------------------------------
void
int13_cdemu(DS, ES, DI, SI, BP, SP, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u DS, ES, DI, SI, BP, SP, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit8u device, status;
Bit16u vheads, vspt, vcylinders;
Bit16u head, sector, cylinder, nbsectors;
Bit32u vlba, ilba, slba, elba;
Bit16u before, segment, offset;
Bit8u atacmd[12];
BX_DEBUG_INT13_ET("int13_cdemu: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
/* at this point, we are emulating a floppy/harddisk */
// Recompute the device number
device = read_byte(ebda_seg,&EbdaData->cdemu.controller_index) * 2;
device += read_byte(ebda_seg,&EbdaData->cdemu.device_spec);
SET_DISK_RET_STATUS(0x00);
/* basic checks : emulation should be active, dl should equal the emulated drive */
if( (read_byte(ebda_seg,&EbdaData->cdemu.active) ==0) ||
(read_byte(ebda_seg,&EbdaData->cdemu.emulated_drive ) != GET_DL())) {
BX_INFO("int13_cdemu: function %02x, emulation not active for DL= %02x\n", GET_AH(), GET_DL());
goto int13_fail;
}
switch (GET_AH()) {
// all those functions return SUCCESS
case 0x00: /* disk controller reset */
case 0x09: /* initialize drive parameters */
case 0x0c: /* seek to specified cylinder */
case 0x0d: /* alternate disk reset */ // FIXME ElTorito Various. should really reset ?
case 0x10: /* check drive ready */ // FIXME ElTorito Various. should check if ready ?
case 0x11: /* recalibrate */
case 0x14: /* controller internal diagnostic */
case 0x16: /* detect disk change */
goto int13_success;
break;
// all those functions return disk write-protected
case 0x03: /* write disk sectors */
case 0x05: /* format disk track */
SET_AH(0x03);
goto int13_fail_noah;
break;
case 0x01: /* read disk status */
status=read_byte(0x0040, 0x0074);
SET_AH(status);
SET_DISK_RET_STATUS(0);
/* set CF if error status read */
if (status) goto int13_fail_nostatus;
else goto int13_success_noah;
break;
case 0x02: // read disk sectors
case 0x04: // verify disk sectors
vspt = read_word(ebda_seg,&EbdaData->cdemu.vdevice.spt);
vcylinders = read_word(ebda_seg,&EbdaData->cdemu.vdevice.cylinders);
vheads = read_word(ebda_seg,&EbdaData->cdemu.vdevice.heads);
ilba = read_dword(ebda_seg,&EbdaData->cdemu.ilba);
sector = GET_CL() & 0x003f;
cylinder = (GET_CL() & 0x00c0) << 2 | GET_CH();
head = GET_DH();
nbsectors = GET_AL();
segment = ES;
offset = BX;
// no sector to read ?
if(nbsectors==0) goto int13_success;
// sanity checks sco openserver needs this!
if ((sector > vspt)
|| (cylinder >= vcylinders)
|| (head >= vheads)) {
goto int13_fail;
}
// After controls, verify do nothing
if (GET_AH() == 0x04) goto int13_success;
segment = ES+(BX / 16);
offset = BX % 16;
// calculate the virtual lba inside the image
vlba=((((Bit32u)cylinder*(Bit32u)vheads)+(Bit32u)head)*(Bit32u)vspt)+((Bit32u)(sector-1));
// In advance so we don't loose the count
SET_AL(nbsectors);
// start lba on cd
slba = (Bit32u)vlba/4;
before= (Bit16u)vlba%4;
// end lba on cd
elba = (Bit32u)(vlba+nbsectors-1)/4;
memsetb(get_SS(),atacmd,0,12);
atacmd[0]=0x28; // READ command
atacmd[7]=((Bit16u)(elba-slba+1) & 0xff00) >> 8; // Sectors
atacmd[8]=((Bit16u)(elba-slba+1) & 0x00ff); // Sectors
atacmd[2]=(ilba+slba & 0xff000000) >> 24; // LBA
atacmd[3]=(ilba+slba & 0x00ff0000) >> 16;
atacmd[4]=(ilba+slba & 0x0000ff00) >> 8;
atacmd[5]=(ilba+slba & 0x000000ff);
if((status = ata_cmd_packet(device, 12, get_SS(), atacmd, before*512, nbsectors*512L, ATA_DATA_IN, segment,offset)) != 0) {
BX_INFO("int13_cdemu: function %02x, error %02x !\n",GET_AH(),status);
SET_AH(0x02);
SET_AL(0);
goto int13_fail_noah;
}
goto int13_success;
break;
case 0x08: /* read disk drive parameters */
vspt=read_word(ebda_seg,&EbdaData->cdemu.vdevice.spt);
vcylinders=read_word(ebda_seg,&EbdaData->cdemu.vdevice.cylinders) - 1;
vheads=read_word(ebda_seg,&EbdaData->cdemu.vdevice.heads) - 1;
SET_AL(0x00);
SET_BL(0x00);
SET_CH(vcylinders & 0xff);
SET_CL(((vcylinders >> 2) & 0xc0) | (vspt & 0x3f));
SET_DH(vheads);
SET_DL(0x02); // FIXME ElTorito Various. should send the real count of drives 1 or 2
// FIXME ElTorito Harddisk. should send the HD count
switch(read_byte(ebda_seg,&EbdaData->cdemu.media)) {
case 0x01: SET_BL( 0x02 ); break;
case 0x02: SET_BL( 0x04 ); break;
case 0x03: SET_BL( 0x06 ); break;
}
ASM_START
push bp
mov bp, sp
mov ax, #diskette_param_table2
mov _int13_cdemu.DI+2[bp], ax
mov _int13_cdemu.ES+2[bp], cs
pop bp
ASM_END
goto int13_success;
break;
case 0x15: /* read disk drive size */
// FIXME ElTorito Harddisk. What geometry to send ?
SET_AH(0x03);
goto int13_success_noah;
break;
// all those functions return unimplemented
case 0x0a: /* read disk sectors with ECC */
case 0x0b: /* write disk sectors with ECC */
case 0x18: /* set media type for format */
case 0x41: // IBM/MS installation check
// FIXME ElTorito Harddisk. Darwin would like to use EDD
case 0x42: // IBM/MS extended read
case 0x43: // IBM/MS extended write
case 0x44: // IBM/MS verify sectors
case 0x45: // IBM/MS lock/unlock drive
case 0x46: // IBM/MS eject media
case 0x47: // IBM/MS extended seek
case 0x48: // IBM/MS get drive parameters
case 0x49: // IBM/MS extended media change
case 0x4e: // ? - set hardware configuration
case 0x50: // ? - send packet command
default:
BX_INFO("int13_cdemu function AH=%02x unsupported, returns fail\n", GET_AH());
goto int13_fail;
break;
}
int13_fail:
SET_AH(0x01); // defaults to invalid function in AH or invalid parameter
int13_fail_noah:
SET_DISK_RET_STATUS(GET_AH());
int13_fail_nostatus:
SET_CF(); // error occurred
return;
int13_success:
SET_AH(0x00); // no error
int13_success_noah:
SET_DISK_RET_STATUS(0x00);
CLEAR_CF(); // no error
}
// ---------------------------------------------------------------------------
// End of int13 when emulating a device from the cd
// ---------------------------------------------------------------------------
#endif // BX_ELTORITO_BOOT
#else //BX_USE_ATADRV
void
outLBA(cylinder,hd_heads,head,hd_sectors,sector,dl)
Bit16u cylinder;
Bit16u hd_heads;
Bit16u head;
Bit16u hd_sectors;
Bit16u sector;
Bit16u dl;
{
ASM_START
push bp
mov bp, sp
push eax
push ebx
push edx
xor eax,eax
mov ax,4[bp] // cylinder
xor ebx,ebx
mov bl,6[bp] // hd_heads
imul ebx
mov bl,8[bp] // head
add eax,ebx
mov bl,10[bp] // hd_sectors
imul ebx
mov bl,12[bp] // sector
add eax,ebx
dec eax
mov dx,#0x1f3
out dx,al
mov dx,#0x1f4
mov al,ah
out dx,al
shr eax,#16
mov dx,#0x1f5
out dx,al
and ah,#0xf
mov bl,14[bp] // dl
and bl,#1
shl bl,#4
or ah,bl
or ah,#0xe0
mov al,ah
mov dx,#0x01f6
out dx,al
pop edx
pop ebx
pop eax
pop bp
ASM_END
}
void
int13_harddisk(EHAX, DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u EHAX, DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit8u drive, num_sectors, sector, head, status, mod;
Bit8u drive_map;
Bit8u n_drives;
Bit16u cyl_mod, ax;
Bit16u max_cylinder, cylinder, total_sectors;
Bit16u hd_cylinders;
Bit8u hd_heads, hd_sectors;
Bit16u val16;
Bit8u sector_count;
unsigned int i;
Bit16u tempbx;
Bit16u dpsize;
Bit16u count, segment, offset;
Bit32u lba;
Bit16u error;
BX_DEBUG_INT13_HD("int13 harddisk: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
write_byte(0x0040, 0x008e, 0); // clear completion flag
/* at this point, DL is >= 0x80 to be passed from the floppy int13h
handler code */
/* check how many disks first (cmos reg 0x12), return an error if
drive not present */
drive_map = inb_cmos(0x12);
drive_map = (((drive_map & 0xf0)==0) ? 0 : 1) |
(((drive_map & 0x0f)==0) ? 0 : 2);
n_drives = (drive_map==0) ? 0 : ((drive_map==3) ? 2 : 1);
if (!(drive_map & (1<<(GET_ELDL()&0x7f)))) { /* allow 0, 1, or 2 disks */
SET_AH(0x01);
SET_DISK_RET_STATUS(0x01);
SET_CF(); /* error occurred */
return;
}
switch (GET_AH()) {
case 0x00: /* disk controller reset */
BX_DEBUG_INT13_HD("int13_f00\n");
SET_AH(0);
SET_DISK_RET_STATUS(0);
set_diskette_ret_status(0);
set_diskette_current_cyl(0, 0); /* current cylinder, diskette 1 */
set_diskette_current_cyl(1, 0); /* current cylinder, diskette 2 */
CLEAR_CF(); /* successful */
return;
break;
case 0x01: /* read disk status */
BX_DEBUG_INT13_HD("int13_f01\n");
status = read_byte(0x0040, 0x0074);
SET_AH(status);
SET_DISK_RET_STATUS(0);
/* set CF if error status read */
if (status) SET_CF();
else CLEAR_CF();
return;
break;
case 0x04: // verify disk sectors
case 0x02: // read disk sectors
drive = GET_ELDL();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
num_sectors = GET_AL();
cylinder = (GET_CL() & 0x00c0) << 2 | GET_CH();
sector = (GET_CL() & 0x3f);
head = GET_DH();
if (hd_cylinders > 1024) {
if (hd_cylinders <= 2048) {
cylinder <<= 1;
}
else if (hd_cylinders <= 4096) {
cylinder <<= 2;
}
else if (hd_cylinders <= 8192) {
cylinder <<= 3;
}
else { // hd_cylinders <= 16384
cylinder <<= 4;
}
ax = head / hd_heads;
cyl_mod = ax & 0xff;
head = ax >> 8;
cylinder |= cyl_mod;
}
if ( (cylinder >= hd_cylinders) ||
(sector > hd_sectors) ||
(head >= hd_heads) ) {
SET_AH(1);
SET_DISK_RET_STATUS(1);
SET_CF(); /* error occurred */
return;
}
if ( (num_sectors > 128) || (num_sectors == 0) )
BX_PANIC("int13_harddisk: num_sectors out of range!\n");
if (head > 15)
BX_PANIC("hard drive BIOS:(read/verify) head > 15\n");
if ( GET_AH() == 0x04 ) {
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF();
return;
}
status = inb(0x1f7);
if (status & 0x80) {
BX_PANIC("hard drive BIOS:(read/verify) BUSY bit set\n");
}
outb(0x01f2, num_sectors);
/* activate LBA? (tomv) */
if (hd_heads > 16) {
BX_DEBUG_INT13_HD("CHS: %x %x %x\n", cylinder, head, sector);
outLBA(cylinder,hd_heads,head,hd_sectors,sector,drive);
}
else {
outb(0x01f3, sector);
outb(0x01f4, cylinder & 0x00ff);
outb(0x01f5, cylinder >> 8);
outb(0x01f6, 0xa0 | ((drive & 0x01)<<4) | (head & 0x0f));
}
outb(0x01f7, 0x20);
while (1) {
status = inb(0x1f7);
if (!(status & 0x80)) break;
}
if (status & 0x01) {
BX_PANIC("hard drive BIOS:(read/verify) read error\n");
} else if (!(status & 0x08)) {
BX_DEBUG_INT13_HD("status was %02x\n", (unsigned) status);
BX_PANIC("hard drive BIOS:(read/verify) expected DRQ=1\n");
}
sector_count = 0;
tempbx = BX;
ASM_START
sti ;; enable higher priority interrupts
ASM_END
while (1) {
ASM_START
;; store temp bx in real DI register
push bp
mov bp, sp
mov di, _int13_harddisk.tempbx + 2 [bp]
pop bp
;; adjust if there will be an overrun
cmp di, #0xfe00
jbe i13_f02_no_adjust
i13_f02_adjust:
sub di, #0x0200 ; sub 512 bytes from offset
mov ax, es
add ax, #0x0020 ; add 512 to segment
mov es, ax
i13_f02_no_adjust:
mov cx, #0x0100 ;; counter (256 words = 512b)
mov dx, #0x01f0 ;; AT data read port
rep
insw ;; CX words transfered from port(DX) to ES:[DI]
i13_f02_done:
;; store real DI register back to temp bx
push bp
mov bp, sp
mov _int13_harddisk.tempbx + 2 [bp], di
pop bp
ASM_END
sector_count++;
num_sectors--;
if (num_sectors == 0) {
status = inb(0x1f7);
if ((status & 0xc9) != 0x40)
BX_PANIC("no sectors left to read/verify, status is %02x\n", (unsigned) status);
break;
}
else {
status = inb(0x1f7);
if ((status & 0xc9) != 0x48)
BX_PANIC("more sectors left to read/verify, status is %02x\n", (unsigned) status);
continue;
}
}
SET_AH(0);
SET_DISK_RET_STATUS(0);
SET_AL(sector_count);
CLEAR_CF(); /* successful */
return;
break;
case 0x03: /* write disk sectors */
BX_DEBUG_INT13_HD("int13_f03\n");
drive = GET_ELDL ();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
num_sectors = GET_AL();
cylinder = GET_CH();
cylinder |= ( ((Bit16u) GET_CL()) << 2) & 0x300;
sector = (GET_CL() & 0x3f);
head = GET_DH();
if (hd_cylinders > 1024) {
if (hd_cylinders <= 2048) {
cylinder <<= 1;
}
else if (hd_cylinders <= 4096) {
cylinder <<= 2;
}
else if (hd_cylinders <= 8192) {
cylinder <<= 3;
}
else { // hd_cylinders <= 16384
cylinder <<= 4;
}
ax = head / hd_heads;
cyl_mod = ax & 0xff;
head = ax >> 8;
cylinder |= cyl_mod;
}
if ( (cylinder >= hd_cylinders) ||
(sector > hd_sectors) ||
(head >= hd_heads) ) {
SET_AH(1);
SET_DISK_RET_STATUS(1);
SET_CF(); /* error occurred */
return;
}
if ( (num_sectors > 128) || (num_sectors == 0) )
BX_PANIC("int13_harddisk: num_sectors out of range!\n");
if (head > 15)
BX_PANIC("hard drive BIOS:(read) head > 15\n");
status = inb(0x1f7);
if (status & 0x80) {
BX_PANIC("hard drive BIOS:(read) BUSY bit set\n");
}
// should check for Drive Ready Bit also in status reg
outb(0x01f2, num_sectors);
/* activate LBA? (tomv) */
if (hd_heads > 16) {
BX_DEBUG_INT13_HD("CHS (write): %x %x %x\n", cylinder, head, sector);
outLBA(cylinder,hd_heads,head,hd_sectors,sector,GET_ELDL());
}
else {
outb(0x01f3, sector);
outb(0x01f4, cylinder & 0x00ff);
outb(0x01f5, cylinder >> 8);
outb(0x01f6, 0xa0 | ((GET_ELDL() & 0x01)<<4) | (head & 0x0f));
}
outb(0x01f7, 0x30);
// wait for busy bit to turn off after seeking
while (1) {
status = inb(0x1f7);
if (!(status & 0x80)) break;
}
if (!(status & 0x08)) {
BX_DEBUG_INT13_HD("status was %02x\n", (unsigned) status);
BX_PANIC("hard drive BIOS:(write) data-request bit not set\n");
}
sector_count = 0;
tempbx = BX;
ASM_START
sti ;; enable higher priority interrupts
ASM_END
while (1) {
ASM_START
;; store temp bx in real SI register
push bp
mov bp, sp
mov si, _int13_harddisk.tempbx + 2 [bp]
pop bp
;; adjust if there will be an overrun
cmp si, #0xfe00
jbe i13_f03_no_adjust
i13_f03_adjust:
sub si, #0x0200 ; sub 512 bytes from offset
mov ax, es
add ax, #0x0020 ; add 512 to segment
mov es, ax
i13_f03_no_adjust:
mov cx, #0x0100 ;; counter (256 words = 512b)
mov dx, #0x01f0 ;; AT data read port
seg ES
rep
outsw ;; CX words tranfered from ES:[SI] to port(DX)
;; store real SI register back to temp bx
push bp
mov bp, sp
mov _int13_harddisk.tempbx + 2 [bp], si
pop bp
ASM_END
sector_count++;
num_sectors--;
if (num_sectors == 0) {
status = inb(0x1f7);
if ((status & 0xe9) != 0x40)
BX_PANIC("no sectors left to write, status is %02x\n", (unsigned) status);
break;
}
else {
status = inb(0x1f7);
if ((status & 0xc9) != 0x48)
BX_PANIC("more sectors left to write, status is %02x\n", (unsigned) status);
continue;
}
}
SET_AH(0);
SET_DISK_RET_STATUS(0);
SET_AL(sector_count);
CLEAR_CF(); /* successful */
return;
break;
case 0x05: /* format disk track */
BX_DEBUG_INT13_HD("int13_f05\n");
BX_PANIC("format disk track called\n");
/* nop */
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x08: /* read disk drive parameters */
BX_DEBUG_INT13_HD("int13_f08\n");
drive = GET_ELDL ();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
// translate CHS
//
if (hd_cylinders <= 1024) {
// hd_cylinders >>= 0;
// hd_heads <<= 0;
}
else if (hd_cylinders <= 2048) {
hd_cylinders >>= 1;
hd_heads <<= 1;
}
else if (hd_cylinders <= 4096) {
hd_cylinders >>= 2;
hd_heads <<= 2;
}
else if (hd_cylinders <= 8192) {
hd_cylinders >>= 3;
hd_heads <<= 3;
}
else { // hd_cylinders <= 16384
hd_cylinders >>= 4;
hd_heads <<= 4;
}
max_cylinder = hd_cylinders - 2; /* 0 based */
SET_AL(0);
SET_CH(max_cylinder & 0xff);
SET_CL(((max_cylinder >> 2) & 0xc0) | (hd_sectors & 0x3f));
SET_DH(hd_heads - 1);
SET_DL(n_drives); /* returns 0, 1, or 2 hard drives */
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x09: /* initialize drive parameters */
BX_DEBUG_INT13_HD("int13_f09\n");
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x0a: /* read disk sectors with ECC */
BX_DEBUG_INT13_HD("int13_f0a\n");
case 0x0b: /* write disk sectors with ECC */
BX_DEBUG_INT13_HD("int13_f0b\n");
BX_PANIC("int13h Functions 0Ah & 0Bh not implemented!\n");
return;
break;
case 0x0c: /* seek to specified cylinder */
BX_DEBUG_INT13_HD("int13_f0c\n");
BX_INFO("int13h function 0ch (seek) not implemented!\n");
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x0d: /* alternate disk reset */
BX_DEBUG_INT13_HD("int13_f0d\n");
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x10: /* check drive ready */
BX_DEBUG_INT13_HD("int13_f10\n");
//SET_AH(0);
//SET_DISK_RET_STATUS(0);
//CLEAR_CF(); /* successful */
//return;
//break;
// should look at 40:8E also???
status = inb(0x01f7);
if ((status & 0xc0) == 0x40) {
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); // drive ready
return;
}
else {
SET_AH(0xAA);
SET_DISK_RET_STATUS(0xAA);
SET_CF(); // not ready
return;
}
break;
case 0x11: /* recalibrate */
BX_DEBUG_INT13_HD("int13_f11\n");
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x14: /* controller internal diagnostic */
BX_DEBUG_INT13_HD("int13_f14\n");
SET_AH(0);
SET_DISK_RET_STATUS(0);
CLEAR_CF(); /* successful */
SET_AL(0);
return;
break;
case 0x15: /* read disk drive size */
drive = GET_ELDL();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
ASM_START
push bp
mov bp, sp
mov al, _int13_harddisk.hd_heads + 2 [bp]
mov ah, _int13_harddisk.hd_sectors + 2 [bp]
mul al, ah ;; ax = heads * sectors
mov bx, _int13_harddisk.hd_cylinders + 2 [bp]
dec bx ;; use (cylinders - 1) ???
mul ax, bx ;; dx:ax = (cylinders -1) * (heads * sectors)
;; now we need to move the 32bit result dx:ax to what the
;; BIOS wants which is cx:dx.
;; and then into CX:DX on the stack
mov _int13_harddisk.CX + 2 [bp], dx
mov _int13_harddisk.DX + 2 [bp], ax
pop bp
ASM_END
SET_AH(3); // hard disk accessible
SET_DISK_RET_STATUS(0); // ??? should this be 0
CLEAR_CF(); // successful
return;
break;
case 0x18: // set media type for format
case 0x41: // IBM/MS
case 0x42: // IBM/MS
case 0x43: // IBM/MS
case 0x44: // IBM/MS
case 0x45: // IBM/MS lock/unlock drive
case 0x46: // IBM/MS eject media
case 0x47: // IBM/MS extended seek
case 0x49: // IBM/MS extended media change
case 0x50: // IBM/MS send packet command
default:
BX_INFO("int13_harddisk: unsupported AH=%02x\n", GET_AH());
SET_AH(1); // code=invalid function in AH or invalid parameter
SET_DISK_RET_STATUS(1);
SET_CF(); /* unsuccessful */
return;
}
}
static char panic_msg_reg12h[] = "HD%d cmos reg 12h not type F\n";
static char panic_msg_reg19h[] = "HD%d cmos reg %02xh not user definable type 47\n";
void
get_hd_geometry(drive, hd_cylinders, hd_heads, hd_sectors)
Bit8u drive;
Bit16u *hd_cylinders;
Bit8u *hd_heads;
Bit8u *hd_sectors;
{
Bit8u hd_type;
Bit16u ss;
Bit16u cylinders;
Bit8u iobase;
ss = get_SS();
if (drive == 0x80) {
hd_type = inb_cmos(0x12) & 0xf0;
if (hd_type != 0xf0)
BX_INFO(panic_msg_reg12h,0);
hd_type = inb_cmos(0x19); // HD0: extended type
if (hd_type != 47)
BX_INFO(panic_msg_reg19h,0,0x19);
iobase = 0x1b;
} else {
hd_type = inb_cmos(0x12) & 0x0f;
if (hd_type != 0x0f)
BX_INFO(panic_msg_reg12h,1);
hd_type = inb_cmos(0x1a); // HD1: extended type
if (hd_type != 47)
BX_INFO(panic_msg_reg19h,0,0x1a);
iobase = 0x24;
}
// cylinders
cylinders = inb_cmos(iobase) | (inb_cmos(iobase+1) << 8);
write_word(ss, hd_cylinders, cylinders);
// heads
write_byte(ss, hd_heads, inb_cmos(iobase+2));
// sectors per track
write_byte(ss, hd_sectors, inb_cmos(iobase+8));
}
#endif //else BX_USE_ATADRV
#if BX_SUPPORT_FLOPPY
//////////////////////
// FLOPPY functions //
//////////////////////
void floppy_reset_controller()
{
Bit8u val8;
// Reset controller
val8 = inb(0x03f2);
outb(0x03f2, val8 & ~0x04);
outb(0x03f2, val8 | 0x04);
// Wait for controller to come out of reset
do {
val8 = inb(0x3f4);
} while ((val8 & 0xc0) != 0x80);
}
void floppy_prepare_controller(drive)
Bit16u drive;
{
Bit8u val8, dor, prev_reset;
// set 40:3e bit 7 to 0
val8 = read_byte(0x0040, 0x003e);
val8 &= 0x7f;
write_byte(0x0040, 0x003e, val8);
// turn on motor of selected drive, DMA & int enabled, normal operation
prev_reset = inb(0x03f2) & 0x04;
if (drive)
dor = 0x20;
else
dor = 0x10;
dor |= 0x0c;
dor |= drive;
outb(0x03f2, dor);
// reset the disk motor timeout value of INT 08
write_byte(0x40,0x40, BX_FLOPPY_ON_CNT);
// wait for drive readiness
do {
val8 = inb(0x3f4);
} while ( (val8 & 0xc0) != 0x80 );
if (prev_reset == 0) {
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
do {
val8 = read_byte(0x0040, 0x003e);
} while ( (val8 & 0x80) == 0 );
val8 &= 0x7f;
ASM_START
cli
ASM_END
write_byte(0x0040, 0x003e, val8);
}
}
bx_bool
floppy_media_known(drive)
Bit16u drive;
{
Bit8u val8;
Bit16u media_state_offset;
val8 = read_byte(0x0040, 0x003e); // diskette recal status
if (drive)
val8 >>= 1;
val8 &= 0x01;
if (val8 == 0)
return(0);
media_state_offset = 0x0090;
if (drive)
media_state_offset += 1;
val8 = read_byte(0x0040, media_state_offset);
val8 = (val8 >> 4) & 0x01;
if (val8 == 0)
return(0);
// check pass, return KNOWN
return(1);
}
bx_bool
floppy_media_sense(drive)
Bit16u drive;
{
bx_bool retval;
Bit16u media_state_offset;
Bit8u drive_type, config_data, media_state;
if (floppy_drive_recal(drive) == 0) {
return(0);
}
// for now cheat and get drive type from CMOS,
// assume media is same as drive type
// ** config_data **
// Bitfields for diskette media control:
// Bit(s) Description (Table M0028)
// 7-6 last data rate set by controller
// 00=500kbps, 01=300kbps, 10=250kbps, 11=1Mbps
// 5-4 last diskette drive step rate selected
// 00=0Ch, 01=0Dh, 10=0Eh, 11=0Ah
// 3-2 {data rate at start of operation}
// 1-0 reserved
// ** media_state **
// Bitfields for diskette drive media state:
// Bit(s) Description (Table M0030)
// 7-6 data rate
// 00=500kbps, 01=300kbps, 10=250kbps, 11=1Mbps
// 5 double stepping required (e.g. 360kB in 1.2MB)
// 4 media type established
// 3 drive capable of supporting 4MB media
// 2-0 on exit from BIOS, contains
// 000 trying 360kB in 360kB
// 001 trying 360kB in 1.2MB
// 010 trying 1.2MB in 1.2MB
// 011 360kB in 360kB established
// 100 360kB in 1.2MB established
// 101 1.2MB in 1.2MB established
// 110 reserved
// 111 all other formats/drives
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
if (drive_type == 1) {
// 360K 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x25; // 0010 0101
retval = 1;
}
else if (drive_type == 2) {
// 1.2 MB 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x25; // 0010 0101 // need double stepping??? (bit 5)
retval = 1;
}
else if (drive_type == 3) {
// 720K 3.5" drive
config_data = 0x00; // 0000 0000 ???
media_state = 0x17; // 0001 0111
retval = 1;
}
else if (drive_type == 4) {
// 1.44 MB 3.5" drive
config_data = 0x00; // 0000 0000
media_state = 0x17; // 0001 0111
retval = 1;
}
else if (drive_type == 5) {
// 2.88 MB 3.5" drive
config_data = 0xCC; // 1100 1100
media_state = 0xD7; // 1101 0111
retval = 1;
}
// Extended floppy size uses special cmos setting
else if (drive_type == 6) {
// 160k 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x27; // 0010 0111
retval = 1;
}
else if (drive_type == 7) {
// 180k 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x27; // 0010 0111
retval = 1;
}
else if (drive_type == 8) {
// 320k 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x27; // 0010 0111
retval = 1;
}
else {
// not recognized
config_data = 0x00; // 0000 0000
media_state = 0x00; // 0000 0000
retval = 0;
}
if (drive == 0)
media_state_offset = 0x90;
else
media_state_offset = 0x91;
write_byte(0x0040, 0x008B, config_data);
write_byte(0x0040, media_state_offset, media_state);
return(retval);
}
bx_bool
floppy_drive_recal(drive)
Bit16u drive;
{
Bit8u val8;
Bit16u curr_cyl_offset;
floppy_prepare_controller(drive);
// send Recalibrate command (2 bytes) to controller
outb(0x03f5, 0x07); // 07: Recalibrate
outb(0x03f5, drive); // 0=drive0, 1=drive1
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
do {
val8 = (read_byte(0x0040, 0x003e) & 0x80);
} while ( val8 == 0 );
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0, and calibrated bit
val8 = read_byte(0x0040, 0x003e);
val8 &= 0x7f;
if (drive) {
val8 |= 0x02; // Drive 1 calibrated
curr_cyl_offset = 0x0095;
} else {
val8 |= 0x01; // Drive 0 calibrated
curr_cyl_offset = 0x0094;
}
write_byte(0x0040, 0x003e, val8);
write_byte(0x0040, curr_cyl_offset, 0); // current cylinder is 0
return(1);
}
bx_bool
floppy_drive_exists(drive)
Bit16u drive;
{
Bit8u drive_type;
// check CMOS to see if drive exists
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
if ( drive_type == 0 )
return(0);
else
return(1);
}
void
int13_diskette_function(DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit8u drive, num_sectors, track, sector, head, status;
Bit16u base_address, base_count, base_es;
Bit8u page, mode_register, val8, dor;
Bit8u return_status[7];
Bit8u drive_type, num_floppies, ah;
Bit16u es, last_addr;
BX_DEBUG_INT13_FL("int13_diskette: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
ah = GET_AH();
switch ( ah ) {
case 0x00: // diskette controller reset
BX_DEBUG_INT13_FL("floppy f00\n");
drive = GET_ELDL();
if (drive > 1) {
SET_AH(1); // invalid param
set_diskette_ret_status(1);
SET_CF();
return;
}
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
if (drive_type == 0) {
SET_AH(0x80); // drive not responding
set_diskette_ret_status(0x80);
SET_CF();
return;
}
SET_AH(0);
set_diskette_ret_status(0);
CLEAR_CF(); // successful
set_diskette_current_cyl(drive, 0); // current cylinder
return;
case 0x01: // Read Diskette Status
CLEAR_CF();
val8 = read_byte(0x0000, 0x0441);
SET_AH(val8);
if (val8) {
SET_CF();
}
return;
case 0x02: // Read Diskette Sectors
case 0x03: // Write Diskette Sectors
case 0x04: // Verify Diskette Sectors
num_sectors = GET_AL();
track = GET_CH();
sector = GET_CL();
head = GET_DH();
drive = GET_ELDL();
if ((drive > 1) || (head > 1) || (sector == 0) ||
(num_sectors == 0) || (num_sectors > 72)) {
BX_INFO("int13_diskette: read/write/verify: parameter out of range\n");
SET_AH(1);
set_diskette_ret_status(1);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
// see if drive exists
if (floppy_drive_exists(drive) == 0) {
SET_AH(0x80); // not responding
set_diskette_ret_status(0x80);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
// see if media in drive, and type is known
if (floppy_media_known(drive) == 0) {
if (floppy_media_sense(drive) == 0) {
SET_AH(0x0C); // Media type not found
set_diskette_ret_status(0x0C);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
}
if (ah == 0x02) {
// Read Diskette Sectors
//-----------------------------------
// set up DMA controller for transfer
//-----------------------------------
// es:bx = pointer to where to place information from diskette
// port 04: DMA-1 base and current address, channel 2
// port 05: DMA-1 base and current count, channel 2
page = (ES >> 12); // upper 4 bits
base_es = (ES << 4); // lower 16bits contributed by ES
base_address = base_es + BX; // lower 16 bits of address
// contributed by ES:BX
if ( base_address < base_es ) {
// in case of carry, adjust page by 1
page++;
}
base_count = (num_sectors * 512) - 1;
// check for 64K boundary overrun
last_addr = base_address + base_count;
if (last_addr < base_address) {
SET_AH(0x09);
set_diskette_ret_status(0x09);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
BX_DEBUG_INT13_FL("masking DMA-1 c2\n");
outb(0x000a, 0x06);
BX_DEBUG_INT13_FL("clear flip-flop\n");
outb(0x000c, 0x00); // clear flip-flop
outb(0x0004, base_address);
outb(0x0004, base_address>>8);
BX_DEBUG_INT13_FL("clear flip-flop\n");
outb(0x000c, 0x00); // clear flip-flop
outb(0x0005, base_count);
outb(0x0005, base_count>>8);
// port 0b: DMA-1 Mode Register
mode_register = 0x46; // single mode, increment, autoinit disable,
// transfer type=write, channel 2
BX_DEBUG_INT13_FL("setting mode register\n");
outb(0x000b, mode_register);
BX_DEBUG_INT13_FL("setting page register\n");
// port 81: DMA-1 Page Register, channel 2
outb(0x0081, page);
BX_DEBUG_INT13_FL("unmask chan 2\n");
outb(0x000a, 0x02); // unmask channel 2
BX_DEBUG_INT13_FL("unmasking DMA-1 c2\n");
outb(0x000a, 0x02);
//--------------------------------------
// set up floppy controller for transfer
//--------------------------------------
floppy_prepare_controller(drive);
// send read-normal-data command (9 bytes) to controller
outb(0x03f5, 0xe6); // e6: read normal data
outb(0x03f5, (head << 2) | drive); // HD DR1 DR2
outb(0x03f5, track);
outb(0x03f5, head);
outb(0x03f5, sector);
outb(0x03f5, 2); // 512 byte sector size
outb(0x03f5, sector + num_sectors - 1); // last sector to read on track
outb(0x03f5, 0); // Gap length
outb(0x03f5, 0xff); // Gap length
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
do {
val8 = read_byte(0x0040, 0x0040);
if (val8 == 0) {
floppy_reset_controller();
SET_AH(0x80); // drive not ready (timeout)
set_diskette_ret_status(0x80);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
val8 = (read_byte(0x0040, 0x003e) & 0x80);
} while ( val8 == 0 );
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0
val8 = read_byte(0x0040, 0x003e);
val8 &= 0x7f;
write_byte(0x0040, 0x003e, val8);
// check port 3f4 for accessibility to status bytes
val8 = inb(0x3f4);
if ( (val8 & 0xc0) != 0xc0 )
BX_PANIC("int13_diskette: ctrl not ready\n");
// read 7 return status bytes from controller
// using loop index broken, have to unroll...
return_status[0] = inb(0x3f5);
return_status[1] = inb(0x3f5);
return_status[2] = inb(0x3f5);
return_status[3] = inb(0x3f5);
return_status[4] = inb(0x3f5);
return_status[5] = inb(0x3f5);
return_status[6] = inb(0x3f5);
// record in BIOS Data Area
write_byte(0x0040, 0x0042, return_status[0]);
write_byte(0x0040, 0x0043, return_status[1]);
write_byte(0x0040, 0x0044, return_status[2]);
write_byte(0x0040, 0x0045, return_status[3]);
write_byte(0x0040, 0x0046, return_status[4]);
write_byte(0x0040, 0x0047, return_status[5]);
write_byte(0x0040, 0x0048, return_status[6]);
if ( (return_status[0] & 0xc0) != 0 ) {
SET_AH(0x20);
set_diskette_ret_status(0x20);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(drive, track);
// AL = number of sectors read (same value as passed)
SET_AH(0x00); // success
CLEAR_CF(); // success
return;
} else if (ah == 0x03) {
// Write Diskette Sectors
//-----------------------------------
// set up DMA controller for transfer
//-----------------------------------
// es:bx = pointer to where to place information from diskette
// port 04: DMA-1 base and current address, channel 2
// port 05: DMA-1 base and current count, channel 2
page = (ES >> 12); // upper 4 bits
base_es = (ES << 4); // lower 16bits contributed by ES
base_address = base_es + BX; // lower 16 bits of address
// contributed by ES:BX
if ( base_address < base_es ) {
// in case of carry, adjust page by 1
page++;
}
base_count = (num_sectors * 512) - 1;
// check for 64K boundary overrun
last_addr = base_address + base_count;
if (last_addr < base_address) {
SET_AH(0x09);
set_diskette_ret_status(0x09);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
BX_DEBUG_INT13_FL("masking DMA-1 c2\n");
outb(0x000a, 0x06);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0004, base_address);
outb(0x0004, base_address>>8);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0005, base_count);
outb(0x0005, base_count>>8);
// port 0b: DMA-1 Mode Register
mode_register = 0x4a; // single mode, increment, autoinit disable,
// transfer type=read, channel 2
outb(0x000b, mode_register);
// port 81: DMA-1 Page Register, channel 2
outb(0x0081, page);
BX_DEBUG_INT13_FL("unmasking DMA-1 c2\n");
outb(0x000a, 0x02);
//--------------------------------------
// set up floppy controller for transfer
//--------------------------------------
floppy_prepare_controller(drive);
// send write-normal-data command (9 bytes) to controller
outb(0x03f5, 0xc5); // c5: write normal data
outb(0x03f5, (head << 2) | drive); // HD DR1 DR2
outb(0x03f5, track);
outb(0x03f5, head);
outb(0x03f5, sector);
outb(0x03f5, 2); // 512 byte sector size
outb(0x03f5, sector + num_sectors - 1); // last sector to write on track
outb(0x03f5, 0); // Gap length
outb(0x03f5, 0xff); // Gap length
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
do {
val8 = read_byte(0x0040, 0x0040);
if (val8 == 0) {
floppy_reset_controller();
SET_AH(0x80); // drive not ready (timeout)
set_diskette_ret_status(0x80);
SET_AL(0); // no sectors written
SET_CF(); // error occurred
return;
}
val8 = (read_byte(0x0040, 0x003e) & 0x80);
} while ( val8 == 0 );
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0
val8 = read_byte(0x0040, 0x003e);
val8 &= 0x7f;
write_byte(0x0040, 0x003e, val8);
// check port 3f4 for accessibility to status bytes
val8 = inb(0x3f4);
if ( (val8 & 0xc0) != 0xc0 )
BX_PANIC("int13_diskette: ctrl not ready\n");
// read 7 return status bytes from controller
// using loop index broken, have to unroll...
return_status[0] = inb(0x3f5);
return_status[1] = inb(0x3f5);
return_status[2] = inb(0x3f5);
return_status[3] = inb(0x3f5);
return_status[4] = inb(0x3f5);
return_status[5] = inb(0x3f5);
return_status[6] = inb(0x3f5);
// record in BIOS Data Area
write_byte(0x0040, 0x0042, return_status[0]);
write_byte(0x0040, 0x0043, return_status[1]);
write_byte(0x0040, 0x0044, return_status[2]);
write_byte(0x0040, 0x0045, return_status[3]);
write_byte(0x0040, 0x0046, return_status[4]);
write_byte(0x0040, 0x0047, return_status[5]);
write_byte(0x0040, 0x0048, return_status[6]);
if ( (return_status[0] & 0xc0) != 0 ) {
if ( (return_status[1] & 0x02) != 0 ) {
// diskette not writable.
// AH=status code=0x03 (tried to write on write-protected disk)
// AL=number of sectors written=0
AX = 0x0300;
SET_CF();
return;
} else {
BX_PANIC("int13_diskette_function: read error\n");
}
}
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(drive, track);
// AL = number of sectors read (same value as passed)
SET_AH(0x00); // success
CLEAR_CF(); // success
return;
} else { // if (ah == 0x04)
// Verify Diskette Sectors
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(drive, track);
// AL = number of sectors verified (same value as passed)
CLEAR_CF(); // success
SET_AH(0x00); // success
return;
}
break;
case 0x05: // format diskette track
BX_DEBUG_INT13_FL("floppy f05\n");
num_sectors = GET_AL();
track = GET_CH();
head = GET_DH();
drive = GET_ELDL();
if ((drive > 1) || (head > 1) || (track > 79) ||
(num_sectors == 0) || (num_sectors > 18)) {
SET_AH(1);
set_diskette_ret_status(1);
SET_CF(); // error occurred
}
// see if drive exists
if (floppy_drive_exists(drive) == 0) {
SET_AH(0x80); // drive not responding
set_diskette_ret_status(0x80);
SET_CF(); // error occurred
return;
}
// see if media in drive, and type is known
if (floppy_media_known(drive) == 0) {
if (floppy_media_sense(drive) == 0) {
SET_AH(0x0C); // Media type not found
set_diskette_ret_status(0x0C);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
}
// set up DMA controller for transfer
page = (ES >> 12); // upper 4 bits
base_es = (ES << 4); // lower 16bits contributed by ES
base_address = base_es + BX; // lower 16 bits of address
// contributed by ES:BX
if ( base_address < base_es ) {
// in case of carry, adjust page by 1
page++;
}
base_count = (num_sectors * 4) - 1;
// check for 64K boundary overrun
last_addr = base_address + base_count;
if (last_addr < base_address) {
SET_AH(0x09);
set_diskette_ret_status(0x09);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
outb(0x000a, 0x06);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0004, base_address);
outb(0x0004, base_address>>8);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0005, base_count);
outb(0x0005, base_count>>8);
mode_register = 0x4a; // single mode, increment, autoinit disable,
// transfer type=read, channel 2
outb(0x000b, mode_register);
// port 81: DMA-1 Page Register, channel 2
outb(0x0081, page);
outb(0x000a, 0x02);
// set up floppy controller for transfer
floppy_prepare_controller(drive);
// send format-track command (6 bytes) to controller
outb(0x03f5, 0x4d); // 4d: format track
outb(0x03f5, (head << 2) | drive); // HD DR1 DR2
outb(0x03f5, 2); // 512 byte sector size
outb(0x03f5, num_sectors); // number of sectors per track
outb(0x03f5, 0); // Gap length
outb(0x03f5, 0xf6); // Fill byte
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
do {
val8 = read_byte(0x0040, 0x0040);
if (val8 == 0) {
floppy_reset_controller();
SET_AH(0x80); // drive not ready (timeout)
set_diskette_ret_status(0x80);
SET_CF(); // error occurred
return;
}
val8 = (read_byte(0x0040, 0x003e) & 0x80);
} while ( val8 == 0 );
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0
val8 = read_byte(0x0040, 0x003e);
val8 &= 0x7f;
write_byte(0x0040, 0x003e, val8);
// check port 3f4 for accessibility to status bytes
val8 = inb(0x3f4);
if ( (val8 & 0xc0) != 0xc0 )
BX_PANIC("int13_diskette: ctrl not ready\n");
// read 7 return status bytes from controller
// using loop index broken, have to unroll...
return_status[0] = inb(0x3f5);
return_status[1] = inb(0x3f5);
return_status[2] = inb(0x3f5);
return_status[3] = inb(0x3f5);
return_status[4] = inb(0x3f5);
return_status[5] = inb(0x3f5);
return_status[6] = inb(0x3f5);
// record in BIOS Data Area
write_byte(0x0040, 0x0042, return_status[0]);
write_byte(0x0040, 0x0043, return_status[1]);
write_byte(0x0040, 0x0044, return_status[2]);
write_byte(0x0040, 0x0045, return_status[3]);
write_byte(0x0040, 0x0046, return_status[4]);
write_byte(0x0040, 0x0047, return_status[5]);
write_byte(0x0040, 0x0048, return_status[6]);
if ( (return_status[0] & 0xc0) != 0 ) {
if ( (return_status[1] & 0x02) != 0 ) {
// diskette not writable.
// AH=status code=0x03 (tried to write on write-protected disk)
// AL=number of sectors written=0
AX = 0x0300;
SET_CF();
return;
} else {
BX_PANIC("int13_diskette_function: write error\n");
}
}
SET_AH(0);
set_diskette_ret_status(0);
set_diskette_current_cyl(drive, 0);
CLEAR_CF(); // successful
return;
case 0x08: // read diskette drive parameters
BX_DEBUG_INT13_FL("floppy f08\n");
drive = GET_ELDL();
if (drive > 1) {
AX = 0;
BX = 0;
CX = 0;
DX = 0;
ES = 0;
DI = 0;
SET_DL(num_floppies);
SET_CF();
return;
}
drive_type = inb_cmos(0x10);
num_floppies = 0;
if (drive_type & 0xf0)
num_floppies++;
if (drive_type & 0x0f)
num_floppies++;
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
SET_BH(0);
SET_BL(drive_type);
SET_AH(0);
SET_AL(0);
SET_DL(num_floppies);
switch (drive_type) {
case 0: // none
CX = 0;
SET_DH(0); // max head #
break;
case 1: // 360KB, 5.25"
CX = 0x2709; // 40 tracks, 9 sectors
SET_DH(1); // max head #
break;
case 2: // 1.2MB, 5.25"
CX = 0x4f0f; // 80 tracks, 15 sectors
SET_DH(1); // max head #
break;
case 3: // 720KB, 3.5"
CX = 0x4f09; // 80 tracks, 9 sectors
SET_DH(1); // max head #
break;
case 4: // 1.44MB, 3.5"
CX = 0x4f12; // 80 tracks, 18 sectors
SET_DH(1); // max head #
break;
case 5: // 2.88MB, 3.5"
CX = 0x4f24; // 80 tracks, 36 sectors
SET_DH(1); // max head #
break;
case 6: // 160k, 5.25"
CX = 0x2708; // 40 tracks, 8 sectors
SET_DH(0); // max head #
break;
case 7: // 180k, 5.25"
CX = 0x2709; // 40 tracks, 9 sectors
SET_DH(0); // max head #
break;
case 8: // 320k, 5.25"
CX = 0x2708; // 40 tracks, 8 sectors
SET_DH(1); // max head #
break;
default: // ?
BX_PANIC("floppy: int13: bad floppy type\n");
}
/* set es & di to point to 11 byte diskette param table in ROM */
ASM_START
push bp
mov bp, sp
mov ax, #diskette_param_table2
mov _int13_diskette_function.DI+2[bp], ax
mov _int13_diskette_function.ES+2[bp], cs
pop bp
ASM_END
CLEAR_CF(); // success
/* disk status not changed upon success */
return;
case 0x15: // read diskette drive type
BX_DEBUG_INT13_FL("floppy f15\n");
drive = GET_ELDL();
if (drive > 1) {
SET_AH(0); // only 2 drives supported
// set_diskette_ret_status here ???
SET_CF();
return;
}
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
CLEAR_CF(); // successful, not present
if (drive_type==0) {
SET_AH(0); // drive not present
}
else {
SET_AH(1); // drive present, does not support change line
}
return;
case 0x16: // get diskette change line status
BX_DEBUG_INT13_FL("floppy f16\n");
drive = GET_ELDL();
if (drive > 1) {
SET_AH(0x01); // invalid drive
set_diskette_ret_status(0x01);
SET_CF();
return;
}
SET_AH(0x06); // change line not supported
set_diskette_ret_status(0x06);
SET_CF();
return;
case 0x17: // set diskette type for format(old)
BX_DEBUG_INT13_FL("floppy f17\n");
/* not used for 1.44M floppies */
SET_AH(0x01); // not supported
set_diskette_ret_status(1); /* not supported */
SET_CF();
return;
case 0x18: // set diskette type for format(new)
BX_DEBUG_INT13_FL("floppy f18\n");
SET_AH(0x01); // do later
set_diskette_ret_status(1);
SET_CF();
return;
default:
BX_INFO("int13_diskette: unsupported AH=%02x\n", GET_AH());
// if ((ah==0x20) || ((ah>=0x41) && (ah<=0x49)) || (ah==0x4e)) {
SET_AH(0x01); // ???
set_diskette_ret_status(1);
SET_CF();
return;
// }
}
}
#else // #if BX_SUPPORT_FLOPPY
void
int13_diskette_function(DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS)
Bit16u DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS;
{
Bit8u val8;
switch (GET_AH()) {
case 0x01: // Read Diskette Status
CLEAR_CF();
val8 = read_byte(0x0000, 0x0441);
SET_AH(val8);
if (val8) {
SET_CF();
}
return;
default:
SET_CF();
write_byte(0x0000, 0x0441, 0x01);
SET_AH(0x01);
}
}
#endif // #if BX_SUPPORT_FLOPPY
void
set_diskette_ret_status(value)
Bit8u value;
{
write_byte(0x0040, 0x0041, value);
}
void
set_diskette_current_cyl(drive, cyl)
Bit8u drive;
Bit8u cyl;
{
if (drive > 1)
BX_PANIC("set_diskette_current_cyl(): drive > 1\n");
write_byte(0x0040, 0x0094+drive, cyl);
}
void
determine_floppy_media(drive)
Bit16u drive;
{
#if 0
Bit8u val8, DOR, ctrl_info;
ctrl_info = read_byte(0x0040, 0x008F);
if (drive==1)
ctrl_info >>= 4;
else
ctrl_info &= 0x0f;
#if 0
if (drive == 0) {
DOR = 0x1c; // DOR: drive0 motor on, DMA&int enabled, normal op, drive select 0
}
else {
DOR = 0x2d; // DOR: drive1 motor on, DMA&int enabled, normal op, drive select 1
}
#endif
if ((ctrl_info & 0x04) != 0x04) {
// Drive not determined means no drive exists, done.
return;
}
#if 0
// check Main Status Register for readiness
val8 = inb(0x03f4) & 0x80; // Main Status Register
if (val8 != 0x80)
BX_PANIC("d_f_m: MRQ bit not set\n");
// change line
// existing BDA values
// turn on drive motor
outb(0x03f2, DOR); // Digital Output Register
//
#endif
BX_PANIC("d_f_m: OK so far\n");
#endif
}
void
int17_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
Bit16u addr,timeout;
Bit8u val8;
ASM_START
sti
ASM_END
addr = read_word(0x0040, (regs.u.r16.dx << 1) + 8);
if ((regs.u.r8.ah < 3) && (regs.u.r16.dx < 3) && (addr > 0)) {
timeout = read_byte(0x0040, 0x0078 + regs.u.r16.dx) << 8;
if (regs.u.r8.ah == 0) {
outb(addr, regs.u.r8.al);
val8 = inb(addr+2);
outb(addr+2, val8 | 0x01); // send strobe
ASM_START
nop
ASM_END
outb(addr+2, val8 & ~0x01);
while (((inb(addr+1) & 0x40) == 0x40) && (timeout)) {
timeout--;
}
}
if (regs.u.r8.ah == 1) {
val8 = inb(addr+2);
outb(addr+2, val8 & ~0x04); // send init
ASM_START
nop
ASM_END
outb(addr+2, val8 | 0x04);
}
val8 = inb(addr+1);
regs.u.r8.ah = (val8 ^ 0x48);
if (!timeout) regs.u.r8.ah |= 0x01;
ClearCF(iret_addr.flags);
} else {
SetCF(iret_addr.flags); // Unsupported
}
}
void
int19_function(seq_nr)
Bit16u seq_nr;
{
Bit16u ebda_seg=read_word(0x0040,0x000E);
Bit16u bootdev;
Bit8u bootdrv;
Bit8u bootchk;
Bit16u bootseg;
Bit16u bootip;
Bit16u status;
Bit16u bootfirst;
ipl_entry_t e;
// if BX_ELTORITO_BOOT is not defined, old behavior
// check bit 5 in CMOS reg 0x2d. load either 0x00 or 0x80 into DL
// in preparation for the intial INT 13h (0=floppy A:, 0x80=C:)
// 0: system boot sequence, first drive C: then A:
// 1: system boot sequence, first drive A: then C:
// else BX_ELTORITO_BOOT is defined
// CMOS regs 0x3D and 0x38 contain the boot sequence:
// CMOS reg 0x3D & 0x0f : 1st boot device
// CMOS reg 0x3D & 0xf0 : 2nd boot device
// CMOS reg 0x38 & 0xf0 : 3rd boot device
// boot device codes:
// 0x00 : not defined
// 0x01 : first floppy
// 0x02 : first harddrive
// 0x03 : first cdrom
// 0x04 - 0x0f : PnP expansion ROMs (e.g. Etherboot)
// else : boot failure
// Get the boot sequence
#if BX_ELTORITO_BOOT
bootdev = inb_cmos(0x3d);
bootdev |= ((inb_cmos(0x38) & 0xf0) << 4);
bootdev >>= 4 * seq_nr;
bootdev &= 0xf;
/* Read user selected device */
bootfirst = read_word(IPL_SEG, IPL_BOOTFIRST_OFFSET);
if (bootfirst != 0xFFFF) {
bootdev = bootfirst;
/* User selected device not set */
write_word(IPL_SEG, IPL_BOOTFIRST_OFFSET, 0xFFFF);
/* Reset boot sequence */
write_word(IPL_SEG, IPL_SEQUENCE_OFFSET, 0xFFFF);
} else if (bootdev == 0) BX_PANIC("No bootable device.\n");
/* Translate from CMOS runes to an IPL table offset by subtracting 1 */
bootdev -= 1;
#else
if (seq_nr ==2) BX_PANIC("No more boot devices.");
if (!!(inb_cmos(0x2d) & 0x20) ^ (seq_nr == 1))
/* Boot from floppy if the bit is set or it's the second boot */
bootdev = 0x00;
else
bootdev = 0x01;
#endif
/* Read the boot device from the IPL table */
if (get_boot_vector(bootdev, &e) == 0) {
BX_INFO("Invalid boot device (0x%x)\n", bootdev);
return;
}
/* Do the loading, and set up vector as a far pointer to the boot
* address, and bootdrv as the boot drive */
print_boot_device(&e);
switch(e.type) {
case IPL_TYPE_FLOPPY: /* FDD */
case IPL_TYPE_HARDDISK: /* HDD */
bootdrv = (e.type == IPL_TYPE_HARDDISK) ? 0x80 : 0x00;
bootseg = 0x07c0;
status = 0;
ASM_START
push bp
mov bp, sp
push ax
push bx
push cx
push dx
mov dl, _int19_function.bootdrv + 2[bp]
mov ax, _int19_function.bootseg + 2[bp]
mov es, ax ;; segment
xor bx, bx ;; offset
mov ah, #0x02 ;; function 2, read diskette sector
mov al, #0x01 ;; read 1 sector
mov ch, #0x00 ;; track 0
mov cl, #0x01 ;; sector 1
mov dh, #0x00 ;; head 0
int #0x13 ;; read sector
jnc int19_load_done
mov ax, #0x0001
mov _int19_function.status + 2[bp], ax
int19_load_done:
pop dx
pop cx
pop bx
pop ax
pop bp
ASM_END
if (status != 0) {
print_boot_failure(e.type, 1);
return;
}
/* Always check the signature on a HDD boot sector; on FDD, only do
* the check if the CMOS doesn't tell us to skip it */
if ((e.type != IPL_TYPE_FLOPPY) || !((inb_cmos(0x38) & 0x01))) {
if (read_word(bootseg,0x1fe) != 0xaa55) {
print_boot_failure(e.type, 0);
return;
}
}
/* Canonicalize bootseg:bootip */
bootip = (bootseg & 0x0fff) << 4;
bootseg &= 0xf000;
break;
#if BX_ELTORITO_BOOT
case IPL_TYPE_CDROM: /* CD-ROM */
status = cdrom_boot();
// If failure
if ( (status & 0x00ff) !=0 ) {
print_cdromboot_failure(status);
print_boot_failure(e.type, 1);
return;
}
bootdrv = (Bit8u)(status>>8);
bootseg = read_word(ebda_seg,&EbdaData->cdemu.load_segment);
bootip = 0;
break;
#endif
case IPL_TYPE_BEV: /* Expansion ROM with a Bootstrap Entry Vector (a far pointer) */
bootseg = e.vector >> 16;
bootip = e.vector & 0xffff;
break;
default: return;
}
/* Debugging info */
BX_INFO("Booting from %x:%x\n", bootseg, bootip);
/* Jump to the boot vector */
ASM_START
mov bp, sp
push cs
push #int18_handler
;; Build an iret stack frame that will take us to the boot vector.
;; iret pops ip, then cs, then flags, so push them in the opposite order.
pushf
mov ax, _int19_function.bootseg + 0[bp]
push ax
mov ax, _int19_function.bootip + 0[bp]
push ax
;; Set the magic number in ax and the boot drive in dl.
mov ax, #0xaa55
mov dl, _int19_function.bootdrv + 0[bp]
;; Zero some of the other registers.
xor bx, bx
mov ds, bx
mov es, bx
mov bp, bx
;; Go!
iret
ASM_END
}
void
int1a_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
Bit8u val8;
BX_DEBUG_INT1A("int1a: AX=%04x BX=%04x CX=%04x DX=%04x DS=%04x\n", regs.u.r16.ax, regs.u.r16.bx, regs.u.r16.cx, regs.u.r16.dx, ds);
ASM_START
sti
ASM_END
switch (regs.u.r8.ah) {
case 0: // get current clock count
ASM_START
cli
ASM_END
regs.u.r16.cx = BiosData->ticks_high;
regs.u.r16.dx = BiosData->ticks_low;
regs.u.r8.al = BiosData->midnight_flag;
BiosData->midnight_flag = 0; // reset flag
ASM_START
sti
ASM_END
// AH already 0
ClearCF(iret_addr.flags); // OK
break;
case 1: // Set Current Clock Count
ASM_START
cli
ASM_END
BiosData->ticks_high = regs.u.r16.cx;
BiosData->ticks_low = regs.u.r16.dx;
BiosData->midnight_flag = 0; // reset flag
ASM_START
sti
ASM_END
regs.u.r8.ah = 0;
ClearCF(iret_addr.flags); // OK
break;
case 2: // Read CMOS Time
if (rtc_updating()) {
SetCF(iret_addr.flags);
break;
}
regs.u.r8.dh = inb_cmos(0x00); // Seconds
regs.u.r8.cl = inb_cmos(0x02); // Minutes
regs.u.r8.ch = inb_cmos(0x04); // Hours
regs.u.r8.dl = inb_cmos(0x0b) & 0x01; // Stat Reg B
regs.u.r8.ah = 0;
regs.u.r8.al = regs.u.r8.ch;
ClearCF(iret_addr.flags); // OK
break;
case 3: // Set CMOS Time
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(0x00, regs.u.r8.dh); // Seconds
outb_cmos(0x02, regs.u.r8.cl); // Minutes
outb_cmos(0x04, regs.u.r8.ch); // Hours
// Set Daylight Savings time enabled bit to requested value
val8 = (inb_cmos(0x0b) & 0x60) | 0x02 | (regs.u.r8.dl & 0x01);
// (reg B already selected)
outb_cmos(0x0b, val8);
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
case 4: // Read CMOS Date
regs.u.r8.ah = 0;
if (rtc_updating()) {
SetCF(iret_addr.flags);
break;
}
regs.u.r8.cl = inb_cmos(0x09); // Year
regs.u.r8.dh = inb_cmos(0x08); // Month
regs.u.r8.dl = inb_cmos(0x07); // Day of Month
regs.u.r8.ch = inb_cmos(0x32); // Century
regs.u.r8.al = regs.u.r8.ch;
ClearCF(iret_addr.flags); // OK
break;
case 5: // Set CMOS Date
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
init_rtc();
SetCF(iret_addr.flags);
break;
}
outb_cmos(0x09, regs.u.r8.cl); // Year
outb_cmos(0x08, regs.u.r8.dh); // Month
outb_cmos(0x07, regs.u.r8.dl); // Day of Month
outb_cmos(0x32, regs.u.r8.ch); // Century
val8 = inb_cmos(0x0b) & 0x7f; // clear halt-clock bit
outb_cmos(0x0b, val8);
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // AL = val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
case 6: // Set Alarm Time in CMOS
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
val8 = inb_cmos(0x0b); // Get Status Reg B
regs.u.r16.ax = 0;
if (val8 & 0x20) {
// Alarm interrupt enabled already
SetCF(iret_addr.flags); // Error: alarm in use
break;
}
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(0x01, regs.u.r8.dh); // Seconds alarm
outb_cmos(0x03, regs.u.r8.cl); // Minutes alarm
outb_cmos(0x05, regs.u.r8.ch); // Hours alarm
outb(0xa1, inb(0xa1) & 0xfe); // enable IRQ 8
// enable Status Reg B alarm bit, clear halt clock bit
outb_cmos(0x0b, (val8 & 0x7f) | 0x20);
ClearCF(iret_addr.flags); // OK
break;
case 7: // Turn off Alarm
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
val8 = inb_cmos(0x0b); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
outb_cmos(0x0b, val8 & 0x57); // disable alarm bit
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
#if BX_PCIBIOS
case 0xb1:
// real mode PCI BIOS functions now handled in assembler code
// this C code handles the error code for information only
if (regs.u.r8.bl == 0xff) {
BX_INFO("PCI BIOS: PCI not present\n");
} else if (regs.u.r8.bl == 0x81) {
BX_INFO("unsupported PCI BIOS function 0x%02x\n", regs.u.r8.al);
} else if (regs.u.r8.bl == 0x83) {
BX_INFO("bad PCI vendor ID %04x\n", regs.u.r16.dx);
} else if (regs.u.r8.bl == 0x86) {
if (regs.u.r8.al == 0x02) {
BX_INFO("PCI device %04x:%04x not found at index %d\n", regs.u.r16.dx, regs.u.r16.cx, regs.u.r16.si);
} else {
BX_INFO("no PCI device with class code 0x%02x%04x found at index %d\n", regs.u.r8.cl, regs.u.r16.dx, regs.u.r16.si);
}
}
regs.u.r8.ah = regs.u.r8.bl;
SetCF(iret_addr.flags);
break;
#endif
default:
SetCF(iret_addr.flags); // Unsupported
}
}
void
int70_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
// INT 70h: IRQ 8 - CMOS RTC interrupt from periodic or alarm modes
Bit8u registerB = 0, registerC = 0;
// Check which modes are enabled and have occurred.
registerB = inb_cmos( 0xB );
registerC = inb_cmos( 0xC );
if( ( registerB & 0x60 ) != 0 ) {
if( ( registerC & 0x20 ) != 0 ) {
// Handle Alarm Interrupt.
ASM_START
sti
int #0x4a
cli
ASM_END
}
if( ( registerC & 0x40 ) != 0 ) {
// Handle Periodic Interrupt.
if( read_byte( 0x40, 0xA0 ) != 0 ) {
// Wait Interval (Int 15, AH=83) active.
Bit32u time, toggle;
time = read_dword( 0x40, 0x9C ); // Time left in microseconds.
if( time < 0x3D1 ) {
// Done waiting.
Bit16u segment, offset;
segment = read_word( 0x40, 0x98 );
offset = read_word( 0x40, 0x9A );
write_byte( 0x40, 0xA0, 0 ); // Turn of status byte.
outb_cmos( 0xB, registerB & 0x37 ); // Clear the Periodic Interrupt.
write_byte(segment, offset, read_byte(segment, offset) | 0x80 ); // Write to specified flag byte.
} else {
// Continue waiting.
time -= 0x3D1;
write_dword( 0x40, 0x9C, time );
}
}
}
}
ASM_START
call eoi_both_pics
ASM_END
}
ASM_START
;------------------------------------------
;- INT74h : PS/2 mouse hardware interrupt -
;------------------------------------------
int74_handler:
sti
pusha
push ds ;; save DS
push #0x00 ;; placeholder for status
push #0x00 ;; placeholder for X
push #0x00 ;; placeholder for Y
push #0x00 ;; placeholder for Z
push #0x00 ;; placeholder for make_far_call boolean
call _int74_function
pop cx ;; remove make_far_call from stack
jcxz int74_done
;; make far call to EBDA:0022
push #0x00
pop ds
push 0x040E ;; push 0000:040E (opcodes 0xff, 0x36, 0x0E, 0x04)
pop ds
//CALL_EP(0x0022) ;; call far routine (call_Ep DS:0022 :opcodes 0xff, 0x1e, 0x22, 0x00)
call far ptr[0x22]
int74_done:
cli
call eoi_both_pics
add sp, #8 ;; pop status, x, y, z
pop ds ;; restore DS
popa
iret
;; This will perform an IRET, but will retain value of current CF
;; by altering flags on stack. Better than RETF #02.
iret_modify_cf:
jc carry_set
push bp
mov bp, sp
and BYTE [bp + 0x06], #0xfe
pop bp
iret
carry_set:
push bp
mov bp, sp
or BYTE [bp + 0x06], #0x01
pop bp
iret
;----------------------
;- INT13h (relocated) -
;----------------------
;
; int13_relocated is a little bit messed up since I played with it
; I have to rewrite it:
; - call a function that detect which function to call
; - make all called C function get the same parameters list
;
int13_relocated:
#if BX_ELTORITO_BOOT
;; check for an eltorito function
cmp ah,#0x4a
jb int13_not_eltorito
cmp ah,#0x4d
ja int13_not_eltorito
pusha
push es
push ds
push ss
pop ds
push #int13_out
jmp _int13_eltorito ;; ELDX not used
int13_not_eltorito:
push ax
push bx
push cx
push dx
;; check if emulation active
call _cdemu_isactive
cmp al,#0x00
je int13_cdemu_inactive
;; check if access to the emulated drive
call _cdemu_emulated_drive
pop dx
push dx
cmp al,dl ;; int13 on emulated drive
jne int13_nocdemu
pop dx
pop cx
pop bx
pop ax
pusha
push es
push ds
push ss
pop ds
push #int13_out
jmp _int13_cdemu ;; ELDX not used
int13_nocdemu:
and dl,#0xE0 ;; mask to get device class, including cdroms
cmp al,dl ;; al is 0x00 or 0x80
jne int13_cdemu_inactive ;; inactive for device class
pop dx
pop cx
pop bx
pop ax
push ax
push cx
push dx
push bx
dec dl ;; real drive is dl - 1
jmp int13_legacy
int13_cdemu_inactive:
pop dx
pop cx
pop bx
pop ax
#endif // BX_ELTORITO_BOOT
int13_noeltorito:
push ax
push cx
push dx
push bx
int13_legacy:
push dx ;; push eltorito value of dx instead of sp
push bp
push si
push di
push es
push ds
push ss
pop ds
;; now the 16-bit registers can be restored with:
;; pop ds; pop es; popa; iret
;; arguments passed to functions should be
;; DS, ES, DI, SI, BP, ELDX, BX, DX, CX, AX, IP, CS, FLAGS
test dl, #0x80
jnz int13_notfloppy
push #int13_out
jmp _int13_diskette_function
int13_notfloppy:
#if BX_USE_ATADRV
cmp dl, #0xE0
jb int13_notcdrom
// ebx is modified: BSD 5.2.1 boot loader problem
// someone should figure out which 32 bit register that actually are used
shr ebx, #16
push bx
call _int13_cdrom
pop bx
shl ebx, #16
jmp int13_out
int13_notcdrom:
#endif
int13_disk:
;; int13_harddisk modifies high word of EAX
shr eax, #16
push ax
call _int13_harddisk
pop ax
shl eax, #16
int13_out:
pop ds
pop es
popa
iret
;----------
;- INT18h -
;----------
int18_handler: ;; Boot Failure recovery: try the next device.
;; Reset SP and SS
mov ax, #0xfffe
mov sp, ax
xor ax, ax
mov ss, ax
;; Get the boot sequence number out of the IPL memory
mov bx, #IPL_SEG
mov ds, bx ;; Set segment
mov bx, IPL_SEQUENCE_OFFSET ;; BX is now the sequence number
inc bx ;; ++
mov IPL_SEQUENCE_OFFSET, bx ;; Write it back
mov ds, ax ;; and reset the segment to zero.
;; Carry on in the INT 19h handler, using the new sequence number
push bx
jmp int19_next_boot
;----------
;- INT19h -
;----------
int19_relocated: ;; Boot function, relocated
;; int19 was beginning to be really complex, so now it
;; just calls a C function that does the work
push bp
mov bp, sp
;; Reset SS and SP
mov ax, #0xfffe
mov sp, ax
xor ax, ax
mov ss, ax
;; Start from the first boot device (0, in AX)
mov bx, #IPL_SEG
mov ds, bx ;; Set segment to write to the IPL memory
mov IPL_SEQUENCE_OFFSET, ax ;; Save the sequence number
mov ds, ax ;; and reset the segment.
push ax
int19_next_boot:
;; Call the C code for the next boot device
call _int19_function
;; Boot failed: invoke the boot recovery function
int #0x18
;----------
;- INT1Ch -
;----------
int1c_handler: ;; User Timer Tick
iret
;----------------------
;- POST: Floppy Drive -
;----------------------
floppy_drive_post:
xor ax, ax
mov ds, ax
mov al, #0x00
mov 0x043e, al ;; drive 0 & 1 uncalibrated, no interrupt has occurred
mov 0x043f, al ;; diskette motor status: read op, drive0, motors off
mov 0x0440, al ;; diskette motor timeout counter: not active
mov 0x0441, al ;; diskette controller status return code
mov 0x0442, al ;; disk & diskette controller status register 0
mov 0x0443, al ;; diskette controller status register 1
mov 0x0444, al ;; diskette controller status register 2
mov 0x0445, al ;; diskette controller cylinder number
mov 0x0446, al ;; diskette controller head number
mov 0x0447, al ;; diskette controller sector number
mov 0x0448, al ;; diskette controller bytes written
mov 0x048b, al ;; diskette configuration data
;; -----------------------------------------------------------------
;; (048F) diskette controller information
;;
mov al, #0x10 ;; get CMOS diskette drive type
out 0x70, AL
in AL, 0x71
mov ah, al ;; save byte to AH
look_drive0:
shr al, #4 ;; look at top 4 bits for drive 0
jz f0_missing ;; jump if no drive0
mov bl, #0x07 ;; drive0 determined, multi-rate, has changed line
jmp look_drive1
f0_missing:
mov bl, #0x00 ;; no drive0
look_drive1:
mov al, ah ;; restore from AH
and al, #0x0f ;; look at bottom 4 bits for drive 1
jz f1_missing ;; jump if no drive1
or bl, #0x70 ;; drive1 determined, multi-rate, has changed line
f1_missing:
;; leave high bits in BL zerod
mov 0x048f, bl ;; put new val in BDA (diskette controller information)
;; -----------------------------------------------------------------
mov al, #0x00
mov 0x0490, al ;; diskette 0 media state
mov 0x0491, al ;; diskette 1 media state
;; diskette 0,1 operational starting state
;; drive type has not been determined,
;; has no changed detection line
mov 0x0492, al
mov 0x0493, al
mov 0x0494, al ;; diskette 0 current cylinder
mov 0x0495, al ;; diskette 1 current cylinder
mov al, #0x02
out #0x0a, al ;; clear DMA-1 channel 2 mask bit
SET_INT_VECTOR(0x1E, #0xF000, #diskette_param_table2)
SET_INT_VECTOR(0x40, #0xF000, #int13_diskette)
SET_INT_VECTOR(0x0E, #0xF000, #int0e_handler) ;; IRQ 6
ret
;--------------------
;- POST: HARD DRIVE -
;--------------------
; relocated here because the primary POST area isnt big enough.
hard_drive_post:
// IRQ 14 = INT 76h
// INT 76h calls INT 15h function ax=9100
mov al, #0x0a ; 0000 1010 = reserved, disable IRQ 14
mov dx, #0x03f6
out dx, al
xor ax, ax
mov ds, ax
mov 0x0474, al /* hard disk status of last operation */
mov 0x0477, al /* hard disk port offset (XT only ???) */
mov 0x048c, al /* hard disk status register */
mov 0x048d, al /* hard disk error register */
mov 0x048e, al /* hard disk task complete flag */
mov al, #0x01
mov 0x0475, al /* hard disk number attached */
mov al, #0xc0
mov 0x0476, al /* hard disk control byte */
SET_INT_VECTOR(0x13, #0xF000, #int13_handler)
SET_INT_VECTOR(0x76, #0xF000, #int76_handler)
;; INT 41h: hard disk 0 configuration pointer
;; INT 46h: hard disk 1 configuration pointer
SET_INT_VECTOR(0x41, #EBDA_SEG, #0x003D)
SET_INT_VECTOR(0x46, #EBDA_SEG, #0x004D)
;; move disk geometry data from CMOS to EBDA disk parameter table(s)
mov al, #0x12
out #0x70, al
in al, #0x71
and al, #0xf0
cmp al, #0xf0
je post_d0_extended
jmp check_for_hd1
post_d0_extended:
mov al, #0x19
out #0x70, al
in al, #0x71
cmp al, #47 ;; decimal 47 - user definable
je post_d0_type47
HALT(__LINE__)
post_d0_type47:
;; CMOS purpose param table offset
;; 1b cylinders low 0
;; 1c cylinders high 1
;; 1d heads 2
;; 1e write pre-comp low 5
;; 1f write pre-comp high 6
;; 20 retries/bad map/heads>8 8
;; 21 landing zone low C
;; 22 landing zone high D
;; 23 sectors/track E
mov ax, #EBDA_SEG
mov ds, ax
;;; Filling EBDA table for hard disk 0.
mov al, #0x1f
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x1e
out #0x70, al
in al, #0x71
mov (0x003d + 0x05), ax ;; write precomp word
mov al, #0x20
out #0x70, al
in al, #0x71
mov (0x003d + 0x08), al ;; drive control byte
mov al, #0x22
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x21
out #0x70, al
in al, #0x71
mov (0x003d + 0x0C), ax ;; landing zone word
mov al, #0x1c ;; get cylinders word in AX
out #0x70, al
in al, #0x71 ;; high byte
mov ah, al
mov al, #0x1b
out #0x70, al
in al, #0x71 ;; low byte
mov bx, ax ;; BX = cylinders
mov al, #0x1d
out #0x70, al
in al, #0x71
mov cl, al ;; CL = heads
mov al, #0x23
out #0x70, al
in al, #0x71
mov dl, al ;; DL = sectors
cmp bx, #1024
jnbe hd0_post_logical_chs ;; if cylinders > 1024, use translated style CHS
hd0_post_physical_chs:
;; no logical CHS mapping used, just physical CHS
;; use Standard Fixed Disk Parameter Table (FDPT)
mov (0x003d + 0x00), bx ;; number of physical cylinders
mov (0x003d + 0x02), cl ;; number of physical heads
mov (0x003d + 0x0E), dl ;; number of physical sectors
jmp check_for_hd1
hd0_post_logical_chs:
;; complies with Phoenix style Translated Fixed Disk Parameter Table (FDPT)
mov (0x003d + 0x09), bx ;; number of physical cylinders
mov (0x003d + 0x0b), cl ;; number of physical heads
mov (0x003d + 0x04), dl ;; number of physical sectors
mov (0x003d + 0x0e), dl ;; number of logical sectors (same)
mov al, #0xa0
mov (0x003d + 0x03), al ;; A0h signature, indicates translated table
cmp bx, #2048
jnbe hd0_post_above_2048
;; 1024 < c <= 2048 cylinders
shr bx, #0x01
shl cl, #0x01
jmp hd0_post_store_logical
hd0_post_above_2048:
cmp bx, #4096
jnbe hd0_post_above_4096
;; 2048 < c <= 4096 cylinders
shr bx, #0x02
shl cl, #0x02
jmp hd0_post_store_logical
hd0_post_above_4096:
cmp bx, #8192
jnbe hd0_post_above_8192
;; 4096 < c <= 8192 cylinders
shr bx, #0x03
shl cl, #0x03
jmp hd0_post_store_logical
hd0_post_above_8192:
;; 8192 < c <= 16384 cylinders
shr bx, #0x04
shl cl, #0x04
hd0_post_store_logical:
mov (0x003d + 0x00), bx ;; number of physical cylinders
mov (0x003d + 0x02), cl ;; number of physical heads
;; checksum
mov cl, #0x0f ;; repeat count
mov si, #0x003d ;; offset to disk0 FDPT
mov al, #0x00 ;; sum
hd0_post_checksum_loop:
add al, [si]
inc si
dec cl
jnz hd0_post_checksum_loop
not al ;; now take 2s complement
inc al
mov [si], al
;;; Done filling EBDA table for hard disk 0.
check_for_hd1:
;; is there really a second hard disk? if not, return now
mov al, #0x12
out #0x70, al
in al, #0x71
and al, #0x0f
jnz post_d1_exists
ret
post_d1_exists:
;; check that the hd type is really 0x0f.
cmp al, #0x0f
jz post_d1_extended
HALT(__LINE__)
post_d1_extended:
;; check that the extended type is 47 - user definable
mov al, #0x1a
out #0x70, al
in al, #0x71
cmp al, #47 ;; decimal 47 - user definable
je post_d1_type47
HALT(__LINE__)
post_d1_type47:
;; Table for disk1.
;; CMOS purpose param table offset
;; 0x24 cylinders low 0
;; 0x25 cylinders high 1
;; 0x26 heads 2
;; 0x27 write pre-comp low 5
;; 0x28 write pre-comp high 6
;; 0x29 heads>8 8
;; 0x2a landing zone low C
;; 0x2b landing zone high D
;; 0x2c sectors/track E
;;; Fill EBDA table for hard disk 1.
mov ax, #EBDA_SEG
mov ds, ax
mov al, #0x28
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x27
out #0x70, al
in al, #0x71
mov (0x004d + 0x05), ax ;; write precomp word
mov al, #0x29
out #0x70, al
in al, #0x71
mov (0x004d + 0x08), al ;; drive control byte
mov al, #0x2b
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x2a
out #0x70, al
in al, #0x71
mov (0x004d + 0x0C), ax ;; landing zone word
mov al, #0x25 ;; get cylinders word in AX
out #0x70, al
in al, #0x71 ;; high byte
mov ah, al
mov al, #0x24
out #0x70, al
in al, #0x71 ;; low byte
mov bx, ax ;; BX = cylinders
mov al, #0x26
out #0x70, al
in al, #0x71
mov cl, al ;; CL = heads
mov al, #0x2c
out #0x70, al
in al, #0x71
mov dl, al ;; DL = sectors
cmp bx, #1024
jnbe hd1_post_logical_chs ;; if cylinders > 1024, use translated style CHS
hd1_post_physical_chs:
;; no logical CHS mapping used, just physical CHS
;; use Standard Fixed Disk Parameter Table (FDPT)
mov (0x004d + 0x00), bx ;; number of physical cylinders
mov (0x004d + 0x02), cl ;; number of physical heads
mov (0x004d + 0x0E), dl ;; number of physical sectors
ret
hd1_post_logical_chs:
;; complies with Phoenix style Translated Fixed Disk Parameter Table (FDPT)
mov (0x004d + 0x09), bx ;; number of physical cylinders
mov (0x004d + 0x0b), cl ;; number of physical heads
mov (0x004d + 0x04), dl ;; number of physical sectors
mov (0x004d + 0x0e), dl ;; number of logical sectors (same)
mov al, #0xa0
mov (0x004d + 0x03), al ;; A0h signature, indicates translated table
cmp bx, #2048
jnbe hd1_post_above_2048
;; 1024 < c <= 2048 cylinders
shr bx, #0x01
shl cl, #0x01
jmp hd1_post_store_logical
hd1_post_above_2048:
cmp bx, #4096
jnbe hd1_post_above_4096
;; 2048 < c <= 4096 cylinders
shr bx, #0x02
shl cl, #0x02
jmp hd1_post_store_logical
hd1_post_above_4096:
cmp bx, #8192
jnbe hd1_post_above_8192
;; 4096 < c <= 8192 cylinders
shr bx, #0x03
shl cl, #0x03
jmp hd1_post_store_logical
hd1_post_above_8192:
;; 8192 < c <= 16384 cylinders
shr bx, #0x04
shl cl, #0x04
hd1_post_store_logical:
mov (0x004d + 0x00), bx ;; number of physical cylinders
mov (0x004d + 0x02), cl ;; number of physical heads
;; checksum
mov cl, #0x0f ;; repeat count
mov si, #0x004d ;; offset to disk0 FDPT
mov al, #0x00 ;; sum
hd1_post_checksum_loop:
add al, [si]
inc si
dec cl
jnz hd1_post_checksum_loop
not al ;; now take 2s complement
inc al
mov [si], al
;;; Done filling EBDA table for hard disk 1.
ret
;--------------------
;- POST: EBDA segment
;--------------------
; relocated here because the primary POST area isnt big enough.
ebda_post:
#if BX_USE_EBDA
mov ax, #EBDA_SEG
mov ds, ax
mov byte ptr [0x0], #EBDA_SIZE
#endif
xor ax, ax ; mov EBDA seg into 40E
mov ds, ax
mov word ptr [0x40E], #EBDA_SEG
ret;;
;--------------------
;- POST: EOI + jmp via [0x40:67)
;--------------------
; relocated here because the primary POST area isnt big enough.
eoi_jmp_post:
mov al, #0x20
out #0xA0, al ;; slave PIC EOI
mov al, #0x20
out #0x20, al ;; master PIC EOI
jmp_post_0x467:
xor ax, ax
mov ds, ax
jmp far ptr [0x467]
iret_post_0x467:
xor ax, ax
mov ds, ax
mov sp, [0x467]
mov ss, [0x469]
iret
retf_post_0x467:
xor ax, ax
mov ds, ax
mov sp, [0x467]
mov ss, [0x469]
retf
s3_post:
mov sp, #0xffe
#if BX_ROMBIOS32
call rombios32_init
#endif
call _s3_resume
mov bl, #0x00
and ax, ax
jz normal_post
call _s3_resume_panic
;--------------------
eoi_both_pics:
mov al, #0x20
out #0xA0, al ;; slave PIC EOI
eoi_master_pic:
mov al, #0x20
out #0x20, al ;; master PIC EOI
ret
;--------------------
BcdToBin:
;; in: AL in BCD format
;; out: AL in binary format, AH will always be 0
;; trashes BX
mov bl, al
and bl, #0x0f ;; bl has low digit
shr al, #4 ;; al has high digit
mov bh, #10
mul al, bh ;; multiply high digit by 10 (result in AX)
add al, bl ;; then add low digit
ret
;--------------------
timer_tick_post:
;; Setup the Timer Ticks Count (0x46C:dword) and
;; Timer Ticks Roller Flag (0x470:byte)
;; The Timer Ticks Count needs to be set according to
;; the current CMOS time, as if ticks have been occurring
;; at 18.2hz since midnight up to this point. Calculating
;; this is a little complicated. Here are the factors I gather
;; regarding this. 14,318,180 hz was the original clock speed,
;; chosen so it could be divided by either 3 to drive the 5Mhz CPU
;; at the time, or 4 to drive the CGA video adapter. The div3
;; source was divided again by 4 to feed a 1.193Mhz signal to
;; the timer. With a maximum 16bit timer count, this is again
;; divided down by 65536 to 18.2hz.
;;
;; 14,318,180 Hz clock
;; /3 = 4,772,726 Hz fed to orginal 5Mhz CPU
;; /4 = 1,193,181 Hz fed to timer
;; /65536 (maximum timer count) = 18.20650736 ticks/second
;; 1 second = 18.20650736 ticks
;; 1 minute = 1092.390442 ticks
;; 1 hour = 65543.42651 ticks
;;
;; Given the values in the CMOS clock, one could calculate
;; the number of ticks by the following:
;; ticks = (BcdToBin(seconds) * 18.206507) +
;; (BcdToBin(minutes) * 1092.3904)
;; (BcdToBin(hours) * 65543.427)
;; To get a little more accuracy, since Im using integer
;; arithmatic, I use:
;; ticks = (BcdToBin(seconds) * 18206507) / 1000000 +
;; (BcdToBin(minutes) * 10923904) / 10000 +
;; (BcdToBin(hours) * 65543427) / 1000
;; assuming DS=0000
;; get CMOS seconds
xor eax, eax ;; clear EAX
mov al, #0x00
out #0x70, al
in al, #0x71 ;; AL has CMOS seconds in BCD
call BcdToBin ;; EAX now has seconds in binary
mov edx, #18206507
mul eax, edx
mov ebx, #1000000
xor edx, edx
div eax, ebx
mov ecx, eax ;; ECX will accumulate total ticks
;; get CMOS minutes
xor eax, eax ;; clear EAX
mov al, #0x02
out #0x70, al
in al, #0x71 ;; AL has CMOS minutes in BCD
call BcdToBin ;; EAX now has minutes in binary
mov edx, #10923904
mul eax, edx
mov ebx, #10000
xor edx, edx
div eax, ebx
add ecx, eax ;; add to total ticks
;; get CMOS hours
xor eax, eax ;; clear EAX
mov al, #0x04
out #0x70, al
in al, #0x71 ;; AL has CMOS hours in BCD
call BcdToBin ;; EAX now has hours in binary
mov edx, #65543427
mul eax, edx
mov ebx, #1000
xor edx, edx
div eax, ebx
add ecx, eax ;; add to total ticks
mov 0x46C, ecx ;; Timer Ticks Count
xor al, al
mov 0x470, al ;; Timer Ticks Rollover Flag
ret
;--------------------
int76_handler:
;; record completion in BIOS task complete flag
push ax
push ds
mov ax, #0x0040
mov ds, ax
mov 0x008E, #0xff
call eoi_both_pics
pop ds
pop ax
iret
;--------------------
#if BX_APM
use32 386
#define APM_PROT32
#include "apmbios.S"
use16 386
#define APM_PROT16
#include "apmbios.S"
#define APM_REAL
#include "apmbios.S"
#endif
;--------------------
#if BX_PCIBIOS
use32 386
.align 16
bios32_structure:
db 0x5f, 0x33, 0x32, 0x5f ;; "_32_" signature
dw bios32_entry_point, 0xf ;; 32 bit physical address
db 0 ;; revision level
;; length in paragraphs and checksum stored in a word to prevent errors
dw (~(((bios32_entry_point >> 8) + (bios32_entry_point & 0xff) + 0x32) \
& 0xff) << 8) + 0x01
db 0,0,0,0,0 ;; reserved
.align 16
bios32_entry_point:
pushfd
cmp eax, #0x49435024 ;; "$PCI"
jne unknown_service
mov eax, #0x80000000
mov dx, #0x0cf8
out dx, eax
mov dx, #0x0cfc
in eax, dx
#ifdef PCI_FIXED_HOST_BRIDGE
cmp eax, #PCI_FIXED_HOST_BRIDGE
jne unknown_service
#else
;; say ok if a device is present
cmp eax, #0xffffffff
je unknown_service
#endif
mov ebx, #0x000f0000
mov ecx, #0
mov edx, #pcibios_protected
xor al, al
jmp bios32_end
unknown_service:
mov al, #0x80
bios32_end:
#ifdef BX_QEMU
and dword ptr[esp+8],0xfffffffc ;; reset CS.RPL for kqemu
#endif
popfd
retf
.align 16
pcibios_protected:
pushfd
cli
push esi
push edi
cmp al, #0x01 ;; installation check
jne pci_pro_f02
mov bx, #0x0210
mov cx, #0
mov edx, #0x20494350 ;; "PCI "
mov al, #0x01
jmp pci_pro_ok
pci_pro_f02: ;; find pci device
cmp al, #0x02
jne pci_pro_f03
shl ecx, #16
mov cx, dx
xor bx, bx
mov di, #0x00
pci_pro_devloop:
call pci_pro_select_reg
mov dx, #0x0cfc
in eax, dx
cmp eax, ecx
jne pci_pro_nextdev
cmp si, #0
je pci_pro_ok
dec si
pci_pro_nextdev:
inc bx
cmp bx, #0x0100
jne pci_pro_devloop
mov ah, #0x86
jmp pci_pro_fail
pci_pro_f03: ;; find class code
cmp al, #0x03
jne pci_pro_f08
xor bx, bx
mov di, #0x08
pci_pro_devloop2:
call pci_pro_select_reg
mov dx, #0x0cfc
in eax, dx
shr eax, #8
cmp eax, ecx
jne pci_pro_nextdev2
cmp si, #0
je pci_pro_ok
dec si
pci_pro_nextdev2:
inc bx
cmp bx, #0x0100
jne pci_pro_devloop2
mov ah, #0x86
jmp pci_pro_fail
pci_pro_f08: ;; read configuration byte
cmp al, #0x08
jne pci_pro_f09
call pci_pro_select_reg
push edx
mov dx, di
and dx, #0x03
add dx, #0x0cfc
in al, dx
pop edx
mov cl, al
jmp pci_pro_ok
pci_pro_f09: ;; read configuration word
cmp al, #0x09
jne pci_pro_f0a
call pci_pro_select_reg
push edx
mov dx, di
and dx, #0x02
add dx, #0x0cfc
in ax, dx
pop edx
mov cx, ax
jmp pci_pro_ok
pci_pro_f0a: ;; read configuration dword
cmp al, #0x0a
jne pci_pro_f0b
call pci_pro_select_reg
push edx
mov dx, #0x0cfc
in eax, dx
pop edx
mov ecx, eax
jmp pci_pro_ok
pci_pro_f0b: ;; write configuration byte
cmp al, #0x0b
jne pci_pro_f0c
call pci_pro_select_reg
push edx
mov dx, di
and dx, #0x03
add dx, #0x0cfc
mov al, cl
out dx, al
pop edx
jmp pci_pro_ok
pci_pro_f0c: ;; write configuration word
cmp al, #0x0c
jne pci_pro_f0d
call pci_pro_select_reg
push edx
mov dx, di
and dx, #0x02
add dx, #0x0cfc
mov ax, cx
out dx, ax
pop edx
jmp pci_pro_ok
pci_pro_f0d: ;; write configuration dword
cmp al, #0x0d
jne pci_pro_unknown
call pci_pro_select_reg
push edx
mov dx, #0x0cfc
mov eax, ecx
out dx, eax
pop edx
jmp pci_pro_ok
pci_pro_unknown:
mov ah, #0x81
pci_pro_fail:
pop edi
pop esi
#ifdef BX_QEMU
and dword ptr[esp+8],0xfffffffc ;; reset CS.RPL for kqemu
#endif
popfd
stc
retf
pci_pro_ok:
xor ah, ah
pop edi
pop esi
#ifdef BX_QEMU
and dword ptr[esp+8],0xfffffffc ;; reset CS.RPL for kqemu
#endif
popfd
clc
retf
pci_pro_select_reg:
push edx
mov eax, #0x800000
mov ax, bx
shl eax, #8
and di, #0xff
or ax, di
and al, #0xfc
mov dx, #0x0cf8
out dx, eax
pop edx
ret
use16 386
pcibios_real:
push eax
push dx
mov eax, #0x80000000
mov dx, #0x0cf8
out dx, eax
mov dx, #0x0cfc
in eax, dx
#ifdef PCI_FIXED_HOST_BRIDGE
cmp eax, #PCI_FIXED_HOST_BRIDGE
je pci_present
#else
;; say ok if a device is present
cmp eax, #0xffffffff
jne pci_present
#endif
pop dx
pop eax
mov ah, #0xff
stc
ret
pci_present:
pop dx
pop eax
cmp al, #0x01 ;; installation check
jne pci_real_f02
mov ax, #0x0001
mov bx, #0x0210
mov cx, #0
mov edx, #0x20494350 ;; "PCI "
mov edi, #0xf0000
mov di, #pcibios_protected
clc
ret
pci_real_f02: ;; find pci device
push esi
push edi
cmp al, #0x02
jne pci_real_f03
shl ecx, #16
mov cx, dx
xor bx, bx
mov di, #0x00
pci_real_devloop:
call pci_real_select_reg
mov dx, #0x0cfc
in eax, dx
cmp eax, ecx
jne pci_real_nextdev
cmp si, #0
je pci_real_ok
dec si
pci_real_nextdev:
inc bx
cmp bx, #0x0100
jne pci_real_devloop
mov dx, cx
shr ecx, #16
mov ax, #0x8602
jmp pci_real_fail
pci_real_f03: ;; find class code
cmp al, #0x03
jne pci_real_f08
xor bx, bx
mov di, #0x08
pci_real_devloop2:
call pci_real_select_reg
mov dx, #0x0cfc
in eax, dx
shr eax, #8
cmp eax, ecx
jne pci_real_nextdev2
cmp si, #0
je pci_real_ok
dec si
pci_real_nextdev2:
inc bx
cmp bx, #0x0100
jne pci_real_devloop2
mov dx, cx
shr ecx, #16
mov ax, #0x8603
jmp pci_real_fail
pci_real_f08: ;; read configuration byte
cmp al, #0x08
jne pci_real_f09
call pci_real_select_reg
push dx
mov dx, di
and dx, #0x03
add dx, #0x0cfc
in al, dx
pop dx
mov cl, al
jmp pci_real_ok
pci_real_f09: ;; read configuration word
cmp al, #0x09
jne pci_real_f0a
call pci_real_select_reg
push dx
mov dx, di
and dx, #0x02
add dx, #0x0cfc
in ax, dx
pop dx
mov cx, ax
jmp pci_real_ok
pci_real_f0a: ;; read configuration dword
cmp al, #0x0a
jne pci_real_f0b
call pci_real_select_reg
push dx
mov dx, #0x0cfc
in eax, dx
pop dx
mov ecx, eax
jmp pci_real_ok
pci_real_f0b: ;; write configuration byte
cmp al, #0x0b
jne pci_real_f0c
call pci_real_select_reg
push dx
mov dx, di
and dx, #0x03
add dx, #0x0cfc
mov al, cl
out dx, al
pop dx
jmp pci_real_ok
pci_real_f0c: ;; write configuration word
cmp al, #0x0c
jne pci_real_f0d
call pci_real_select_reg
push dx
mov dx, di
and dx, #0x02
add dx, #0x0cfc
mov ax, cx
out dx, ax
pop dx
jmp pci_real_ok
pci_real_f0d: ;; write configuration dword
cmp al, #0x0d
jne pci_real_f0e
call pci_real_select_reg
push dx
mov dx, #0x0cfc
mov eax, ecx
out dx, eax
pop dx
jmp pci_real_ok
pci_real_f0e: ;; get irq routing options
cmp al, #0x0e
jne pci_real_unknown
SEG ES
cmp word ptr [di], #pci_routing_table_structure_end - pci_routing_table_structure_start
jb pci_real_too_small
SEG ES
mov word ptr [di], #pci_routing_table_structure_end - pci_routing_table_structure_start
pushf
push ds
push es
push cx
push si
push di
cld
mov si, #pci_routing_table_structure_start
push cs
pop ds
SEG ES
mov cx, [di+2]
SEG ES
mov es, [di+4]
mov di, cx
mov cx, #pci_routing_table_structure_end - pci_routing_table_structure_start
rep
movsb
pop di
pop si
pop cx
pop es
pop ds
popf
mov bx, #(1 << 9) | (1 << 11) ;; irq 9 and 11 are used
jmp pci_real_ok
pci_real_too_small:
SEG ES
mov word ptr [di], #pci_routing_table_structure_end - pci_routing_table_structure_start
mov ah, #0x89
jmp pci_real_fail
pci_real_unknown:
mov ah, #0x81
pci_real_fail:
pop edi
pop esi
stc
ret
pci_real_ok:
xor ah, ah
pop edi
pop esi
clc
ret
pci_real_select_reg:
push dx
mov eax, #0x800000
mov ax, bx
shl eax, #8
and di, #0xff
or ax, di
and al, #0xfc
mov dx, #0x0cf8
out dx, eax
pop dx
ret
.align 16
pci_routing_table_structure:
db 0x24, 0x50, 0x49, 0x52 ;; "$PIR" signature
db 0, 1 ;; version
dw 32 + (6 * 16) ;; table size
db 0 ;; PCI interrupt router bus
db 0x08 ;; PCI interrupt router DevFunc
dw 0x0000 ;; PCI exclusive IRQs
dw 0x8086 ;; compatible PCI interrupt router vendor ID
dw 0x122e ;; compatible PCI interrupt router device ID
dw 0,0 ;; Miniport data
db 0,0,0,0,0,0,0,0,0,0,0 ;; reserved
db 0x37 ;; checksum
pci_routing_table_structure_start:
;; first slot entry PCI-to-ISA (embedded)
db 0 ;; pci bus number
db 0x08 ;; pci device number (bit 7-3)
db 0x60 ;; link value INTA#: pointer into PCI2ISA config space
dw 0xdef8 ;; IRQ bitmap INTA#
db 0x61 ;; link value INTB#
dw 0xdef8 ;; IRQ bitmap INTB#
db 0x62 ;; link value INTC#
dw 0xdef8 ;; IRQ bitmap INTC#
db 0x63 ;; link value INTD#
dw 0xdef8 ;; IRQ bitmap INTD#
db 0 ;; physical slot (0 = embedded)
db 0 ;; reserved
;; second slot entry: 1st PCI slot
db 0 ;; pci bus number
db 0x10 ;; pci device number (bit 7-3)
db 0x61 ;; link value INTA#
dw 0xdef8 ;; IRQ bitmap INTA#
db 0x62 ;; link value INTB#
dw 0xdef8 ;; IRQ bitmap INTB#
db 0x63 ;; link value INTC#
dw 0xdef8 ;; IRQ bitmap INTC#
db 0x60 ;; link value INTD#
dw 0xdef8 ;; IRQ bitmap INTD#
db 1 ;; physical slot (0 = embedded)
db 0 ;; reserved
;; third slot entry: 2nd PCI slot
db 0 ;; pci bus number
db 0x18 ;; pci device number (bit 7-3)
db 0x62 ;; link value INTA#
dw 0xdef8 ;; IRQ bitmap INTA#
db 0x63 ;; link value INTB#
dw 0xdef8 ;; IRQ bitmap INTB#
db 0x60 ;; link value INTC#
dw 0xdef8 ;; IRQ bitmap INTC#
db 0x61 ;; link value INTD#
dw 0xdef8 ;; IRQ bitmap INTD#
db 2 ;; physical slot (0 = embedded)
db 0 ;; reserved
;; 4th slot entry: 3rd PCI slot
db 0 ;; pci bus number
db 0x20 ;; pci device number (bit 7-3)
db 0x63 ;; link value INTA#
dw 0xdef8 ;; IRQ bitmap INTA#
db 0x60 ;; link value INTB#
dw 0xdef8 ;; IRQ bitmap INTB#
db 0x61 ;; link value INTC#
dw 0xdef8 ;; IRQ bitmap INTC#
db 0x62 ;; link value INTD#
dw 0xdef8 ;; IRQ bitmap INTD#
db 3 ;; physical slot (0 = embedded)
db 0 ;; reserved
;; 5th slot entry: 4rd PCI slot
db 0 ;; pci bus number
db 0x28 ;; pci device number (bit 7-3)
db 0x60 ;; link value INTA#
dw 0xdef8 ;; IRQ bitmap INTA#
db 0x61 ;; link value INTB#
dw 0xdef8 ;; IRQ bitmap INTB#
db 0x62 ;; link value INTC#
dw 0xdef8 ;; IRQ bitmap INTC#
db 0x63 ;; link value INTD#
dw 0xdef8 ;; IRQ bitmap INTD#
db 4 ;; physical slot (0 = embedded)
db 0 ;; reserved
;; 6th slot entry: 5rd PCI slot
db 0 ;; pci bus number
db 0x30 ;; pci device number (bit 7-3)
db 0x61 ;; link value INTA#
dw 0xdef8 ;; IRQ bitmap INTA#
db 0x62 ;; link value INTB#
dw 0xdef8 ;; IRQ bitmap INTB#
db 0x63 ;; link value INTC#
dw 0xdef8 ;; IRQ bitmap INTC#
db 0x60 ;; link value INTD#
dw 0xdef8 ;; IRQ bitmap INTD#
db 5 ;; physical slot (0 = embedded)
db 0 ;; reserved
pci_routing_table_structure_end:
#if !BX_ROMBIOS32
pci_irq_list:
db 11, 10, 9, 5;
pcibios_init_sel_reg:
push eax
mov eax, #0x800000
mov ax, bx
shl eax, #8
and dl, #0xfc
or al, dl
mov dx, #0x0cf8
out dx, eax
pop eax
ret
pcibios_init_iomem_bases:
push bp
mov bp, sp
mov eax, #0xc0000000 ;; base for memory init
push eax
mov ax, #0xc000 ;; base for i/o init
push ax
mov ax, #0x0010 ;; start at base address #0
push ax
mov bx, #0x0008
pci_init_io_loop1:
mov dl, #0x00
call pcibios_init_sel_reg
mov dx, #0x0cfc
in ax, dx
cmp ax, #0xffff
jz next_pci_dev
mov dl, #0x04 ;; disable i/o and memory space access
call pcibios_init_sel_reg
mov dx, #0x0cfc
in al, dx
and al, #0xfc
out dx, al
pci_init_io_loop2:
mov dl, [bp-8]
call pcibios_init_sel_reg
mov dx, #0x0cfc
in eax, dx
test al, #0x01
jnz init_io_base
mov ecx, eax
mov eax, #0xffffffff
out dx, eax
in eax, dx
cmp eax, ecx
je next_pci_base
xor eax, #0xffffffff
mov ecx, eax
mov eax, [bp-4]
out dx, eax
add eax, ecx ;; calculate next free mem base
add eax, #0x01000000
and eax, #0xff000000
mov [bp-4], eax
jmp next_pci_base
init_io_base:
mov cx, ax
mov ax, #0xffff
out dx, ax
in ax, dx
cmp ax, cx
je next_pci_base
xor ax, #0xfffe
mov cx, ax
mov ax, [bp-6]
out dx, ax
add ax, cx ;; calculate next free i/o base
add ax, #0x0100
and ax, #0xff00
mov [bp-6], ax
next_pci_base:
mov al, [bp-8]
add al, #0x04
cmp al, #0x28
je enable_iomem_space
mov byte ptr[bp-8], al
jmp pci_init_io_loop2
enable_iomem_space:
mov dl, #0x04 ;; enable i/o and memory space access if available
call pcibios_init_sel_reg
mov dx, #0x0cfc
in al, dx
or al, #0x07
out dx, al
next_pci_dev:
mov byte ptr[bp-8], #0x10
inc bx
cmp bx, #0x0100
jne pci_init_io_loop1
mov sp, bp
pop bp
ret
pcibios_init_set_elcr:
push ax
push cx
mov dx, #0x04d0
test al, #0x08
jz is_master_pic
inc dx
and al, #0x07
is_master_pic:
mov cl, al
mov bl, #0x01
shl bl, cl
in al, dx
or al, bl
out dx, al
pop cx
pop ax
ret
pcibios_init_irqs:
push ds
push bp
mov ax, #0xf000
mov ds, ax
mov dx, #0x04d0 ;; reset ELCR1 + ELCR2
mov al, #0x00
out dx, al
inc dx
out dx, al
mov si, #pci_routing_table_structure
mov bh, [si+8]
mov bl, [si+9]
mov dl, #0x00
call pcibios_init_sel_reg
mov dx, #0x0cfc
in ax, dx
cmp ax, [si+12] ;; check irq router
jne pci_init_end
mov dl, [si+34]
call pcibios_init_sel_reg
push bx ;; save irq router bus + devfunc
mov dx, #0x0cfc
mov ax, #0x8080
out dx, ax ;; reset PIRQ route control
add dx, #2
out dx, ax
mov ax, [si+6]
sub ax, #0x20
shr ax, #4
mov cx, ax
add si, #0x20 ;; set pointer to 1st entry
mov bp, sp
mov ax, #pci_irq_list
push ax
xor ax, ax
push ax
pci_init_irq_loop1:
mov bh, [si]
mov bl, [si+1]
pci_init_irq_loop2:
mov dl, #0x00
call pcibios_init_sel_reg
mov dx, #0x0cfc
in ax, dx
cmp ax, #0xffff
jnz pci_test_int_pin
test bl, #0x07
jz next_pir_entry
jmp next_pci_func
pci_test_int_pin:
mov dl, #0x3c
call pcibios_init_sel_reg
mov dx, #0x0cfd
in al, dx
and al, #0x07
jz next_pci_func
dec al ;; determine pirq reg
mov dl, #0x03
mul al, dl
add al, #0x02
xor ah, ah
mov bx, ax
mov al, [si+bx]
mov dl, al
mov bx, [bp]
call pcibios_init_sel_reg
mov dx, #0x0cfc
and al, #0x03
add dl, al
in al, dx
cmp al, #0x80
jb pirq_found
mov bx, [bp-2] ;; pci irq list pointer
mov al, [bx]
out dx, al
inc bx
mov [bp-2], bx
call pcibios_init_set_elcr
pirq_found:
mov bh, [si]
mov bl, [si+1]
add bl, [bp-3] ;; pci function number
mov dl, #0x3c
call pcibios_init_sel_reg
mov dx, #0x0cfc
out dx, al
next_pci_func:
inc byte ptr[bp-3]
inc bl
test bl, #0x07
jnz pci_init_irq_loop2
next_pir_entry:
add si, #0x10
mov byte ptr[bp-3], #0x00
loop pci_init_irq_loop1
mov sp, bp
pop bx
pci_init_end:
pop bp
pop ds
ret
#endif // !BX_ROMBIOS32
#endif // BX_PCIBIOS
#if BX_ROMBIOS32
rombios32_init:
;; save a20 and enable it
in al, 0x92
push ax
or al, #0x02
out 0x92, al
;; save SS:SP to the BDA
xor ax, ax
mov ds, ax
mov 0x0469, ss
mov 0x0467, sp
SEG CS
lidt [pmode_IDT_info]
SEG CS
lgdt [rombios32_gdt_48]
;; set PE bit in CR0
mov eax, cr0
or al, #0x01
mov cr0, eax
;; start protected mode code: ljmpl 0x10:rombios32_init1
db 0x66, 0xea
dw rombios32_05
dw 0x000f ;; high 16 bit address
dw 0x0010
use32 386
rombios32_05:
;; init data segments
mov eax, #0x18
mov ds, ax
mov es, ax
mov ss, ax
xor eax, eax
mov fs, ax
mov gs, ax
cld
;; init the stack pointer to point below EBDA
mov ax, [0x040e]
shl eax, #4
mov esp, #-0x10
add esp, eax
;; pass pointer to s3_resume_flag and s3_resume_vector to rombios32
push #0x04b0
push #0x04b2
;; call rombios32 code
mov eax, #0x000e0000
call eax
;; return to 16 bit protected mode first
db 0xea
dd rombios32_10
dw 0x20
use16 386
rombios32_10:
;; restore data segment limits to 0xffff
mov ax, #0x28
mov ds, ax
mov es, ax
mov ss, ax
mov fs, ax
mov gs, ax
;; reset PE bit in CR0
mov eax, cr0
and al, #0xFE
mov cr0, eax
;; far jump to flush CPU queue after transition to real mode
JMP_AP(0xf000, rombios32_real_mode)
rombios32_real_mode:
;; restore IDT to normal real-mode defaults
SEG CS
lidt [rmode_IDT_info]
xor ax, ax
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
;; restore SS:SP from the BDA
mov ss, 0x0469
xor esp, esp
mov sp, 0x0467
;; restore a20
pop ax
out 0x92, al
ret
rombios32_gdt_48:
dw 0x30
dw rombios32_gdt
dw 0x000f
rombios32_gdt:
dw 0, 0, 0, 0
dw 0, 0, 0, 0
dw 0xffff, 0, 0x9b00, 0x00cf ; 32 bit flat code segment (0x10)
dw 0xffff, 0, 0x9300, 0x00cf ; 32 bit flat data segment (0x18)
dw 0xffff, 0, 0x9b0f, 0x0000 ; 16 bit code segment base=0xf0000 limit=0xffff
dw 0xffff, 0, 0x9300, 0x0000 ; 16 bit data segment base=0x0 limit=0xffff
#endif // BX_ROMBIOS32
; parallel port detection: base address in DX, index in BX, timeout in CL
detect_parport:
push dx
add dx, #2
in al, dx
and al, #0xdf ; clear input mode
out dx, al
pop dx
mov al, #0xaa
out dx, al
in al, dx
cmp al, #0xaa
jne no_parport
push bx
shl bx, #1
mov [bx+0x408], dx ; Parallel I/O address
pop bx
mov [bx+0x478], cl ; Parallel printer timeout
inc bx
no_parport:
ret
; serial port detection: base address in DX, index in BX, timeout in CL
detect_serial:
push dx
inc dx
mov al, #0x02
out dx, al
in al, dx
cmp al, #0x02
jne no_serial
inc dx
in al, dx
cmp al, #0x02
jne no_serial
dec dx
xor al, al
out dx, al
pop dx
push bx
shl bx, #1
mov [bx+0x400], dx ; Serial I/O address
pop bx
mov [bx+0x47c], cl ; Serial timeout
inc bx
ret
no_serial:
pop dx
ret
rom_checksum:
pusha
push ds
xor ax, ax
xor bx, bx
xor cx, cx
xor dx, dx
mov ch, [2]
shl cx, #1
jnc checksum_loop
jz checksum_loop
xchg dx, cx
dec cx
checksum_loop:
add al, [bx]
inc bx
loop checksum_loop
test dx, dx
je checksum_out
add al, [bx]
mov cx, dx
mov dx, ds
add dh, #0x10
mov ds, dx
xor dx, dx
xor bx, bx
jmp checksum_loop
checksum_out:
and al, #0xff
pop ds
popa
ret
;; We need a copy of this string, but we are not actually a PnP BIOS,
;; so make sure it is *not* aligned, so OSes will not see it if they scan.
.align 16
db 0
pnp_string:
.ascii "$PnP"
rom_scan:
;; Scan for existence of valid expansion ROMS.
;; Video ROM: from 0xC0000..0xC7FFF in 2k increments
;; General ROM: from 0xC8000..0xDFFFF in 2k increments
;; System ROM: only 0xE0000
;;
;; Header:
;; Offset Value
;; 0 0x55
;; 1 0xAA
;; 2 ROM length in 512-byte blocks
;; 3 ROM initialization entry point (FAR CALL)
rom_scan_loop:
push ax ;; Save AX
mov ds, cx
mov ax, #0x0004 ;; start with increment of 4 (512-byte) blocks = 2k
cmp [0], #0xAA55 ;; look for signature
jne rom_scan_increment
call rom_checksum
jnz rom_scan_increment
mov al, [2] ;; change increment to ROM length in 512-byte blocks
;; We want our increment in 512-byte quantities, rounded to
;; the nearest 2k quantity, since we only scan at 2k intervals.
test al, #0x03
jz block_count_rounded
and al, #0xfc ;; needs rounding up
add al, #0x04
block_count_rounded:
xor bx, bx ;; Restore DS back to 0000:
mov ds, bx
push ax ;; Save AX
push di ;; Save DI
;; Push addr of ROM entry point
push cx ;; Push seg
push #0x0003 ;; Push offset
;; Point ES:DI at "$PnP", which tells the ROM that we are a PnP BIOS.
;; That should stop it grabbing INT 19h; we will use its BEV instead.
mov ax, #0xf000
mov es, ax
lea di, pnp_string
mov bp, sp ;; Call ROM init routine using seg:off on stack
db 0xff ;; call_far ss:[bp+0]
db 0x5e
db 0
cli ;; In case expansion ROM BIOS turns IF on
add sp, #2 ;; Pop offset value
pop cx ;; Pop seg value (restore CX)
;; Look at the ROM's PnP Expansion header. Properly, we're supposed
;; to init all the ROMs and then go back and build an IPL table of
;; all the bootable devices, but we can get away with one pass.
mov ds, cx ;; ROM base
mov bx, 0x001a ;; 0x1A is the offset into ROM header that contains...
mov ax, [bx] ;; the offset of PnP expansion header, where...
cmp ax, #0x5024 ;; we look for signature "$PnP"
jne no_bev
mov ax, 2[bx]
cmp ax, #0x506e
jne no_bev
mov ax, 0x16[bx] ;; 0x16 is the offset of Boot Connection Vector
cmp ax, #0x0000
je no_bcv
;; Option ROM has BCV. Run it now.
push cx ;; Push seg
push ax ;; Push offset
;; Point ES:DI at "$PnP", which tells the ROM that we are a PnP BIOS.
mov bx, #0xf000
mov es, bx
lea di, pnp_string
/* jump to BCV function entry pointer */
mov bp, sp ;; Call ROM BCV routine using seg:off on stack
db 0xff ;; call_far ss:[bp+0]
db 0x5e
db 0
cli ;; In case expansion ROM BIOS turns IF on
add sp, #2 ;; Pop offset value
pop cx ;; Pop seg value (restore CX)
jmp no_bev
no_bcv:
mov ax, 0x1a[bx] ;; 0x1A is also the offset into the expansion header of...
cmp ax, #0x0000 ;; the Bootstrap Entry Vector, or zero if there is none.
je no_bev
;; Found a device that thinks it can boot the system. Record its BEV and product name string.
mov di, 0x10[bx] ;; Pointer to the product name string or zero if none
mov bx, #IPL_SEG ;; Go to the segment where the IPL table lives
mov ds, bx
mov bx, IPL_COUNT_OFFSET ;; Read the number of entries so far
cmp bx, #IPL_TABLE_ENTRIES
je no_bev ;; Get out if the table is full
shl bx, #0x4 ;; Turn count into offset (entries are 16 bytes)
mov 0[bx], #IPL_TYPE_BEV ;; This entry is a BEV device
mov 6[bx], cx ;; Build a far pointer from the segment...
mov 4[bx], ax ;; and the offset
cmp di, #0x0000
je no_prod_str
mov 0xA[bx], cx ;; Build a far pointer from the segment...
mov 8[bx], di ;; and the offset
no_prod_str:
shr bx, #0x4 ;; Turn the offset back into a count
inc bx ;; We have one more entry now
mov IPL_COUNT_OFFSET, bx ;; Remember that.
no_bev:
pop di ;; Restore DI
pop ax ;; Restore AX
rom_scan_increment:
shl ax, #5 ;; convert 512-bytes blocks to 16-byte increments
;; because the segment selector is shifted left 4 bits.
add cx, ax
pop ax ;; Restore AX
cmp cx, ax
jbe rom_scan_loop
xor ax, ax ;; Restore DS back to 0000:
mov ds, ax
ret
post_init_pic:
mov al, #0x11 ; send initialisation commands
out 0x20, al
out 0xa0, al
mov al, #0x08
out 0x21, al
mov al, #0x70
out 0xa1, al
mov al, #0x04
out 0x21, al
mov al, #0x02
out 0xa1, al
mov al, #0x01
out 0x21, al
out 0xa1, al
mov al, #0xb8
out 0x21, AL ;master pic: unmask IRQ 0, 1, 2, 6
#if BX_USE_PS2_MOUSE
mov al, #0x8f
#else
mov al, #0x9f
#endif
out 0xa1, AL ;slave pic: unmask IRQ 12, 13, 14
ret
;; the following area can be used to write dynamically generated tables
.align 16
bios_table_area_start:
dd 0xaafb4442
dd bios_table_area_end - bios_table_area_start - 8;
;--------
;- POST -
;--------
.org 0xe05b ; POST Entry Point
post:
xor ax, ax
;; first reset the DMA controllers
out 0x0d,al
out 0xda,al
;; then initialize the DMA controllers
mov al, #0xC0
out 0xD6, al ; cascade mode of channel 4 enabled
mov al, #0x00
out 0xD4, al ; unmask channel 4
;; Examine CMOS shutdown status.
mov AL, #0x0f
out 0x70, AL
in AL, 0x71
;; backup status
mov bl, al
;; Reset CMOS shutdown status.
mov AL, #0x0f
out 0x70, AL ; select CMOS register Fh
mov AL, #0x00
out 0x71, AL ; set shutdown action to normal
;; Examine CMOS shutdown status.
mov al, bl
;; 0x00, 0x0D+ = normal startup
cmp AL, #0x00
jz normal_post
cmp AL, #0x0d
jae normal_post
;; 0x05 = eoi + jmp via [0x40:0x67] jump
cmp al, #0x05
je eoi_jmp_post
;; 0x0A = jmp via [0x40:0x67] jump
cmp al, #0x0a
je jmp_post_0x467
;; 0x0B = iret via [0x40:0x67]
cmp al, #0x0b
je iret_post_0x467
;; 0x0C = retf via [0x40:0x67]
cmp al, #0x0c
je retf_post_0x467
;; Examine CMOS shutdown status.
;; 0x01,0x02,0x03,0x04,0x06,0x07,0x08,0x09 = Unimplemented shutdown status.
push bx
call _shutdown_status_panic
#if 0
HALT(__LINE__)
;
;#if 0
; 0xb0, 0x20, /* mov al, #0x20 */
; 0xe6, 0x20, /* out 0x20, al ;send EOI to PIC */
;#endif
;
pop es
pop ds
popa
iret
#endif
normal_post:
; case 0: normal startup
cli
mov ax, #0xfffe
mov sp, ax
xor ax, ax
mov ds, ax
mov ss, ax
;; Save shutdown status
mov 0x04b0, bl
cmp bl, #0xfe
jz s3_post
;; zero out BIOS data area (40:00..40:ff)
mov es, ax
mov cx, #0x0080 ;; 128 words
mov di, #0x0400
cld
rep
stosw
call _log_bios_start
;; set all interrupts to default handler
xor bx, bx ;; offset index
mov cx, #0x0100 ;; counter (256 interrupts)
mov ax, #dummy_iret_handler
mov dx, #0xF000
post_default_ints:
mov [bx], ax
add bx, #2
mov [bx], dx
add bx, #2
loop post_default_ints
;; set vector 0x79 to zero
;; this is used by 'gardian angel' protection system
SET_INT_VECTOR(0x79, #0, #0)
;; base memory in K 40:13 (word)
mov ax, #BASE_MEM_IN_K
mov 0x0413, ax
;; Manufacturing Test 40:12
;; zerod out above
;; Warm Boot Flag 0040:0072
;; value of 1234h = skip memory checks
;; zerod out above
;; Printer Services vector
SET_INT_VECTOR(0x17, #0xF000, #int17_handler)
;; Bootstrap failure vector
SET_INT_VECTOR(0x18, #0xF000, #int18_handler)
;; Bootstrap Loader vector
SET_INT_VECTOR(0x19, #0xF000, #int19_handler)
;; User Timer Tick vector
SET_INT_VECTOR(0x1c, #0xF000, #int1c_handler)
;; Memory Size Check vector
SET_INT_VECTOR(0x12, #0xF000, #int12_handler)
;; Equipment Configuration Check vector
SET_INT_VECTOR(0x11, #0xF000, #int11_handler)
;; System Services
SET_INT_VECTOR(0x15, #0xF000, #int15_handler)
;; EBDA setup
call ebda_post
;; PIT setup
SET_INT_VECTOR(0x08, #0xF000, #int08_handler)
;; int 1C already points at dummy_iret_handler (above)
mov al, #0x34 ; timer0: binary count, 16bit count, mode 2
out 0x43, al
mov al, #0x00 ; maximum count of 0000H = 18.2Hz
out 0x40, al
out 0x40, al
;; Keyboard
SET_INT_VECTOR(0x09, #0xF000, #int09_handler)
SET_INT_VECTOR(0x16, #0xF000, #int16_handler)
xor ax, ax
mov ds, ax
mov 0x0417, al /* keyboard shift flags, set 1 */
mov 0x0418, al /* keyboard shift flags, set 2 */
mov 0x0419, al /* keyboard alt-numpad work area */
mov 0x0471, al /* keyboard ctrl-break flag */
mov 0x0497, al /* keyboard status flags 4 */
mov al, #0x10
mov 0x0496, al /* keyboard status flags 3 */
/* keyboard head of buffer pointer */
mov bx, #0x001E
mov 0x041A, bx
/* keyboard end of buffer pointer */
mov 0x041C, bx
/* keyboard pointer to start of buffer */
mov bx, #0x001E
mov 0x0480, bx
/* keyboard pointer to end of buffer */
mov bx, #0x003E
mov 0x0482, bx
/* init the keyboard */
call _keyboard_init
;; mov CMOS Equipment Byte to BDA Equipment Word
mov ax, 0x0410
mov al, #0x14
out 0x70, al
in al, 0x71
mov 0x0410, ax
;; Parallel setup
SET_INT_VECTOR(0x0F, #0xF000, #dummy_iret_handler)
xor ax, ax
mov ds, ax
xor bx, bx
mov cl, #0x14 ; timeout value
mov dx, #0x378 ; Parallel I/O address, port 1
call detect_parport
mov dx, #0x278 ; Parallel I/O address, port 2
call detect_parport
shl bx, #0x0e
mov ax, 0x410 ; Equipment word bits 14..15 determing # parallel ports
and ax, #0x3fff
or ax, bx ; set number of parallel ports
mov 0x410, ax
;; Serial setup
SET_INT_VECTOR(0x0C, #0xF000, #dummy_iret_handler)
SET_INT_VECTOR(0x14, #0xF000, #int14_handler)
xor bx, bx
mov cl, #0x0a ; timeout value
mov dx, #0x03f8 ; Serial I/O address, port 1
call detect_serial
mov dx, #0x02f8 ; Serial I/O address, port 2
call detect_serial
mov dx, #0x03e8 ; Serial I/O address, port 3
call detect_serial
mov dx, #0x02e8 ; Serial I/O address, port 4
call detect_serial
shl bx, #0x09
mov ax, 0x410 ; Equipment word bits 9..11 determing # serial ports
and ax, #0xf1ff
or ax, bx ; set number of serial port
mov 0x410, ax
;; CMOS RTC
SET_INT_VECTOR(0x1A, #0xF000, #int1a_handler)
SET_INT_VECTOR(0x4A, #0xF000, #dummy_iret_handler)
SET_INT_VECTOR(0x70, #0xF000, #int70_handler)
;; BIOS DATA AREA 0x4CE ???
call timer_tick_post
;; PS/2 mouse setup
SET_INT_VECTOR(0x74, #0xF000, #int74_handler)
;; IRQ13 (FPU exception) setup
SET_INT_VECTOR(0x75, #0xF000, #int75_handler)
;; Video setup
SET_INT_VECTOR(0x10, #0xF000, #int10_handler)
;; PIC
call post_init_pic
mov cx, #0xc000 ;; init vga bios
mov ax, #0xc780
call rom_scan
call _print_bios_banner
#if BX_ROMBIOS32
call rombios32_init
#else
#if BX_PCIBIOS
call pcibios_init_iomem_bases
call pcibios_init_irqs
#endif //BX_PCIBIOS
#endif
;;
;; Floppy setup
;;
call floppy_drive_post
;;
;; Hard Drive setup
;;
call hard_drive_post
#if BX_USE_ATADRV
;;
;; ATA/ATAPI driver setup
;;
call _ata_init
call _ata_detect
;;
#endif // BX_USE_ATADRV
#if BX_ELTORITO_BOOT
;;
;; eltorito floppy/harddisk emulation from cd
;;
call _cdemu_init
;;
#endif // BX_ELTORITO_BOOT
call _init_boot_vectors
mov cx, #0xc800 ;; init option roms
mov ax, #0xe000
call rom_scan
#if BX_ELTORITO_BOOT
call _interactive_bootkey
#endif // BX_ELTORITO_BOOT
sti ;; enable interrupts
int #0x19
.org 0xe2c3 ; NMI Handler Entry Point
nmi:
;; FIXME the NMI handler should not panic
;; but iret when called from int75 (fpu exception)
call _nmi_handler_msg
iret
int75_handler:
out 0xf0, al // clear irq13
call eoi_both_pics // clear interrupt
int 2 // legacy nmi call
iret
;-------------------------------------------
;- INT 13h Fixed Disk Services Entry Point -
;-------------------------------------------
.org 0xe3fe ; INT 13h Fixed Disk Services Entry Point
int13_handler:
//JMPL(int13_relocated)
jmp int13_relocated
.org 0xe401 ; Fixed Disk Parameter Table
;----------
;- INT19h -
;----------
.org 0xe6f2 ; INT 19h Boot Load Service Entry Point
int19_handler:
jmp int19_relocated
;-------------------------------------------
;- System BIOS Configuration Data Table
;-------------------------------------------
.org BIOS_CONFIG_TABLE
db 0x08 ; Table size (bytes) -Lo
db 0x00 ; Table size (bytes) -Hi
db SYS_MODEL_ID
db SYS_SUBMODEL_ID
db BIOS_REVISION
; Feature byte 1
; b7: 1=DMA channel 3 used by hard disk
; b6: 1=2 interrupt controllers present
; b5: 1=RTC present
; b4: 1=BIOS calls int 15h/4Fh every key
; b3: 1=wait for extern event supported (Int 15h/41h)
; b2: 1=extended BIOS data area used
; b1: 0=AT or ESDI bus, 1=MicroChannel
; b0: 1=Dual bus (MicroChannel + ISA)
db (0 << 7) | \
(1 << 6) | \
(1 << 5) | \
(BX_CALL_INT15_4F << 4) | \
(0 << 3) | \
(BX_USE_EBDA << 2) | \
(0 << 1) | \
(0 << 0)
; Feature byte 2
; b7: 1=32-bit DMA supported
; b6: 1=int16h, function 9 supported
; b5: 1=int15h/C6h (get POS data) supported
; b4: 1=int15h/C7h (get mem map info) supported
; b3: 1=int15h/C8h (en/dis CPU) supported
; b2: 1=non-8042 kb controller
; b1: 1=data streaming supported
; b0: reserved
db (0 << 7) | \
(1 << 6) | \
(0 << 5) | \
(0 << 4) | \
(0 << 3) | \
(0 << 2) | \
(0 << 1) | \
(0 << 0)
; Feature byte 3
; b7: not used
; b6: reserved
; b5: reserved
; b4: POST supports ROM-to-RAM enable/disable
; b3: SCSI on system board
; b2: info panel installed
; b1: Initial Machine Load (IML) system - BIOS on disk
; b0: SCSI supported in IML
db 0x00
; Feature byte 4
; b7: IBM private
; b6: EEPROM present
; b5-3: ABIOS presence (011 = not supported)
; b2: private
; b1: memory split above 16Mb supported
; b0: POSTEXT directly supported by POST
db 0x00
; Feature byte 5 (IBM)
; b1: enhanced mouse
; b0: flash EPROM
db 0x00
.org 0xe729 ; Baud Rate Generator Table
;----------
;- INT14h -
;----------
.org 0xe739 ; INT 14h Serial Communications Service Entry Point
int14_handler:
push ds
pusha
xor ax, ax
mov ds, ax
call _int14_function
popa
pop ds
iret
;----------------------------------------
;- INT 16h Keyboard Service Entry Point -
;----------------------------------------
.org 0xe82e
int16_handler:
sti
push ds
pushf
pusha
cmp ah, #0x00
je int16_F00
cmp ah, #0x10
je int16_F00
mov bx, #0xf000
mov ds, bx
call _int16_function
popa
popf
pop ds
jz int16_zero_set
int16_zero_clear:
push bp
mov bp, sp
//SEG SS
and BYTE [bp + 0x06], #0xbf
pop bp
iret
int16_zero_set:
push bp
mov bp, sp
//SEG SS
or BYTE [bp + 0x06], #0x40
pop bp
iret
int16_F00:
mov bx, #0x0040
mov ds, bx
int16_wait_for_key:
cli
mov bx, 0x001a
cmp bx, 0x001c
jne int16_key_found
sti
nop
#if 0
/* no key yet, call int 15h, function AX=9002 */
0x50, /* push AX */
0xb8, 0x02, 0x90, /* mov AX, #0x9002 */
0xcd, 0x15, /* int 15h */
0x58, /* pop AX */
0xeb, 0xea, /* jmp WAIT_FOR_KEY */
#endif
jmp int16_wait_for_key
int16_key_found:
mov bx, #0xf000
mov ds, bx
call _int16_function
popa
popf
pop ds
#if 0
/* notify int16 complete w/ int 15h, function AX=9102 */
0x50, /* push AX */
0xb8, 0x02, 0x91, /* mov AX, #0x9102 */
0xcd, 0x15, /* int 15h */
0x58, /* pop AX */
#endif
iret
;-------------------------------------------------
;- INT09h : Keyboard Hardware Service Entry Point -
;-------------------------------------------------
.org 0xe987
int09_handler:
cli
push ax
mov al, #0xAD ;;disable keyboard
out #0x64, al
mov al, #0x0B
out #0x20, al
in al, #0x20
and al, #0x02
jz int09_finish
in al, #0x60 ;;read key from keyboard controller
sti
push ds
pusha
#ifdef BX_CALL_INT15_4F
mov ah, #0x4f ;; allow for keyboard intercept
stc
int #0x15
jnc int09_done
#endif
;; check for extended key
cmp al, #0xe0
jne int09_check_pause
xor ax, ax
mov ds, ax
mov al, BYTE [0x496] ;; mf2_state |= 0x02
or al, #0x02
mov BYTE [0x496], al
jmp int09_done
int09_check_pause: ;; check for pause key
cmp al, #0xe1
jne int09_process_key
xor ax, ax
mov ds, ax
mov al, BYTE [0x496] ;; mf2_state |= 0x01
or al, #0x01
mov BYTE [0x496], al
jmp int09_done
int09_process_key:
mov bx, #0xf000
mov ds, bx
call _int09_function
int09_done:
popa
pop ds
cli
call eoi_master_pic
int09_finish:
mov al, #0xAE ;;enable keyboard
out #0x64, al
pop ax
iret
;----------------------------------------
;- INT 13h Diskette Service Entry Point -
;----------------------------------------
.org 0xec59
int13_diskette:
jmp int13_noeltorito
;---------------------------------------------
;- INT 0Eh Diskette Hardware ISR Entry Point -
;---------------------------------------------
.org 0xef57 ; INT 0Eh Diskette Hardware ISR Entry Point
int0e_handler:
push ax
push dx
mov dx, #0x03f4
in al, dx
and al, #0xc0
cmp al, #0xc0
je int0e_normal
mov dx, #0x03f5
mov al, #0x08 ; sense interrupt status
out dx, al
int0e_loop1:
mov dx, #0x03f4
in al, dx
and al, #0xc0
cmp al, #0xc0
jne int0e_loop1
int0e_loop2:
mov dx, #0x03f5
in al, dx
mov dx, #0x03f4
in al, dx
and al, #0xc0
cmp al, #0xc0
je int0e_loop2
int0e_normal:
push ds
xor ax, ax ;; segment 0000
mov ds, ax
call eoi_master_pic
mov al, 0x043e
or al, #0x80 ;; diskette interrupt has occurred
mov 0x043e, al
pop ds
pop dx
pop ax
iret
.org 0xefc7 ; Diskette Controller Parameter Table
diskette_param_table:
;; Since no provisions are made for multiple drive types, most
;; values in this table are ignored. I set parameters for 1.44M
;; floppy here
db 0xAF
db 0x02 ;; head load time 0000001, DMA used
db 0x25
db 0x02
db 18
db 0x1B
db 0xFF
db 0x6C
db 0xF6
db 0x0F
db 0x08
;----------------------------------------
;- INT17h : Printer Service Entry Point -
;----------------------------------------
.org 0xefd2
int17_handler:
push ds
pusha
xor ax, ax
mov ds, ax
call _int17_function
popa
pop ds
iret
diskette_param_table2:
;; New diskette parameter table adding 3 parameters from IBM
;; Since no provisions are made for multiple drive types, most
;; values in this table are ignored. I set parameters for 1.44M
;; floppy here
db 0xAF
db 0x02 ;; head load time 0000001, DMA used
db 0x25
db 0x02
db 18
db 0x1B
db 0xFF
db 0x6C
db 0xF6
db 0x0F
db 0x08
db 79 ;; maximum track
db 0 ;; data transfer rate
db 4 ;; drive type in cmos
.org 0xf045 ; INT 10 Functions 0-Fh Entry Point
HALT(__LINE__)
iret
;----------
;- INT10h -
;----------
.org 0xf065 ; INT 10h Video Support Service Entry Point
int10_handler:
;; dont do anything, since the VGA BIOS handles int10h requests
iret
.org 0xf0a4 ; MDA/CGA Video Parameter Table (INT 1Dh)
;----------
;- INT12h -
;----------
.org 0xf841 ; INT 12h Memory Size Service Entry Point
; ??? different for Pentium (machine check)?
int12_handler:
push ds
mov ax, #0x0040
mov ds, ax
mov ax, 0x0013
pop ds
iret
;----------
;- INT11h -
;----------
.org 0xf84d ; INT 11h Equipment List Service Entry Point
int11_handler:
push ds
mov ax, #0x0040
mov ds, ax
mov ax, 0x0010
pop ds
iret
;----------
;- INT15h -
;----------
.org 0xf859 ; INT 15h System Services Entry Point
int15_handler:
pushf
#if BX_APM
cmp ah, #0x53
je apm_call
#endif
push ds
push es
cmp ah, #0x86
je int15_handler32
cmp ah, #0xE8
je int15_handler32
pusha
#if BX_USE_PS2_MOUSE
cmp ah, #0xC2
je int15_handler_mouse
#endif
call _int15_function
int15_handler_mouse_ret:
popa
int15_handler32_ret:
pop es
pop ds
popf
jmp iret_modify_cf
#if BX_APM
apm_call:
jmp _apmreal_entry
#endif
#if BX_USE_PS2_MOUSE
int15_handler_mouse:
call _int15_function_mouse
jmp int15_handler_mouse_ret
#endif
int15_handler32:
pushad
call _int15_function32
popad
jmp int15_handler32_ret
;; Protected mode IDT descriptor
;;
;; I just make the limit 0, so the machine will shutdown
;; if an exception occurs during protected mode memory
;; transfers.
;;
;; Set base to f0000 to correspond to beginning of BIOS,
;; in case I actually define an IDT later
;; Set limit to 0
pmode_IDT_info:
dw 0x0000 ;; limit 15:00
dw 0x0000 ;; base 15:00
db 0x0f ;; base 23:16
;; Real mode IDT descriptor
;;
;; Set to typical real-mode values.
;; base = 000000
;; limit = 03ff
rmode_IDT_info:
dw 0x03ff ;; limit 15:00
dw 0x0000 ;; base 15:00
db 0x00 ;; base 23:16
;----------
;- INT1Ah -
;----------
.org 0xfe6e ; INT 1Ah Time-of-day Service Entry Point
int1a_handler:
#if BX_PCIBIOS
cmp ah, #0xb1
jne int1a_normal
call pcibios_real
jc pcibios_error
iret
pcibios_error:
mov bl, ah
mov ah, #0xb1
push ds
pusha
mov ax, ss ; set readable descriptor to ds, for calling pcibios
mov ds, ax ; on 16bit protected mode.
jmp int1a_callfunction
int1a_normal:
#endif
push ds
pusha
xor ax, ax
mov ds, ax
int1a_callfunction:
call _int1a_function
popa
pop ds
iret
;;
;; int70h: IRQ8 - CMOS RTC
;;
int70_handler:
push ds
pushad
xor ax, ax
mov ds, ax
call _int70_function
popad
pop ds
iret
;---------
;- INT08 -
;---------
.org 0xfea5 ; INT 08h System Timer ISR Entry Point
int08_handler:
sti
push eax
push ds
xor ax, ax
mov ds, ax
;; time to turn off drive(s)?
mov al,0x0440
or al,al
jz int08_floppy_off
dec al
mov 0x0440,al
jnz int08_floppy_off
;; turn motor(s) off
push dx
mov dx,#0x03f2
in al,dx
and al,#0xcf
out dx,al
pop dx
int08_floppy_off:
mov eax, 0x046c ;; get ticks dword
inc eax
;; compare eax to one days worth of timer ticks at 18.2 hz
cmp eax, #0x001800B0
jb int08_store_ticks
;; there has been a midnight rollover at this point
xor eax, eax ;; zero out counter
inc BYTE 0x0470 ;; increment rollover flag
int08_store_ticks:
mov 0x046c, eax ;; store new ticks dword
;; chain to user timer tick INT #0x1c
//pushf
//;; call_ep [ds:loc]
//CALL_EP( 0x1c << 2 )
int #0x1c
cli
call eoi_master_pic
pop ds
pop eax
iret
.org 0xfef3 ; Initial Interrupt Vector Offsets Loaded by POST
.org 0xff00
.ascii BIOS_COPYRIGHT_STRING
;------------------------------------------------
;- IRET Instruction for Dummy Interrupt Handler -
;------------------------------------------------
.org 0xff53 ; IRET Instruction for Dummy Interrupt Handler
dummy_iret_handler:
iret
.org 0xff54 ; INT 05h Print Screen Service Entry Point
HALT(__LINE__)
iret
.org 0xfff0 ; Power-up Entry Point
jmp 0xf000:post
.org 0xfff5 ; ASCII Date ROM was built - 8 characters in MM/DD/YY
.ascii BIOS_BUILD_DATE
.org 0xfffe ; System Model ID
db SYS_MODEL_ID
db 0x00 ; filler
.org 0xfa6e ;; Character Font for 320x200 & 640x200 Graphics (lower 128 characters)
ASM_END
/*
* This font comes from the fntcol16.zip package (c) by Joseph Gil
* found at ftp://ftp.simtel.net/pub/simtelnet/msdos/screen/fntcol16.zip
* This font is public domain
*/
static Bit8u vgafont8[128*8]=
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x7e, 0x81, 0xa5, 0x81, 0xbd, 0x99, 0x81, 0x7e,
0x7e, 0xff, 0xdb, 0xff, 0xc3, 0xe7, 0xff, 0x7e,
0x6c, 0xfe, 0xfe, 0xfe, 0x7c, 0x38, 0x10, 0x00,
0x10, 0x38, 0x7c, 0xfe, 0x7c, 0x38, 0x10, 0x00,
0x38, 0x7c, 0x38, 0xfe, 0xfe, 0x7c, 0x38, 0x7c,
0x10, 0x10, 0x38, 0x7c, 0xfe, 0x7c, 0x38, 0x7c,
0x00, 0x00, 0x18, 0x3c, 0x3c, 0x18, 0x00, 0x00,
0xff, 0xff, 0xe7, 0xc3, 0xc3, 0xe7, 0xff, 0xff,
0x00, 0x3c, 0x66, 0x42, 0x42, 0x66, 0x3c, 0x00,
0xff, 0xc3, 0x99, 0xbd, 0xbd, 0x99, 0xc3, 0xff,
0x0f, 0x07, 0x0f, 0x7d, 0xcc, 0xcc, 0xcc, 0x78,
0x3c, 0x66, 0x66, 0x66, 0x3c, 0x18, 0x7e, 0x18,
0x3f, 0x33, 0x3f, 0x30, 0x30, 0x70, 0xf0, 0xe0,
0x7f, 0x63, 0x7f, 0x63, 0x63, 0x67, 0xe6, 0xc0,
0x99, 0x5a, 0x3c, 0xe7, 0xe7, 0x3c, 0x5a, 0x99,
0x80, 0xe0, 0xf8, 0xfe, 0xf8, 0xe0, 0x80, 0x00,
0x02, 0x0e, 0x3e, 0xfe, 0x3e, 0x0e, 0x02, 0x00,
0x18, 0x3c, 0x7e, 0x18, 0x18, 0x7e, 0x3c, 0x18,
0x66, 0x66, 0x66, 0x66, 0x66, 0x00, 0x66, 0x00,
0x7f, 0xdb, 0xdb, 0x7b, 0x1b, 0x1b, 0x1b, 0x00,
0x3e, 0x63, 0x38, 0x6c, 0x6c, 0x38, 0xcc, 0x78,
0x00, 0x00, 0x00, 0x00, 0x7e, 0x7e, 0x7e, 0x00,
0x18, 0x3c, 0x7e, 0x18, 0x7e, 0x3c, 0x18, 0xff,
0x18, 0x3c, 0x7e, 0x18, 0x18, 0x18, 0x18, 0x00,
0x18, 0x18, 0x18, 0x18, 0x7e, 0x3c, 0x18, 0x00,
0x00, 0x18, 0x0c, 0xfe, 0x0c, 0x18, 0x00, 0x00,
0x00, 0x30, 0x60, 0xfe, 0x60, 0x30, 0x00, 0x00,
0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xfe, 0x00, 0x00,
0x00, 0x24, 0x66, 0xff, 0x66, 0x24, 0x00, 0x00,
0x00, 0x18, 0x3c, 0x7e, 0xff, 0xff, 0x00, 0x00,
0x00, 0xff, 0xff, 0x7e, 0x3c, 0x18, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x78, 0x78, 0x30, 0x30, 0x00, 0x30, 0x00,
0x6c, 0x6c, 0x6c, 0x00, 0x00, 0x00, 0x00, 0x00,
0x6c, 0x6c, 0xfe, 0x6c, 0xfe, 0x6c, 0x6c, 0x00,
0x30, 0x7c, 0xc0, 0x78, 0x0c, 0xf8, 0x30, 0x00,
0x00, 0xc6, 0xcc, 0x18, 0x30, 0x66, 0xc6, 0x00,
0x38, 0x6c, 0x38, 0x76, 0xdc, 0xcc, 0x76, 0x00,
0x60, 0x60, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00,
0x18, 0x30, 0x60, 0x60, 0x60, 0x30, 0x18, 0x00,
0x60, 0x30, 0x18, 0x18, 0x18, 0x30, 0x60, 0x00,
0x00, 0x66, 0x3c, 0xff, 0x3c, 0x66, 0x00, 0x00,
0x00, 0x30, 0x30, 0xfc, 0x30, 0x30, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30, 0x60,
0x00, 0x00, 0x00, 0xfc, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30, 0x00,
0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x80, 0x00,
0x7c, 0xc6, 0xce, 0xde, 0xf6, 0xe6, 0x7c, 0x00,
0x30, 0x70, 0x30, 0x30, 0x30, 0x30, 0xfc, 0x00,
0x78, 0xcc, 0x0c, 0x38, 0x60, 0xcc, 0xfc, 0x00,
0x78, 0xcc, 0x0c, 0x38, 0x0c, 0xcc, 0x78, 0x00,
0x1c, 0x3c, 0x6c, 0xcc, 0xfe, 0x0c, 0x1e, 0x00,
0xfc, 0xc0, 0xf8, 0x0c, 0x0c, 0xcc, 0x78, 0x00,
0x38, 0x60, 0xc0, 0xf8, 0xcc, 0xcc, 0x78, 0x00,
0xfc, 0xcc, 0x0c, 0x18, 0x30, 0x30, 0x30, 0x00,
0x78, 0xcc, 0xcc, 0x78, 0xcc, 0xcc, 0x78, 0x00,
0x78, 0xcc, 0xcc, 0x7c, 0x0c, 0x18, 0x70, 0x00,
0x00, 0x30, 0x30, 0x00, 0x00, 0x30, 0x30, 0x00,
0x00, 0x30, 0x30, 0x00, 0x00, 0x30, 0x30, 0x60,
0x18, 0x30, 0x60, 0xc0, 0x60, 0x30, 0x18, 0x00,
0x00, 0x00, 0xfc, 0x00, 0x00, 0xfc, 0x00, 0x00,
0x60, 0x30, 0x18, 0x0c, 0x18, 0x30, 0x60, 0x00,
0x78, 0xcc, 0x0c, 0x18, 0x30, 0x00, 0x30, 0x00,
0x7c, 0xc6, 0xde, 0xde, 0xde, 0xc0, 0x78, 0x00,
0x30, 0x78, 0xcc, 0xcc, 0xfc, 0xcc, 0xcc, 0x00,
0xfc, 0x66, 0x66, 0x7c, 0x66, 0x66, 0xfc, 0x00,
0x3c, 0x66, 0xc0, 0xc0, 0xc0, 0x66, 0x3c, 0x00,
0xf8, 0x6c, 0x66, 0x66, 0x66, 0x6c, 0xf8, 0x00,
0xfe, 0x62, 0x68, 0x78, 0x68, 0x62, 0xfe, 0x00,
0xfe, 0x62, 0x68, 0x78, 0x68, 0x60, 0xf0, 0x00,
0x3c, 0x66, 0xc0, 0xc0, 0xce, 0x66, 0x3e, 0x00,
0xcc, 0xcc, 0xcc, 0xfc, 0xcc, 0xcc, 0xcc, 0x00,
0x78, 0x30, 0x30, 0x30, 0x30, 0x30, 0x78, 0x00,
0x1e, 0x0c, 0x0c, 0x0c, 0xcc, 0xcc, 0x78, 0x00,
0xe6, 0x66, 0x6c, 0x78, 0x6c, 0x66, 0xe6, 0x00,
0xf0, 0x60, 0x60, 0x60, 0x62, 0x66, 0xfe, 0x00,
0xc6, 0xee, 0xfe, 0xfe, 0xd6, 0xc6, 0xc6, 0x00,
0xc6, 0xe6, 0xf6, 0xde, 0xce, 0xc6, 0xc6, 0x00,
0x38, 0x6c, 0xc6, 0xc6, 0xc6, 0x6c, 0x38, 0x00,
0xfc, 0x66, 0x66, 0x7c, 0x60, 0x60, 0xf0, 0x00,
0x78, 0xcc, 0xcc, 0xcc, 0xdc, 0x78, 0x1c, 0x00,
0xfc, 0x66, 0x66, 0x7c, 0x6c, 0x66, 0xe6, 0x00,
0x78, 0xcc, 0xe0, 0x70, 0x1c, 0xcc, 0x78, 0x00,
0xfc, 0xb4, 0x30, 0x30, 0x30, 0x30, 0x78, 0x00,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xfc, 0x00,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0x78, 0x30, 0x00,
0xc6, 0xc6, 0xc6, 0xd6, 0xfe, 0xee, 0xc6, 0x00,
0xc6, 0xc6, 0x6c, 0x38, 0x38, 0x6c, 0xc6, 0x00,
0xcc, 0xcc, 0xcc, 0x78, 0x30, 0x30, 0x78, 0x00,
0xfe, 0xc6, 0x8c, 0x18, 0x32, 0x66, 0xfe, 0x00,
0x78, 0x60, 0x60, 0x60, 0x60, 0x60, 0x78, 0x00,
0xc0, 0x60, 0x30, 0x18, 0x0c, 0x06, 0x02, 0x00,
0x78, 0x18, 0x18, 0x18, 0x18, 0x18, 0x78, 0x00,
0x10, 0x38, 0x6c, 0xc6, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff,
0x30, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x78, 0x0c, 0x7c, 0xcc, 0x76, 0x00,
0xe0, 0x60, 0x60, 0x7c, 0x66, 0x66, 0xdc, 0x00,
0x00, 0x00, 0x78, 0xcc, 0xc0, 0xcc, 0x78, 0x00,
0x1c, 0x0c, 0x0c, 0x7c, 0xcc, 0xcc, 0x76, 0x00,
0x00, 0x00, 0x78, 0xcc, 0xfc, 0xc0, 0x78, 0x00,
0x38, 0x6c, 0x60, 0xf0, 0x60, 0x60, 0xf0, 0x00,
0x00, 0x00, 0x76, 0xcc, 0xcc, 0x7c, 0x0c, 0xf8,
0xe0, 0x60, 0x6c, 0x76, 0x66, 0x66, 0xe6, 0x00,
0x30, 0x00, 0x70, 0x30, 0x30, 0x30, 0x78, 0x00,
0x0c, 0x00, 0x0c, 0x0c, 0x0c, 0xcc, 0xcc, 0x78,
0xe0, 0x60, 0x66, 0x6c, 0x78, 0x6c, 0xe6, 0x00,
0x70, 0x30, 0x30, 0x30, 0x30, 0x30, 0x78, 0x00,
0x00, 0x00, 0xcc, 0xfe, 0xfe, 0xd6, 0xc6, 0x00,
0x00, 0x00, 0xf8, 0xcc, 0xcc, 0xcc, 0xcc, 0x00,
0x00, 0x00, 0x78, 0xcc, 0xcc, 0xcc, 0x78, 0x00,
0x00, 0x00, 0xdc, 0x66, 0x66, 0x7c, 0x60, 0xf0,
0x00, 0x00, 0x76, 0xcc, 0xcc, 0x7c, 0x0c, 0x1e,
0x00, 0x00, 0xdc, 0x76, 0x66, 0x60, 0xf0, 0x00,
0x00, 0x00, 0x7c, 0xc0, 0x78, 0x0c, 0xf8, 0x00,
0x10, 0x30, 0x7c, 0x30, 0x30, 0x34, 0x18, 0x00,
0x00, 0x00, 0xcc, 0xcc, 0xcc, 0xcc, 0x76, 0x00,
0x00, 0x00, 0xcc, 0xcc, 0xcc, 0x78, 0x30, 0x00,
0x00, 0x00, 0xc6, 0xd6, 0xfe, 0xfe, 0x6c, 0x00,
0x00, 0x00, 0xc6, 0x6c, 0x38, 0x6c, 0xc6, 0x00,
0x00, 0x00, 0xcc, 0xcc, 0xcc, 0x7c, 0x0c, 0xf8,
0x00, 0x00, 0xfc, 0x98, 0x30, 0x64, 0xfc, 0x00,
0x1c, 0x30, 0x30, 0xe0, 0x30, 0x30, 0x1c, 0x00,
0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00,
0xe0, 0x30, 0x30, 0x1c, 0x30, 0x30, 0xe0, 0x00,
0x76, 0xdc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x10, 0x38, 0x6c, 0xc6, 0xc6, 0xfe, 0x00,
};
ASM_START
.org 0xcc00
bios_table_area_end:
// bcc-generated data will be placed here
ASM_END