Bochs/bochs/cpu/access.cc
Stanislav Shwartsman 93a07982d5 rewritten LASS implementation to fix failures under ArrowLake model
biggest issue was:
A supervisor-mode data access causes a LASS violation only if supervisor-mode access protection is enabled
(CR4.SMAP = 1) and RFLAGS.AC = 0 or the access implicitly accesses a system data structure
2024-10-23 14:30:44 +03:00

772 lines
27 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2005-2024 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
bx_address bx_asize_mask[] = {
0xffff, // as16 (asize = '00)
0xffffffff, // as32 (asize = '01)
#if BX_SUPPORT_X86_64
BX_CONST64(0xffffffffffffffff), // as64 (asize = '10)
BX_CONST64(0xffffffffffffffff) // as64 (asize = '11)
#endif
};
#if BX_SUPPORT_EVEX
#define BX_MAX_MEM_ACCESS_LENGTH 64
#else
#if BX_SUPPORT_AVX
#define BX_MAX_MEM_ACCESS_LENGTH 32
#else
#define BX_MAX_MEM_ACCESS_LENGTH 16
#endif
#endif
bool BX_CPP_AttrRegparmN(4)
BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length, bool align)
{
Bit32u upper_limit;
length--;
if (align) {
Bit32u laddr = (Bit32u)(seg->cache.u.segment.base + offset);
if (laddr & length) {
BX_DEBUG(("write_virtual_checks(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
}
if (seg->cache.valid==0) {
BX_DEBUG(("write_virtual_checks(): segment descriptor not valid"));
return false;
}
if (seg->cache.p == 0) { /* not present */
BX_ERROR(("write_virtual_checks(): segment not present"));
return false;
}
switch (seg->cache.type) {
case 0: case 1: // read only
case 4: case 5: // read only, expand down
case 8: case 9: // execute only
case 10: case 11: // execute/read
case 12: case 13: // execute only, conforming
case 14: case 15: // execute/read-only, conforming
BX_ERROR(("write_virtual_checks(): no write access to seg"));
return false;
case 2: case 3: /* read/write */
if (seg->cache.u.segment.limit_scaled == 0xffffffff && seg->cache.u.segment.base == 0) {
seg->cache.valid |= SegAccessROK | SegAccessWOK | SegAccessROK4G | SegAccessWOK4G;
break;
}
if (offset > (seg->cache.u.segment.limit_scaled - length)
|| length > seg->cache.u.segment.limit_scaled)
{
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w"));
return false;
}
if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) {
// Mark cache as being OK type for succeeding read/writes. The limit
// checks still needs to be done though, but is more simple. We
// could probably also optimize that out with a flag for the case
// when limit is the maximum 32bit value. Limit should accomodate
// at least a dword, since we subtract from it in the simple
// limit check in other functions, and we don't want the value to roll.
// Only normal segments (not expand down) are handled this way.
seg->cache.valid |= SegAccessROK | SegAccessWOK;
}
break;
case 6: case 7: /* read/write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if (offset <= seg->cache.u.segment.limit_scaled ||
offset > upper_limit || (upper_limit - offset) < length)
{
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w expand down"));
return false;
}
break;
default:
BX_PANIC(("write_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
}
return true;
}
bool BX_CPP_AttrRegparmN(4)
BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length, bool align)
{
Bit32u upper_limit;
length--;
if (align) {
Bit32u laddr = (Bit32u)(seg->cache.u.segment.base + offset);
if (laddr & length) {
BX_DEBUG(("read_virtual_checks(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
}
if (seg->cache.valid==0) {
BX_DEBUG(("read_virtual_checks(): segment descriptor not valid"));
return false;
}
if (seg->cache.p == 0) { /* not present */
BX_ERROR(("read_virtual_checks(): segment not present"));
return false;
}
switch (seg->cache.type) {
case 0: case 1: /* read only */
case 2: case 3: /* read/write */
case 10: case 11: /* execute/read */
case 14: case 15: /* execute/read-only, conforming */
if (seg->cache.u.segment.limit_scaled == 0xffffffff && seg->cache.u.segment.base == 0) {
seg->cache.valid |= SegAccessROK | SegAccessROK4G;
break;
}
if (offset > (seg->cache.u.segment.limit_scaled - length)
|| length > seg->cache.u.segment.limit_scaled)
{
BX_ERROR(("read_virtual_checks(): read beyond limit"));
return false;
}
if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) {
// Mark cache as being OK type for succeeding reads. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
break;
case 4: case 5: /* read only, expand down */
case 6: case 7: /* read/write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if (offset <= seg->cache.u.segment.limit_scaled ||
offset > upper_limit || (upper_limit - offset) < length)
{
BX_ERROR(("read_virtual_checks(): read beyond limit expand down"));
return false;
}
break;
case 8: case 9: /* execute only */
case 12: case 13: /* execute only, conforming */
/* can't read or write an execute-only segment */
BX_ERROR(("read_virtual_checks(): execute only"));
return false;
default:
BX_PANIC(("read_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
}
return true;
}
bool BX_CPP_AttrRegparmN(3)
BX_CPU_C::execute_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
{
Bit32u upper_limit;
if (seg->cache.valid==0) {
BX_DEBUG(("execute_virtual_checks(): segment descriptor not valid"));
return false;
}
if (seg->cache.p == 0) { /* not present */
BX_ERROR(("execute_virtual_checks(): segment not present"));
return false;
}
length--;
switch (seg->cache.type) {
case 0: case 1: /* read only */
case 2: case 3: /* read/write */
case 10: case 11: /* execute/read */
case 14: case 15: /* execute/read-only, conforming */
if (seg->cache.u.segment.limit_scaled == 0xffffffff && seg->cache.u.segment.base == 0) {
seg->cache.valid |= SegAccessROK | SegAccessROK4G;
break;
}
if (offset > (seg->cache.u.segment.limit_scaled - length)
|| length > seg->cache.u.segment.limit_scaled)
{
BX_ERROR(("execute_virtual_checks(): read beyond limit"));
return false;
}
if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) {
// Mark cache as being OK type for succeeding reads. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
break;
case 8: case 9: /* execute only */
case 12: case 13: /* execute only, conforming */
if (offset > (seg->cache.u.segment.limit_scaled - length)
|| length > seg->cache.u.segment.limit_scaled)
{
BX_ERROR(("execute_virtual_checks(): read beyond limit execute only"));
return false;
}
break;
case 4: case 5: /* read only, expand down */
case 6: case 7: /* read/write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if (offset <= seg->cache.u.segment.limit_scaled ||
offset > upper_limit || (upper_limit - offset) < length)
{
BX_ERROR(("execute_virtual_checks(): read beyond limit expand down"));
return false;
}
break;
default:
BX_PANIC(("execute_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
}
return true;
}
const char *BX_CPU_C::strseg(bx_segment_reg_t *seg)
{
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]) return("ES");
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) return("CS");
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) return("SS");
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) return("DS");
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) return("FS");
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]) return("GS");
else {
BX_PANIC(("undefined segment passed to strseg()!"));
return("??");
}
}
int BX_CPU_C::int_number(unsigned s)
{
if (s == BX_SEG_REG_SS)
return BX_SS_EXCEPTION;
else
return BX_GP_EXCEPTION;
}
#if BX_SUPPORT_X86_64
bool BX_CPP_AttrRegparmN(3) BX_CPU_C::IsCanonicalAccess(bx_address laddr, unsigned rw, bool user)
{
if (! IsCanonical(laddr)) {
return false;
}
if (long64_mode() && BX_CPU_THIS_PTR cr4.get_LASS()) {
// laddr[63] == 0 user, laddr[63] == 1 supervisor
bool access_user_space = (laddr >> 63) == 0;
if (user) {
// When LASS is enabled, linear user accesses to supervisor space are blocked
if (! access_user_space) {
BX_ERROR(("User access LASS canonical violation for address 0x" FMT_LL "x rw=%d", laddr, rw));
return false;
}
return true;
}
// A supervisor-mode instruction fetch causes a LASS violation if it would accesses a linear address[63] == 0
// A supervisor-mode data access causes a LASS violation only if supervisor-mode access protection is enabled
// (CR4.SMAP = 1) and RFLAGS.AC = 0 or the access implicitly accesses a system data structure.
if (rw == BX_EXECUTE || (BX_CPU_THIS_PTR cr4.get_SMAP() && ! BX_CPU_THIS_PTR get_AC())) {
if (access_user_space) {
BX_ERROR(("Supervisor access LASS canonical violation for address 0x" FMT_LL "x rw=%d", laddr, rw));
return false;
}
}
}
return true;
}
#endif
int BX_CPU_C::access_read_linear(bx_address laddr, unsigned len, unsigned curr_pl, unsigned xlate_rw, Bit32u ac_mask, void *data)
{
#if BX_SUPPORT_CET
BX_ASSERT(xlate_rw == BX_READ || xlate_rw == BX_RW || xlate_rw == BX_SHADOW_STACK_READ || xlate_rw == BX_SHADOW_STACK_RW);
#else
BX_ASSERT(xlate_rw == BX_READ || xlate_rw == BX_RW);
#endif
bool user = (curr_pl == 3);
#if BX_SUPPORT_X86_64
if (! IsCanonicalAccess(laddr, xlate_rw, user)) {
BX_ERROR(("access_read_linear(): canonical failure"));
return -1;
}
#endif
Bit32u pageOffset = PAGE_OFFSET(laddr);
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && user) {
if (pageOffset & ac_mask) {
BX_ERROR(("access_read_linear(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
/* check for reference across multiple pages */
if ((pageOffset + len) <= 4096) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, user, xlate_rw);
BX_CPU_THIS_PTR address_xlation.pages = 1;
#if BX_SUPPORT_MEMTYPE
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
#endif
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1, len, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, tlbEntry->get_memtype(), xlate_rw, (Bit8u*) data);
#if BX_X86_DEBUGGER
hwbreakpoint_match(laddr, len, xlate_rw);
#endif
}
else {
// access across 2 pages
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1;
#if BX_SUPPORT_X86_64
if (! long64_mode()) laddr2 &= 0xffffffff; /* handle linear address wrap in legacy mode */
else {
if (! IsCanonicalAccess(laddr2, xlate_rw, user)) {
BX_ERROR(("access_read_linear(): canonical failure for second half of page split access"));
return -1;
}
}
#endif
bx_TLB_entry *tlbEntry2 = BX_DTLB_ENTRY_OF(laddr2, 0);
BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, user, xlate_rw);
BX_CPU_THIS_PTR address_xlation.paddress2 = translate_linear(tlbEntry2, laddr2, user, xlate_rw);
#if BX_SUPPORT_MEMTYPE
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
BX_CPU_THIS_PTR address_xlation.memtype2 = tlbEntry2->get_memtype();
#endif
#ifdef BX_LITTLE_ENDIAN
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(),
xlate_rw, (Bit8u*) data);
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(),
xlate_rw, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
#else // BX_BIG_ENDIAN
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(),
xlate_rw, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(),
xlate_rw, (Bit8u*) data);
#endif
#if BX_X86_DEBUGGER
hwbreakpoint_match(laddr, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw);
hwbreakpoint_match(laddr2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw);
#endif
}
return 0;
}
int BX_CPU_C::access_write_linear(bx_address laddr, unsigned len, unsigned curr_pl, unsigned xlate_rw, Bit32u ac_mask, void *data)
{
#if BX_SUPPORT_CET
BX_ASSERT(xlate_rw == BX_WRITE || xlate_rw == BX_SHADOW_STACK_WRITE);
#else
BX_ASSERT(xlate_rw == BX_WRITE);
#endif
bool user = (curr_pl == 3);
#if BX_SUPPORT_X86_64
if (! IsCanonicalAccess(laddr, xlate_rw, user)) {
BX_ERROR(("access_write_linear(): canonical failure"));
return -1;
}
#endif
Bit32u pageOffset = PAGE_OFFSET(laddr);
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && user) {
if (pageOffset & ac_mask) {
BX_ERROR(("access_write_linear(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
/* check for reference across multiple pages */
if ((pageOffset + len) <= 4096) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, user, xlate_rw);
BX_CPU_THIS_PTR address_xlation.pages = 1;
#if BX_SUPPORT_MEMTYPE
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
#endif
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1,
len, tlbEntry->get_memtype(), xlate_rw, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, len, data);
#if BX_X86_DEBUGGER
hwbreakpoint_match(laddr, len, xlate_rw);
#endif
}
else {
// access across 2 pages
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1;
#if BX_SUPPORT_X86_64
if (! long64_mode()) laddr2 &= 0xffffffff; /* handle linear address wrap in legacy mode */
else {
if (! IsCanonicalAccess(laddr2, xlate_rw, user)) {
BX_ERROR(("access_write_linear(): canonical failure for second half of page split access"));
return -1;
}
}
#endif
bx_TLB_entry *tlbEntry2 = BX_DTLB_ENTRY_OF(laddr2, 0);
BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, user, xlate_rw);
BX_CPU_THIS_PTR address_xlation.paddress2 = translate_linear(tlbEntry2, laddr2, user, xlate_rw);
#if BX_SUPPORT_MEMTYPE
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
BX_CPU_THIS_PTR address_xlation.memtype2 = tlbEntry2->get_memtype();
#endif
#ifdef BX_LITTLE_ENDIAN
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(),
xlate_rw, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(),
xlate_rw, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
#else // BX_BIG_ENDIAN
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, tlbEntry->get_memtype(),
xlate_rw, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, tlbEntry2->get_memtype(),
xlate_rw, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
#endif
#if BX_X86_DEBUGGER
hwbreakpoint_match(laddr, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw);
hwbreakpoint_match(laddr2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw);
#endif
}
return 0;
}
Bit8u BX_CPP_AttrRegparmN(1)
BX_CPU_C::system_read_byte(bx_address laddr)
{
Bit8u data;
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access from CPL=0
if (isReadOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
data = *hostAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 1, 0, BX_READ, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
return data;
}
Bit16u BX_CPP_AttrRegparmN(1)
BX_CPU_C::system_read_word(bx_address laddr)
{
Bit16u data;
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 1);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access from CPL=0
if (isReadOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
data = ReadHostWordFromLittleEndian(hostAddr);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 2, 0, BX_READ, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
return data;
}
Bit32u BX_CPP_AttrRegparmN(1)
BX_CPU_C::system_read_dword(bx_address laddr)
{
Bit32u data;
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 3);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access from CPL=0
if (isReadOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
data = ReadHostDWordFromLittleEndian(hostAddr);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 4, 0, BX_READ, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
return data;
}
Bit64u BX_CPP_AttrRegparmN(1)
BX_CPU_C::system_read_qword(bx_address laddr)
{
Bit64u data;
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 7);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access from CPL=0
if (isReadOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
data = ReadHostQWordFromLittleEndian(hostAddr);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 8, 0, BX_READ, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
return data;
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::system_write_byte(bx_address laddr, Bit8u data)
{
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access from CPL=0
if (isWriteOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 1);
*hostAddr = data;
return;
}
}
if (access_write_linear(laddr, 1, 0, BX_WRITE, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::system_write_word(bx_address laddr, Bit16u data)
{
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 1);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access from CPL=0
if (isWriteOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
WriteHostWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 2, 0, BX_WRITE, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::system_write_dword(bx_address laddr, Bit32u data)
{
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 3);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access from CPL=0
if (isWriteOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
WriteHostDWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 4, 0, BX_WRITE, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::system_write_qword(bx_address laddr, Bit64u data)
{
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 7);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access from CPL=0
if (isWriteOK(tlbEntry, 0)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
WriteHostQWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 8, 0, BX_WRITE, 0x0, (void *) &data) < 0)
exception(BX_GP_EXCEPTION, 0);
}
Bit8u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_read_byte(bx_address laddr, bool user)
{
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (isReadOK(tlbEntry, user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
return hostAddr;
}
}
return NULL;
}
Bit8u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_write_byte(bx_address laddr, bool user)
{
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
if (tlbEntry->lpf == lpf)
{
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (isWriteOK(tlbEntry, user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
return hostAddr;
}
}
return NULL;
}