Bochs/bochs/gui/siminterface.h

1370 lines
50 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: siminterface.h,v 1.102 2003-08-01 01:20:00 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
// Before I can describe what this file is for, I have to make the
// distinction between a configuration interface (CI) and the VGA display
// window (VGAW). I will try to avoid the term 'GUI' because it is unclear
// if that means CI or VGAW, and because not all interfaces are graphical
// anyway.
//
// The traditional Bochs screen is a window with a large VGA display panel and
// a series of buttons (floppy, cdrom, snapshot, power). Over the years, we
// have collected many implementations of the VGAW for different environments
// and platforms; each implementation is in a separate file under gui/*:
// x.cc, win32.cc, beos.cc, macintosh.cc, etc. The files gui.h and gui.cc
// define the platform independent part of the VGAW, leaving about 15 methods
// of the bx_gui_c class undefined. The platform dependent file must
// implement the remaining 15 methods.
//
// The configuration interface is relatively new, started by Bryce Denney in
// June 2001. The CI is intended to allow the user to edit a variety of
// configuration and runtime options. Some options, such as memory size or
// enabling the ethernet card, should only be changed before the simulation
// begins; others, such as floppy disk image, instructions per second, and
// logging options can be safely changed at runtime. The CI allows the user to
// make these changes. Before the CI existed, only a few things could be
// changed at runtime, all linked to clicking on the VGAW buttons.
//
// At the time that the CI was conceived, we were still debating what form the
// user interface part would take: stdin/stdout menus, a graphical application
// with menus and dialogs running in a separate thread, or even a tiny web
// server that you can connect to with a web browser. As a result the
// interface to the CI was designed so that the user interface of the CI
// could be replaced easily at compile time, or maybe even at runtime via
// a plugin architecture. To this end, we kept a clear separation between
// the user interface code and the siminterface, the code that interfaces with
// the simulator. The same siminterface is used all the time, while
// different implementations of the CI can be switched in reasonably easily.
// Only the CI code uses library specific graphics and I/O functions; the
// siminterface deals in portable abstractions and callback functions.
// The first CI implementation was a series of text mode menus implemented in
// control.cc.
//
// The configuration interface MUST use the siminterface methods to access the
// simulator. It should not modify settings in some device with code like
// bx_floppy.s.media[2].heads = 17. If such access is needed, then a
// siminterface method should be written to make the change on the CI's behalf.
// This separation is enforced by the fact that the CI does not even include
// bochs.h. You'll notice that control.cc include osdep.h, control.h, and
// siminterface.h, so it doesn't know what bx_floppy or bx_cpu_c are. I'm sure
// some people will say is overly restrictive and/or annoying. When I set it
// up this way, we were still talking about making the CI in a seperate
// process, where direct method calls would be impossible. Also, we have been
// considering turning devices into plugin modules which are dynamically
// linked. Any direct references to something like bx_floppy.s.media[2].heads
// would have to be reworked before a plugin interface was possible as well.
//
// The siminterface is the glue between the CI and the simulator. There is
// just one global instance of the siminterface object, which can be referred
// to by the global variable bx_simulator_interface_c *SIM; The base class
// bx_simulator_interface_c, contains only virtual functions and it defines the
// interface that the CI is allowed to use. In siminterface.cc, a class
// called bx_real_sim_c is defined with bx_simulator_interface_c as its parent
// class. Bx_real_sim_c implements each of the functions. The separation into
// parent class and child class leaves the possibility of making a different
// child class that talks to the simulator in a different way (networking for
// example). If you were writing a user interface in a separate process, you
// could define a subclass of bx_simulator_interface_c called
// bx_siminterface_proxy_c which opens up a network port and turns all method
// calls into network sends and receives. Because the interface is defined
// entirely by the base class, the code that calls the methods would not know
// the difference.
//
// An important part of the siminterface implementation is the use of parameter
// classes, or bx_param_*. The parameter classes are described below, where
// they are declared. Search for "parameter classes" below for detals.
//
// Also this header file declares data structures for certain events that pass
// between the siminterface and the CI. Search for "event structures" below.
//////////////////////////////////////////////////////
// BX_UI_TEXT should be set to 1 when the text mode configuration interface
// is compiled in. This gives each type of parameter a text_print and text_ask
// method (defined in gui/control.cc) so that you can call text_ask() on any
// kind of parameter to ask the user to edit the value.
//
// I have been considering whether to use the same strategy for the
// wxWindows interface, but I'm not sure if I like it. One problem is
// that in order to declare member functions that are useful for
// wxWindows, the wxWindows header files would have to be included
// before the param object definitions. That means that all the
// wxwindows headers would have be included when compiling every
// single bochs file. One of the things I like about the separation
// between the simulator and CI is that the two parts can be
// compiled without any knowledge of the other. Bochs doesn't include
// <wx.h>, and the wxwindows CI (wxmain.cc) doesn't need to include <bochs.h>.
// Aside from making compiles faster, this enforces the use of the siminterface
// so it keeps the interface clean (important when we may have multiple UI
// implementations for example). This argues for keeping UI-specific
// structures out of the simulator interface. It certainly works ok for the
// text interface, but that's because FILE* is standard and portable.
#define BX_UI_TEXT 1
//////////////////////////////////////////////////////
// list of possible types for bx_param_c and descendant objects
typedef enum {
BXT_OBJECT = 201,
BXT_PARAM,
BXT_PARAM_NUM,
BXT_PARAM_BOOL,
BXT_PARAM_ENUM,
BXT_PARAM_STRING,
BXT_LIST
} bx_objtype;
// list if parameter id values. The actual values are not important;
// it's only important that they all be different from each other.
typedef enum {
BXP_NULL = 301,
BXP_IPS,
BXP_REALTIME_PIT,
BXP_TEXT_SNAPSHOT_CHECK,
BXP_VGA_UPDATE_INTERVAL,
BXP_MOUSE_ENABLED,
BXP_MEM_SIZE,
BXP_ROM_PATH,
BXP_ROM_ADDRESS,
BXP_VGA_ROM_PATH,
BXP_OPTROM1_PATH,
BXP_OPTROM2_PATH,
BXP_OPTROM3_PATH,
BXP_OPTROM4_PATH,
BXP_OPTROM1_ADDRESS,
BXP_OPTROM2_ADDRESS,
BXP_OPTROM3_ADDRESS,
BXP_OPTROM4_ADDRESS,
BXP_KBD_SERIAL_DELAY,
BXP_KBD_PASTE_DELAY,
BXP_KBD_TYPE,
BXP_FLOPPY_CMD_DELAY,
BXP_FLOPPYA_DEVTYPE,
BXP_FLOPPYA_PATH,
BXP_FLOPPYA_TYPE,
BXP_FLOPPYA_STATUS,
BXP_FLOPPYA,
BXP_FLOPPYB_DEVTYPE,
BXP_FLOPPYB_PATH,
BXP_FLOPPYB_TYPE,
BXP_FLOPPYB_STATUS,
BXP_FLOPPYB,
BXP_ATA0_MENU,
BXP_ATA1_MENU,
BXP_ATA2_MENU,
BXP_ATA3_MENU,
BXP_ATA0,
BXP_ATA1,
BXP_ATA2,
BXP_ATA3,
BXP_ATA0_PRESENT,
BXP_ATA1_PRESENT,
BXP_ATA2_PRESENT,
BXP_ATA3_PRESENT,
BXP_ATA0_IOADDR1,
BXP_ATA1_IOADDR1,
BXP_ATA2_IOADDR1,
BXP_ATA3_IOADDR1,
BXP_ATA0_IOADDR2,
BXP_ATA1_IOADDR2,
BXP_ATA2_IOADDR2,
BXP_ATA3_IOADDR2,
BXP_ATA0_IRQ,
BXP_ATA1_IRQ,
BXP_ATA2_IRQ,
BXP_ATA3_IRQ,
BXP_ATA0_MASTER,
BXP_ATA0_SLAVE,
BXP_ATA1_MASTER,
BXP_ATA1_SLAVE,
BXP_ATA2_MASTER,
BXP_ATA2_SLAVE,
BXP_ATA3_MASTER,
BXP_ATA3_SLAVE,
BXP_ATA0_MASTER_PRESENT,
BXP_ATA0_SLAVE_PRESENT,
BXP_ATA1_MASTER_PRESENT,
BXP_ATA1_SLAVE_PRESENT,
BXP_ATA2_MASTER_PRESENT,
BXP_ATA2_SLAVE_PRESENT,
BXP_ATA3_MASTER_PRESENT,
BXP_ATA3_SLAVE_PRESENT,
BXP_ATA0_MASTER_TYPE,
BXP_ATA0_SLAVE_TYPE,
BXP_ATA1_MASTER_TYPE,
BXP_ATA1_SLAVE_TYPE,
BXP_ATA2_MASTER_TYPE,
BXP_ATA2_SLAVE_TYPE,
BXP_ATA3_MASTER_TYPE,
BXP_ATA3_SLAVE_TYPE,
BXP_ATA0_MASTER_MODE,
BXP_ATA0_SLAVE_MODE,
BXP_ATA1_MASTER_MODE,
BXP_ATA1_SLAVE_MODE,
BXP_ATA2_MASTER_MODE,
BXP_ATA2_SLAVE_MODE,
BXP_ATA3_MASTER_MODE,
BXP_ATA3_SLAVE_MODE,
BXP_ATA0_MASTER_PATH,
BXP_ATA0_SLAVE_PATH,
BXP_ATA1_MASTER_PATH,
BXP_ATA1_SLAVE_PATH,
BXP_ATA2_MASTER_PATH,
BXP_ATA2_SLAVE_PATH,
BXP_ATA3_MASTER_PATH,
BXP_ATA3_SLAVE_PATH,
BXP_ATA0_MASTER_CYLINDERS,
BXP_ATA0_SLAVE_CYLINDERS,
BXP_ATA1_MASTER_CYLINDERS,
BXP_ATA1_SLAVE_CYLINDERS,
BXP_ATA2_MASTER_CYLINDERS,
BXP_ATA2_SLAVE_CYLINDERS,
BXP_ATA3_MASTER_CYLINDERS,
BXP_ATA3_SLAVE_CYLINDERS,
BXP_ATA0_MASTER_HEADS,
BXP_ATA0_SLAVE_HEADS,
BXP_ATA1_MASTER_HEADS,
BXP_ATA1_SLAVE_HEADS,
BXP_ATA2_MASTER_HEADS,
BXP_ATA2_SLAVE_HEADS,
BXP_ATA3_MASTER_HEADS,
BXP_ATA3_SLAVE_HEADS,
BXP_ATA0_MASTER_SPT,
BXP_ATA0_SLAVE_SPT,
BXP_ATA1_MASTER_SPT,
BXP_ATA1_SLAVE_SPT,
BXP_ATA2_MASTER_SPT,
BXP_ATA2_SLAVE_SPT,
BXP_ATA3_MASTER_SPT,
BXP_ATA3_SLAVE_SPT,
BXP_ATA0_MASTER_STATUS,
BXP_ATA0_SLAVE_STATUS,
BXP_ATA1_MASTER_STATUS,
BXP_ATA1_SLAVE_STATUS,
BXP_ATA2_MASTER_STATUS,
BXP_ATA2_SLAVE_STATUS,
BXP_ATA3_MASTER_STATUS,
BXP_ATA3_SLAVE_STATUS,
BXP_ATA0_MASTER_MODEL,
BXP_ATA0_SLAVE_MODEL,
BXP_ATA1_MASTER_MODEL,
BXP_ATA1_SLAVE_MODEL,
BXP_ATA2_MASTER_MODEL,
BXP_ATA2_SLAVE_MODEL,
BXP_ATA3_MASTER_MODEL,
BXP_ATA3_SLAVE_MODEL,
BXP_ATA0_MASTER_BIOSDETECT,
BXP_ATA0_SLAVE_BIOSDETECT,
BXP_ATA1_MASTER_BIOSDETECT,
BXP_ATA1_SLAVE_BIOSDETECT,
BXP_ATA2_MASTER_BIOSDETECT,
BXP_ATA2_SLAVE_BIOSDETECT,
BXP_ATA3_MASTER_BIOSDETECT,
BXP_ATA3_SLAVE_BIOSDETECT,
BXP_ATA0_MASTER_TRANSLATION,
BXP_ATA0_SLAVE_TRANSLATION,
BXP_ATA1_MASTER_TRANSLATION,
BXP_ATA1_SLAVE_TRANSLATION,
BXP_ATA2_MASTER_TRANSLATION,
BXP_ATA2_SLAVE_TRANSLATION,
BXP_ATA3_MASTER_TRANSLATION,
BXP_ATA3_SLAVE_TRANSLATION,
#define BXP_PARAMS_PER_SERIAL_PORT 2
BXP_COM1_ENABLED,
BXP_COM1_PATH,
BXP_COM2_ENABLED,
BXP_COM2_PATH,
BXP_COM3_ENABLED,
BXP_COM3_PATH,
BXP_COM4_ENABLED,
BXP_COM4_PATH,
#define BXP_PARAMS_PER_USB_HUB 3
BXP_USB1_ENABLED,
BXP_USB1_IOADDR,
BXP_USB1_IRQ,
BXP_PRIVATE_COLORMAP,
BXP_FULLSCREEN,
BXP_SCREENMODE,
BXP_I440FX_SUPPORT,
BXP_NEWHARDDRIVESUPPORT,
BXP_LOG_FILENAME,
BXP_LOG_PREFIX,
BXP_DEBUGGER_LOG_FILENAME,
BXP_CMOS_PATH,
BXP_CMOS_IMAGE,
BXP_CMOS_TIME0,
BXP_LOAD32BITOS_WHICH,
BXP_LOAD32BITOS_PATH,
BXP_LOAD32BITOS_IOLOG,
BXP_LOAD32BITOS_INITRD,
BXP_LOAD32BITOS,
BXP_BOOTDRIVE,
BXP_FLOPPYSIGCHECK,
BXP_MENU_MAIN,
BXP_MENU_MEMORY,
BXP_MENU_INTERFACE,
BXP_MENU_DISK,
BXP_MENU_SERIAL_PARALLEL,
BXP_MENU_SOUND,
BXP_MENU_MISC,
BXP_MENU_RUNTIME,
BXP_SYSTEM_CLOCK_SYNC,
BXP_MAX_IPS,
BXP_NE2K_PRESENT,
BXP_NE2K_IOADDR,
BXP_NE2K_IRQ,
BXP_NE2K_MACADDR,
BXP_NE2K_ETHMOD,
BXP_NE2K_ETHDEV,
BXP_NE2K_SCRIPT,
BXP_NE2K,
BXP_SB16_PRESENT,
BXP_SB16_MIDIFILE,
BXP_SB16_WAVEFILE,
BXP_SB16_LOGFILE,
BXP_SB16_MIDIMODE,
BXP_SB16_WAVEMODE,
BXP_SB16_LOGLEVEL,
BXP_SB16_DMATIMER,
BXP_SB16,
#define BXP_PARAMS_PER_PARALLEL_PORT 2
BXP_PARPORT1_ENABLED,
BXP_PARPORT1_OUTFILE,
BXP_PARPORT2_ENABLED,
BXP_PARPORT2_OUTFILE,
BXP_KEYBOARD_USEMAPPING,
BXP_KEYBOARD_MAP,
BXP_KEYBOARD,
BXP_USER_SHORTCUT,
BXP_ASK_FOR_PATHNAME, // for general file selection dialog
BXP_BOCHS_START, // How Bochs starts
// experiment: add params for CPU registers
BXP_CPU_PARAMETERS,
BXP_CPU_EAX,
BXP_CPU_EBX,
BXP_CPU_ECX,
BXP_CPU_EDX,
BXP_CPU_EBP,
BXP_CPU_ESI,
BXP_CPU_EDI,
BXP_CPU_ESP,
BXP_CPU_EIP,
BXP_CPU_SEG_CS,
BXP_CPU_SEG_DS,
BXP_CPU_SEG_SS,
BXP_CPU_SEG_ES,
BXP_CPU_SEG_FS,
BXP_CPU_SEG_GS,
BXP_CPU_SEG_LDTR,
BXP_CPU_SEG_TR,
BXP_CPU_GDTR_BASE,
BXP_CPU_GDTR_LIMIT,
BXP_CPU_IDTR_BASE,
BXP_CPU_IDTR_LIMIT,
BXP_CPU_EFLAGS,
BXP_CPU_EFLAGS_ID,
BXP_CPU_EFLAGS_VIP,
BXP_CPU_EFLAGS_VIF,
BXP_CPU_EFLAGS_AC,
BXP_CPU_EFLAGS_VM,
BXP_CPU_EFLAGS_RF,
BXP_CPU_EFLAGS_NT,
BXP_CPU_EFLAGS_IOPL,
BXP_CPU_EFLAGS_OF,
BXP_CPU_EFLAGS_DF,
BXP_CPU_EFLAGS_IF,
BXP_CPU_EFLAGS_TF,
BXP_CPU_EFLAGS_SF,
BXP_CPU_EFLAGS_ZF,
BXP_CPU_EFLAGS_AF,
BXP_CPU_EFLAGS_PF,
BXP_CPU_EFLAGS_CF,
BXP_CPU_DR0,
BXP_CPU_DR1,
BXP_CPU_DR2,
BXP_CPU_DR3,
BXP_CPU_DR6,
BXP_CPU_DR7,
BXP_CPU_TR3,
BXP_CPU_TR4,
BXP_CPU_TR5,
BXP_CPU_TR6,
BXP_CPU_TR7,
BXP_CPU_CR0,
BXP_CPU_CR1,
BXP_CPU_CR2,
BXP_CPU_CR3,
BXP_CPU_CR4,
// a few parameters for the keyboard
BXP_KBD_PARAMETERS,
BXP_KBD_PARE,
BXP_KBD_TIM ,
BXP_KBD_AUXB,
BXP_KBD_KEYL,
BXP_KBD_C_D,
BXP_KBD_SYSF,
BXP_KBD_INPB,
BXP_KBD_OUTB,
BXP_KBD_TIMER_PENDING,
BXP_KBD_IRQ1_REQ,
BXP_KBD_IRQ12_REQ,
#if BX_DEBUGGER
// in debugger, is the simulation running (continue command) or waiting.
// This is only modified by debugger code, not by the user.
BXP_DEBUG_RUNNING,
#endif
BXP_SEL_CONFIG_INTERFACE,
BXP_SEL_DISPLAY_LIBRARY,
BXP_THIS_IS_THE_LAST // used to determine length of list
} bx_id;
// use x=1,2,3,4
#define BXP_COMx_ENABLED(x) \
(bx_id)(BXP_COM1_ENABLED + (((x)-1)*BXP_PARAMS_PER_SERIAL_PORT))
#define BXP_COMx_PATH(x) \
(bx_id)(BXP_COM1_PATH + (((x)-1)*BXP_PARAMS_PER_SERIAL_PORT))
// use x=1
#define BXP_USBx_ENABLED(x) \
(bx_id)(BXP_USB1_ENABLED + (((x)-1)*BXP_PARAMS_PER_USB_HUB))
#define BXP_USBx_IOADDR(x) \
(bx_id)(BXP_USB1_IOADDR + (((x)-1)*BXP_PARAMS_PER_USB_HUB))
#define BXP_USBx_IRQ(x) \
(bx_id)(BXP_USB1_IRQ + (((x)-1)*BXP_PARAMS_PER_USB_HUB))
// use x=1,2
#define BXP_PARPORTx_ENABLED(x) \
(bx_id)(BXP_PARPORT1_ENABLED + (((x)-1)*BXP_PARAMS_PER_PARALLEL_PORT))
#define BXP_PARPORTx_OUTFILE(x) \
(bx_id)(BXP_PARPORT1_OUTFILE + (((x)-1)*BXP_PARAMS_PER_PARALLEL_PORT))
typedef enum {
BX_TOOLBAR_UNDEFINED,
BX_TOOLBAR_FLOPPYA,
BX_TOOLBAR_FLOPPYB,
BX_TOOLBAR_CDROMD,
BX_TOOLBAR_RESET,
BX_TOOLBAR_POWER,
BX_TOOLBAR_COPY,
BX_TOOLBAR_PASTE,
BX_TOOLBAR_SNAPSHOT,
BX_TOOLBAR_CONFIG,
BX_TOOLBAR_MOUSE_EN,
BX_TOOLBAR_USER
} bx_toolbar_buttons;
// Log level defines
typedef enum {
LOGLEV_DEBUG = 0,
LOGLEV_INFO,
LOGLEV_ERROR,
LOGLEV_PANIC,
LOGLEV_PASS,
N_LOGLEV
} bx_log_levels;
// types of reset
#define BX_RESET_SOFTWARE 10
#define BX_RESET_HARDWARE 11
//cdrom
#define BX_EJECTED 10
#define BX_INSERTED 11
// boot devices
#define BX_BOOT_FLOPPYA 0
#define BX_BOOT_DISKC 1
#define BX_BOOT_CDROM 2
///////////////////////////////////////////////////////////////////
// event structures for communication between simulator and CI
///////////////////////////////////////////////////////////////////
// Because the CI (configuration interface) might be in a different
// thread or even a different process, we pass events encoded in data
// structures to it instead of just calling functions. Each type of
// event is declared as a different structure, and then all those
// structures are squished into a union in BxEvent. (BTW, this is
// almost exactly how X windows event structs work.)
//
// These are simple structs, unblemished by C++ methods and tricks.
// No matter what event type it is, we allocate a BxEvent for each
// one, as opposed to trying to save a few bytes on small events by
// allocating only the bytes necessary for it. This makes it easy and
// fast to store events in a queue, like this
// BxEvent event_queue[MAX_EVENTS];
//
// Events come in two varieties: synchronous and asynchronous. We
// have to worry about sync and async events because the CI and the
// simulation may be running in different threads. An async event is
// the simplest. Whichever thread originates the event just builds
// the data structure, sends it, and then continues with its business.
// Async events can go in either direction. Synchronous events
// require the other thread to "respond" before the originating thread
// can continue. It's like a function with a return value; you can't
// continue until you get the return value back.
//
// Examples:
//
// async event: In the wxWindows implementation, both the CI and the
// VGAW operate in the wxWindows GUI thread. When the user presses a
// key, wxWindows sends a wxKeyEvent to the VGAW event handler code in
// wx.cc. The VGAW handler then builds a BxEvent with
// type=BX_ASYNC_EVT_KEY, and fills in the bx_key and raw_scancode
// fields. The asynchronous event is placed on the event_queue for
// the simulator, then the VGAW handler returns. (With wxWindows and
// many other graphical libaries, the event handler must return
// quickly because the window will not be updated until it's done.)
// Some time later, the simulator reaches the point where it checks
// for new events from the user (actually controlled by
// bx_keyb_c::periodic() in iodev/keyboard.cc) and calls
// bx_gui.handle_events(). Then all the events in the queue are
// processed by the simulator. There is no "response" sent back to
// the originating thread.
//
// sync event: Sometimes the simulator reaches a point where it needs
// to ask the user how to proceed. In this case, the simulator sends
// a synchronous event because it requires a response before it can
// continue. It builds an event structure, perhaps with type
// BX_SYNC_EVT_ASK_PARAM, sends it to the user interface
// using the event handler function defined by set_notify_callback(),
// and pauses the simulation. The user interface asks the user the
// question, and puts the answer into the BxEvent.retcode field. The
// event handler function returns the modified BxEvent with retcode
// filled in, and the simulation continues. The details of this
// transaction can be complicated if the simulation and CI are not
// in the same thread, but the behavior is as described.
//
///// types and definitions used in event structures
#define BX_EVT_IS_ASYNC(type) ((type) > __ALL_EVENTS_BELOW_ARE_ASYNC__)
typedef enum {
__ALL_EVENTS_BELOW_ARE_SYNCHRONOUS__ = 2000,
BX_SYNC_EVT_GET_PARAM, // CI -> simulator -> CI
BX_SYNC_EVT_ASK_PARAM, // simulator -> CI -> simulator
BX_SYNC_EVT_TICK, // simulator -> CI, wait for response.
BX_SYNC_EVT_LOG_ASK, // simulator -> CI, wait for response.
BX_SYNC_EVT_GET_DBG_COMMAND, // simulator -> CI, wait for response.
__ALL_EVENTS_BELOW_ARE_ASYNC__,
BX_ASYNC_EVT_KEY, // vga window -> simulator
BX_ASYNC_EVT_MOUSE, // vga window -> simulator
BX_ASYNC_EVT_SET_PARAM, // CI -> simulator
BX_ASYNC_EVT_LOG_MSG, // simulator -> CI
BX_ASYNC_EVT_DBG_MSG, // simulator -> CI
BX_ASYNC_EVT_VALUE_CHANGED, // simulator -> CI
BX_ASYNC_EVT_TOOLBAR, // CI -> simulator
BX_ASYNC_EVT_REFRESH // simulator -> CI
} BxEventType;
typedef union {
Bit32s s32;
char *charptr;
} AnyParamVal;
// Define substructures which make up the interior of BxEvent. The
// substructures, such as BxKeyEvent or BxMouseEvent, should never be
// allocated on their own. They are only intended to be used within
// the union in the BxEvent structure.
// Event type: BX_SYNC_EVT_TICK
//
// A tick event is synchronous, sent from the simulator to the GUI. The
// event doesn't do anything visible. Primarily it gives the GUI a chance
// to tell the simulator to quit, if necessary. There may be other uses
// for the tick in the future, such as giving some kind of regular
// status report or mentioning watched values that changed, but so far
// it's just for that one thing. There is no data associated with a
// tick event.
// Event type: BX_ASYNC_EVT_KEY
//
// A key event can be sent from the VGA window to the Bochs simulator.
// It is asynchronous.
typedef struct {
// what was pressed? This is a BX_KEY_* value. For key releases,
// BX_KEY_RELEASED is ORed with the base BX_KEY_*.
Bit32u bx_key;
bx_bool raw_scancode;
} BxKeyEvent;
// Event type: BX_ASYNC_EVT_MOUSE
//
// A mouse event can be sent from the VGA window to the Bochs
// simulator. It is asynchronous. Currently unused because mouse
// events aren't implemented in our wxWindows code yet.
typedef struct {
// type is BX_EVT_MOUSE
Bit16s dx, dy; // mouse motion delta
Bit8u buttons; // which buttons are pressed.
// bit 0: 1=left button down, 0=up
// bit 1: 1=right button down, 0=up
} BxMouseEvent;
// Event type: BX_SYNC_EVT_GET_PARAM, BX_ASYNC_EVT_SET_PARAM
//
// Parameter set/get events are initiated by the CI, since Bochs can
// always access the parameters directly. So far, I haven't used
// these event types. In the CI I just call
// SIM->get_param(parameter_id) to get a pointer to the bx_param_c
// object and then call the get/set methods. This is okay for
// configuration since bochs is not running. However it could be
// dangerous for the GUI thread to poke around in Bochs structures
// while the thread is running. For these cases, I may have to be
// more careful and actually build get/set events and place them on
// Bochs's event queue to be processed during SIM->periodic() or
// something.
typedef struct {
// type is BX_EVT_GET_PARAM, BX_EVT_SET_PARAM
class bx_param_c *param; // pointer to param structure
AnyParamVal val;
} BxParamEvent;
// Event type: BX_SYNC_EVT_ASK_PARAM
// Synchronous event sent from the simulator to the CI. This tells the
// CI to ask the user to choose the value of a parameter. The CI may
// need to discover the type of parameter so that it can use the right
// kind of graphical display. The BxParamEvent is used for these events
// too.
// FIXME: at the moment the GUI implements the ASK_PARAM event for just
// a few parameter types. I need to implement the event for all parameter
// types.
// Event type: BX_ASYNC_EVT_VALUE_CHANGED
//
// Asynchronous event sent from the simulator to the CI, telling it that
// some value that it (hopefully) cares about has changed. This isn't
// being used yet, but a good example is in a debugger interface, you might
// want to maintain a reasonably current display of the PC or some other
// simulation state. The CI would set some kind of event mask (which
// doesn't exist now of course) and then when certain values change, the
// simulator would send this event so that the CI can update. We may need
// some kind of "flow control" since the simulator will be able to produce
// new events much faster than the gui can accept them.
// Event type: BX_ASYNC_EVT_LOG_MSG (unused)
//
// Asynchronous event from the simulator to the CI. When a BX_PANIC,
// BX_ERROR, BX_INFO, or BX_DEBUG is found in the simulator code, this
// event type can be used to inform the CI of the condition. There is
// no point in sending messages to the CI that will not be displayed; these
// would only slow the simulation. So we will need some mechanism for
// choosing what kinds of events will be delivered to the CI. Normally,
// you wouldn't want to look at the log unless something is going wrong.
// At that point, you might want to open up a window to watch the debug
// messages from one or two devices only.
//
// Idea: Except for panics that require user attention to continue, it
// might be most efficient to just append log messages to a file.
// When the user wants to look at the log messages, the gui can reopen
// the file (read only), skip to the end, and look backward for a
// reasonable number of lines to display (200?). This allows it to
// skip over huge bursts of log entries without allocating memory,
// synchronizing threads, etc. for each.
typedef struct {
Bit8u level;
const char *prefix;
const char *msg;
} BxLogMsgEvent;
// Event type: BX_ASYNC_EVT_DBG_MSG (unused)
//
// Also uses BxLogMsgEvent, but this is a message to be displayed in
// the debugger history window.
// Event type: BX_SYNC_EVT_LOG_ASK
//
// This is a synchronous version of BX_ASYNC_EVT_LOG_MSG, which is used
// when the "action=ask" setting is used. If the simulator runs into a
// panic, it sends a synchronous BX_SYNC_EVT_LOG_ASK to the CI to be
// displayed. The CI shows a dialog that asks if the user wants to
// continue, quit, etc. and sends the answer back to the simulator.
// This event also uses BxLogMsgEvent.
enum {
BX_LOG_ASK_CHOICE_CONTINUE,
BX_LOG_ASK_CHOICE_CONTINUE_ALWAYS,
BX_LOG_ASK_CHOICE_DIE,
BX_LOG_ASK_CHOICE_DUMP_CORE,
BX_LOG_ASK_CHOICE_ENTER_DEBUG,
BX_LOG_ASK_N_CHOICES
};
// Event type: BX_SYNC_EVT_GET_DBG_COMMAND
//
// This is a synchronous event sent from the simulator to the debugger
// requesting the next action. In a text mode debugger, this would prompt
// the user for the next command. When a new command is ready, the
// synchronous event is sent back with its fields filled in.
typedef struct {
char *command; // null terminated string. allocated by debugger interface
// with new operator, freed by simulator with delete.
} BxDebugCommand;
// Event type: BX_EVT_TOOLBAR
// Asynchronous event from the VGAW to the simulator, sent when the user
// clicks on a toolbar button. This may one day become something more
// general, like a command event, but at the moment it's only needed for
// the toolbar events.
typedef struct {
bx_toolbar_buttons button;
bool on; // for toggling buttons, on=true means the toolbar button is
// pressed. on=false means it is not pressed.
} BxToolbarEvent;
// The BxEvent structure should be used for all events. Every event has
// a type and a spot for a return code (only used for synchronous events).
typedef struct {
BxEventType type; // what kind is this?
Bit32s retcode; // sucess or failure. only used for synchronous events.
union {
BxKeyEvent key;
BxMouseEvent mouse;
BxParamEvent param;
BxLogMsgEvent logmsg;
BxToolbarEvent toolbar;
BxDebugCommand debugcmd;
} u;
} BxEvent;
////////////////////////////////////////////////////////////////////
// parameter classes: bx_param_c and family
////////////////////////////////////////////////////////////////////
//
// All variables that can be configured through the CI are declared as
// "parameters" or objects of type bx_param_*. There is a bx_param_*
// class for each type of data that the user would need to see and
// edit, e.g. integer, boolean, enum, string, filename, or list of
// other parameters. The purpose of the bx_param_* class, in addition
// to storing the parameter's value, is to hold the name, description,
// and constraints on the value. The bx_param_* class should hold
// everything that the CI would need to display the value and allow
// the user to modify it. For integer parameters, the minimum and
// maximum allowed value can be defined, and the base in which it
// should be displayed and interpreted. For enums, the
// bx_param_enum_c structure includes the list of values which the
// parameter can have.
//
// Also, some parameter classes support get/set callback functions to
// allow arbitrary code to be executed when the parameter is get/set.
// An example of where this is useful: if you disable the NE2K card,
// the set() handler for that parameter can tell the user interface
// that the NE2K's irq, I/O address, and mac address should be
// disabled (greyed out, hidden, or made inaccessible). The get/set
// methods can also check if the set() value is acceptable using
// whatever means and override it.
//
// The parameter concept is similar to the use of parameters in JavaBeans.
class bx_object_c;
class bx_param_c;
class bx_param_num_c;
class bx_param_enum_c;
class bx_param_bool_c;
class bx_param_string_c;
class bx_param_filename_c;
class bx_list_c;
class BOCHSAPI bx_object_c {
private:
bx_id id;
bx_objtype type;
protected:
void set_type (bx_objtype type);
public:
bx_object_c (bx_id id);
bx_id get_id () { return id; }
Bit8u get_type () { return type; }
};
class BOCHSAPI bx_param_c : public bx_object_c {
BOCHSAPI_CYGONLY static const char *default_text_format;
protected:
char *name;
char *description;
const char *text_format; // printf format string. %d for ints, %s for strings, etc.
char *ask_format; // format string for asking for a new value
int runtime_param;
int enabled;
public:
bx_param_c (bx_id id, char *name, char *description);
void set_format (const char *format) {text_format = format;}
const char *get_format () {return text_format;}
void set_ask_format (char *format) {ask_format = format; }
char *get_ask_format () {return ask_format;}
void set_runtime_param (int val) { runtime_param = val; }
char *get_name () { return name; }
char *get_description () { return description; }
int get_enabled () { return enabled; }
virtual void set_enabled (int enabled) { this->enabled = enabled; }
void reset () {}
int getint () {return -1;}
static const char* set_default_format (const char *f);
static const char *get_default_format () { return default_text_format; }
virtual bx_list_c *get_dependent_list () { return NULL; }
#if BX_UI_TEXT
virtual void text_print (FILE *fp) {}
virtual int text_ask (FILE *fpin, FILE *fpout) {return -1;}
#endif
};
typedef Bit64s (*param_event_handler)(class bx_param_c *, int set, Bit64s val);
class BOCHSAPI bx_param_num_c : public bx_param_c {
BOCHSAPI_CYGONLY static Bit32u default_base;
// The dependent_list is initialized to NULL. If dependent_list is modified
// to point to a bx_list_c of other parameters, the set() method of
// bx_param_bool_c will enable those parameters when this bool is true, and
// disable them when this bool is false.
bx_list_c *dependent_list;
void update_dependents ();
protected:
Bit64s min, max, initial_val;
union _uval_ {
Bit64s number; // used by bx_param_num_c
Bit64s *p64bit; // used by bx_shadow_num_c
Bit32s *p32bit; // used by bx_shadow_num_c
Bit16s *p16bit; // used by bx_shadow_num_c
Bit8s *p8bit; // used by bx_shadow_num_c
bx_bool *pbool; // used by bx_shadow_bool_c
} val;
param_event_handler handler;
int base;
public:
bx_param_num_c (bx_id id,
char *name,
char *description,
Bit64s min, Bit64s max, Bit64s initial_val);
void reset ();
void set_handler (param_event_handler handler);
virtual bx_list_c *get_dependent_list () { return dependent_list; }
void set_dependent_list (bx_list_c *l);
virtual void set_enabled (int enabled);
virtual Bit32s get () { return (Bit32s) get64(); }
virtual Bit64s get64 ();
virtual void set (Bit64s val);
void set_base (int base) { this->base = base; }
void set_initial_val (Bit64s initial_val);
int get_base () { return base; }
void set_range (Bit64u min, Bit64u max);
Bit64s get_min () { return min; }
Bit64s get_max () { return max; }
static Bit32u set_default_base (Bit32u val);
static Bit32u get_default_base () { return default_base; }
#if BX_UI_TEXT
virtual void text_print (FILE *fp);
virtual int text_ask (FILE *fpin, FILE *fpout);
#endif
};
// a bx_shadow_num_c is like a bx_param_num_c except that it doesn't
// store the actual value with its data. Instead, it uses val.p32bit
// to keep a pointer to the actual data. This is used to register
// existing variables as parameters, without have to access it via
// set/get methods.
class BOCHSAPI bx_shadow_num_c : public bx_param_num_c {
Bit8u varsize; // must be 64, 32, 16, or 8
Bit8u lowbit; // range of bits associated with this param
Bit64u mask; // mask is ANDed with value before it is returned from get
public:
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit64s *ptr_to_real_val,
Bit8u highbit = 63,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit64u *ptr_to_real_val,
Bit8u highbit = 63,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit32s *ptr_to_real_val,
Bit8u highbit = 31,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit32u *ptr_to_real_val,
Bit8u highbit = 31,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit16s *ptr_to_real_val,
Bit8u highbit = 15,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit16u *ptr_to_real_val,
Bit8u highbit = 15,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit8s *ptr_to_real_val,
Bit8u highbit = 7,
Bit8u lowbit = 0);
bx_shadow_num_c (bx_id id,
char *name,
char *description,
Bit8u *ptr_to_real_val,
Bit8u highbit = 7,
Bit8u lowbit = 0);
virtual Bit64s get64 ();
virtual void set (Bit64s val);
};
class BOCHSAPI bx_param_bool_c : public bx_param_num_c {
// many boolean variables are used to enable/disable modules. In the
// user interface, the enable variable should enable/disable all the
// other parameters associated with that module.
public:
bx_param_bool_c (bx_id id,
char *name,
char *description,
Bit64s initial_val);
#if BX_UI_TEXT
virtual void text_print (FILE *fp);
virtual int text_ask (FILE *fpin, FILE *fpout);
#endif
};
// a bx_shadow_bool_c is a shadow param based on bx_param_bool_c.
class BOCHSAPI bx_shadow_bool_c : public bx_param_bool_c {
// each bit of a bitfield can be a separate value. bitnum tells which
// bit is used. get/set will only modify that bit.
Bit8u bitnum;
public:
bx_shadow_bool_c (bx_id id,
char *name,
char *description,
bx_bool *ptr_to_real_val,
Bit8u bitnum = 0);
virtual Bit64s get64 ();
virtual void set (Bit64s val);
};
class BOCHSAPI bx_param_enum_c : public bx_param_num_c {
char **choices;
public:
bx_param_enum_c (bx_id id,
char *name,
char *description,
char **choices,
Bit64s initial_val,
Bit64s value_base = 0);
char *get_choice (int n) { return choices[n]; }
int find_by_name (const char *string);
bool set_by_name (const char *string);
#if BX_UI_TEXT
virtual void text_print (FILE *fp);
virtual int text_ask (FILE *fpin, FILE *fpout);
#endif
};
typedef char* (*param_string_event_handler)(class bx_param_string_c *, int set, char *val, int maxlen);
class BOCHSAPI bx_param_string_c : public bx_param_c {
int maxsize;
char *val, *initial_val;
param_string_event_handler handler;
bx_param_num_c *options;
char separator;
public:
enum {
RAW_BYTES = 1, // use binary text editor, like MAC addr
IS_FILENAME = 2, // 1=yes it's a filename, 0=not a filename.
// Some guis have a file browser. This
// bit suggests that they use it.
SAVE_FILE_DIALOG = 4 // Use save dialog opposed to open file dialog
} bx_string_opt_bits;
bx_param_string_c (bx_id id,
char *name,
char *description,
char *initial_val,
int maxsize=-1);
virtual ~bx_param_string_c ();
void reset ();
void set_handler (param_string_event_handler handler);
Bit32s get (char *buf, int len);
char *getptr () {return val; }
void set (char *buf);
bx_bool equals (const char *buf);
bx_param_num_c *get_options () { return options; }
void set_separator (char sep) {separator = sep; }
#if BX_UI_TEXT
virtual void text_print (FILE *fp);
virtual int text_ask (FILE *fpin, FILE *fpout);
#endif
};
// Declare a filename class. It is identical to a string, except that
// it initializes the options differently. This is just a shortcut
// for declaring a string param and setting the options with IS_FILENAME.
class BOCHSAPI bx_param_filename_c : public bx_param_string_c {
public:
bx_param_filename_c (bx_id id,
char *name,
char *description,
char *initial_val,
int maxsize=-1);
};
class BOCHSAPI bx_list_c : public bx_param_c {
private:
// just a list of bx_param_c objects. size tells current number of
// objects in the list, and maxsize tells how many list items are
// allocated in the constructor.
bx_param_c **list;
int size, maxsize;
// options is a bit field whose bits are defined by bx_listopt_bits ORed
// together. Options is a bx_param so that if necessary the bx_list could
// install a handler to cause get/set of options to have side effects.
bx_param_num_c *options;
// for a menu, the value of choice before the call to "ask" is default.
// After ask, choice holds the value that the user chose. Choice defaults
// to 1 in the constructor.
bx_param_num_c *choice;
// title of the menu or series
bx_param_string_c *title;
// if the menu shows a "return to previous menu" type of choice,
// this controls where that choice will go.
bx_param_c *parent;
void init ();
public:
enum {
// When a bx_list_c is displayed as a menu, SHOW_PARENT controls whether or
// not the menu shows a "Return to parent menu" choice or not.
SHOW_PARENT = (1<<0),
// Some lists are best displayed shown as menus, others as a series of
// related questions. This bit suggests to the CI that the series of
// questions format is preferred.
SERIES_ASK = (1<<1),
// When a bx_list_c is displayed in a dialog, BX_USE_TAB_WINDOW suggests
// to the CI that each item in the list should be shown as a separate
// tab. This would be most appropriate when each item is another list
// of parameters.
USE_TAB_WINDOW = (1<<2)
} bx_listopt_bits;
bx_list_c (bx_id id, int maxsize);
bx_list_c (bx_id id, char *name, char *description, bx_param_c **init_list);
bx_list_c (bx_id id, char *name, char *description, int maxsize);
virtual ~bx_list_c();
bx_list_c *clone ();
void add (bx_param_c *param);
bx_param_c *get (int index);
int get_size () { return size; }
bx_param_num_c *get_options () { return options; }
void set_options (bx_param_num_c *newopt) { options = newopt; }
bx_param_num_c *get_choice () { return choice; }
bx_param_string_c *get_title () { return title; }
void set_parent (bx_param_c *newparent) { parent = newparent; }
bx_param_c *get_parent () { return parent; }
#if BX_UI_TEXT
virtual void text_print (FILE *);
virtual int text_ask (FILE *fpin, FILE *fpout);
#endif
};
////////////////////////////////////////////////////////////////
// These are the different start modes.
enum {
// Just start the simulation without running the configuration interface
// at all, unless something goes wrong.
BX_QUICK_START = 200,
// Run the configuration interface. The default action will be to load a
// configuration file. This makes sense if a config file could not be
// loaded, either because it wasn't found or because it had errors.
BX_LOAD_START,
// Run the configuration interface. The default action will be to
// edit the configuration.
BX_EDIT_START,
// Run the configuration interface, but make the default action be to
// start the simulation.
BX_RUN_START
};
#define BX_FLOPPY_NONE 10 // floppy not present
#define BX_FLOPPY_1_2 11 // 1.2M 5.25"
#define BX_FLOPPY_1_44 12 // 1.44M 3.5"
#define BX_FLOPPY_2_88 13 // 2.88M 3.5"
#define BX_FLOPPY_720K 14 // 720K 3.5"
#define BX_FLOPPY_360K 15 // 360K 5.25"
#define BX_FLOPPY_160K 16 // 160K 5.25"
#define BX_FLOPPY_180K 17 // 180K 5.25"
#define BX_FLOPPY_320K 18 // 320K 5.25"
#define BX_FLOPPY_LAST 18 // last legal value of floppy type
#define BX_FLOPPY_GUESS 20 // decide based on image size
#define BX_ATA_DEVICE_DISK 0
#define BX_ATA_DEVICE_CDROM 1
#define BX_ATA_DEVICE_LAST 1
#define BX_ATA_BIOSDETECT_NONE 0
#define BX_ATA_BIOSDETECT_AUTO 1
#define BX_ATA_BIOSDETECT_CMOS 2
#define BX_ATA_TRANSLATION_NONE 0
#define BX_ATA_TRANSLATION_LBA 1
#define BX_ATA_TRANSLATION_LARGE 2
#define BX_ATA_TRANSLATION_RECHS 3
#define BX_ATA_TRANSLATION_AUTO 4
#define BX_ATA_TRANSLATION_LAST 4
#define BX_ATA_MODE_FLAT 0
#define BX_ATA_MODE_CONCAT 1
#define BX_ATA_MODE_EXTDISKSIM 2
#define BX_ATA_MODE_DLL_HD 3
#define BX_ATA_MODE_SPARSE 4
#define BX_ATA_MODE_VMWARE3 5
#define BX_ATA_MODE_SPLIT 6
#define BX_ATA_MODE_UNDOABLE 7
#define BX_ATA_MODE_GROWING 8
#define BX_ATA_MODE_VOLATILE 9
#define BX_ATA_MODE_Z_UNDOABLE 10
#define BX_ATA_MODE_Z_VOLATILE 11
#define BX_ATA_MODE_LAST 11
BOCHSAPI extern char *bochs_start_names[];
BOCHSAPI extern int n_bochs_start_names;
BOCHSAPI extern char *floppy_type_names[];
BOCHSAPI extern int floppy_type_n_sectors[];
BOCHSAPI extern int n_floppy_type_names;
BOCHSAPI extern char *floppy_status_names[];
BOCHSAPI extern int n_floppy_status_names;
BOCHSAPI extern char *floppy_bootdisk_names[];
BOCHSAPI extern int n_floppy_bootdisk_names;
BOCHSAPI extern char *loader_os_names[];
BOCHSAPI extern int n_loader_os_names;
BOCHSAPI extern char *keyboard_type_names[];
BOCHSAPI extern int n_keyboard_type_names;
BOCHSAPI extern char *atadevice_type_names[];
BOCHSAPI extern int n_atadevice_type_names;
BOCHSAPI extern char *atadevice_mode_names[];
BOCHSAPI extern int n_atadevice_mode_names;
BOCHSAPI extern char *atadevice_status_names[];
BOCHSAPI extern int n_atadevice_status_names;
BOCHSAPI extern char *atadevice_biosdetect_names[];
BOCHSAPI extern int n_atadevice_biosdetect_names;
BOCHSAPI extern char *atadevice_translation_names[];
BOCHSAPI extern int n_atadevice_translation_names;
typedef struct {
bx_param_enum_c *Odevtype;
bx_param_string_c *Opath;
bx_param_enum_c *Otype;
bx_param_enum_c *Ostatus;
} bx_floppy_options;
typedef struct {
bx_list_c *Omenu;
bx_param_bool_c *Opresent;
bx_param_enum_c *Otype;
bx_param_enum_c *Omode;
bx_param_string_c *Opath;
bx_param_num_c *Ocylinders;
bx_param_num_c *Oheads;
bx_param_num_c *Ospt;
bx_param_enum_c *Ostatus;
bx_param_string_c *Omodel;
bx_param_enum_c *Obiosdetect;
bx_param_enum_c *Otranslation;
} bx_atadevice_options;
typedef struct {
bx_param_bool_c *Oenabled;
bx_param_string_c *Odev;
} bx_serial_options;
typedef struct {
bx_param_bool_c *Oenabled;
bx_param_num_c *Oioaddr;
bx_param_num_c *Oirq;
} bx_usb_options;
////////////////////////////////////////////////////////////////////
// base class simulator interface, contains just virtual functions.
// I'm not longer sure that having a base class is going to be of any
// use... -Bryce
#include <setjmp.h>
enum ci_command_t { CI_START, CI_RUNTIME_CONFIG, CI_SHUTDOWN };
enum ci_return_t {
CI_OK, // normal return value
CI_ERR_NO_TEXT_CONSOLE // err: can't work because there's no text console
};
typedef int (*config_interface_callback_t)(void *userdata, ci_command_t command);
// bx_gui->set_display_mode() changes the mode between the configuration
// interface and the simulation. This is primarily intended for display
// libraries which have a full-screen mode such as SDL, term, and svgalib. The
// display mode is set to DISP_MODE_CONFIG before displaying any configuration
// menus, for panics that requires user input, when entering the debugger, etc.
// It is set to DISP_MODE_SIM when the Bochs simulation resumes. The constants
// are defined here so that configuration interfaces can use them with the
// bx_simulator_interface_c::set_display_mode() method.
enum disp_mode_t { DISP_MODE_CONFIG=100, DISP_MODE_SIM };
class BOCHSAPI bx_simulator_interface_c {
public:
bx_simulator_interface_c ();
virtual void set_quit_context (jmp_buf *context) {}
virtual int get_init_done () { return -1; }
virtual int set_init_done (int n) {return -1;}
virtual void get_param_id_range (int *min, int *max) {}
virtual int register_param (bx_id id, bx_param_c *it) {return -1;}
virtual void reset_all_param () {}
virtual bx_param_c *get_param (bx_id id) {return NULL;}
virtual bx_param_num_c *get_param_num (bx_id id) {return NULL;}
virtual bx_param_string_c *get_param_string (bx_id id) {return NULL;}
virtual bx_param_bool_c *get_param_bool (bx_id id) {return NULL;}
virtual bx_param_enum_c *get_param_enum (bx_id id) {return NULL;}
virtual int get_n_log_modules () {return -1;}
virtual char *get_prefix (int mod) {return 0;}
virtual int get_log_action (int mod, int level) {return -1;}
virtual void set_log_action (int mod, int level, int action) {}
virtual int get_default_log_action (int level) {return -1;}
virtual void set_default_log_action (int level, int action) {}
virtual char *get_action_name (int action) {return 0;}
virtual const char *get_log_level_name (int level) {return 0;}
virtual int get_max_log_level () {return -1;}
// exiting is somewhat complicated! The preferred way to exit bochs is
// to call BX_EXIT(exitcode). That is defined to call
// SIM->quit_sim(exitcode). The quit_sim function first calls
// the cleanup functions in bochs so that it can destroy windows
// and free up memory, then sends a notify message to the CI
// telling it that bochs has stopped.
virtual void quit_sim (int code) {}
virtual int get_exit_code () { return 0; }
virtual int get_default_rc (char *path, int len) {return -1;}
virtual int read_rc (char *path) {return -1;}
virtual int write_rc (char *rc, int overwrite) {return -1;}
virtual int get_log_file (char *path, int len) {return -1;}
virtual int set_log_file (char *path) {return -1;}
virtual int get_log_prefix (char *prefix, int len) {return -1;}
virtual int set_log_prefix (char *prefix) {return -1;}
virtual int get_debugger_log_file (char *path, int len) {return -1;}
virtual int set_debugger_log_file (char *path) {return -1;}
virtual int get_floppy_options (int drive, bx_floppy_options *out) {return -1;}
virtual int get_cdrom_options (int drive, bx_atadevice_options *out, int *where = NULL) {return -1;}
virtual char *get_floppy_type_name (int type) {return NULL;}
// The CI calls set_notify_callback to register its event handler function.
// This event handler function is called whenever the simulator needs to
// send an event to the CI. For example, if the simulator hits a panic and
// wants to ask the user how to proceed, it would call the CI event handler
// to ask the CI to display a dialog.
//
// NOTE: At present, the standard VGAW buttons (floppy, snapshot, power,
// etc.) are displayed and handled by gui.cc, not by the CI or siminterface.
// gui.cc uses its own callback functions to implement the behavior of
// the buttons. Some of these implementations call the siminterface.
typedef BxEvent* (*bxevent_handler)(void *theclass, BxEvent *event);
virtual void set_notify_callback (bxevent_handler func, void *arg) {}
virtual void get_notify_callback (bxevent_handler *func, void **arg) {}
// send an event from the simulator to the CI.
virtual BxEvent* sim_to_ci_event (BxEvent *event) {return NULL;}
// called from simulator when it hits serious errors, to ask if the user
// wants to continue or not
virtual int log_msg (const char *prefix, int level, const char *msg) {return -1;}
// tell the CI to ask the user for the value of a parameter.
virtual int ask_param (bx_id param) {return -1;}
// ask the user for a pathname
virtual int ask_filename (char *filename, int maxlen, char *prompt, char *the_default, int flags) {return -1;}
// called at a regular interval, currently by the keyboard handler.
virtual void periodic () {}
virtual int create_disk_image (const char *filename, int sectors, bx_bool overwrite) {return -3;}
// Tell the configuration interface (CI) that some parameter values have
// changed. The CI will reread the parameters and change its display if it's
// appropriate. Maybe later: mention which params have changed to save time.
virtual void refresh_ci () {}
// forces a vga update. This was added so that a debugger can force
// a vga update when single stepping, without having to wait thousands
// of cycles for the normal vga refresh triggered by iodev/keyboard.cc.
virtual void refresh_vga () {}
// forces a call to bx_gui.handle_events. This was added so that a debugger
// can force the gui events to be handled, so that interactive things such
// as a toolbar click will be processed.
virtual void handle_events () {}
// return first hard disk in ATA interface
virtual bx_param_c *get_first_cdrom () {return NULL;}
// return first cdrom in ATA interface
virtual bx_param_c *get_first_hd () {return NULL;}
#if BX_DEBUGGER
// for debugger: same behavior as pressing control-C
virtual void debug_break () {}
virtual void debug_interpret_cmd (char *cmd) {}
virtual char *debug_get_next_command () {return NULL;}
virtual void debug_puts (const char *text) {}
#endif
virtual void register_configuration_interface (
const char* name,
config_interface_callback_t callback,
void *userdata) {}
virtual int configuration_interface(const char* name, ci_command_t command) {return -1; }
virtual int begin_simulation (int argc, char *argv[]) {return -1;}
typedef bool (*is_sim_thread_func_t)();
is_sim_thread_func_t is_sim_thread_func;
virtual void set_sim_thread_func (is_sim_thread_func_t func) {
is_sim_thread_func = func;
}
virtual bool is_sim_thread () {return true;}
virtual bool is_wx_selected () {return false;}
// provide interface to bx_gui->set_display_mode() method for config
// interfaces to use.
virtual void set_display_mode (disp_mode_t newmode) {}
virtual bool test_for_text_console () { return true; }
};
BOCHSAPI extern bx_simulator_interface_c *SIM;
BOCHSAPI extern void bx_init_siminterface ();
BOCHSAPI extern int bx_init_main (int argc, char *argv[]);
#ifdef __WXMSW__
// Just to provide HINSTANCE, etc. in files that have not included bochs.h.
// I don't like this at all, but I don't see a way around it.
#include <windows.h>
#endif
// define structure to hold data that is passed into our main function.
typedef struct BOCHSAPI {
// standard argc,argv
int argc;
char **argv;
#ifdef __WXMSW__
// these are only used when compiling with wxWindows. This gives us a
// place to store the data that was passed to WinMain.
HINSTANCE hInstance;
HINSTANCE hPrevInstance;
LPSTR m_lpCmdLine;
int nCmdShow;
#endif
} bx_startup_flags_t;
BOCHSAPI extern bx_startup_flags_t bx_startup_flags;
BOCHSAPI extern bx_bool bx_user_quit;