Bochs/bochs/cpu/tasking.cc
Bryce Denney cec9135e9f - Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a
"bx_bool" which is always defined as Bit32u on all platforms.  In Carbon
  specific code, Boolean is still used because the Carbon header files
  define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
  The bug was that some code in Bochs depends on Boolean to be a
  32 bit value.  (This should be fixed, but I don't know all the places
  where it needs to be fixed yet.)  Because Carbon defined Boolean as
  an unsigned char, Bochs just followed along and used the unsigned char
  definition to avoid compile problems.  This exposed the dependency
  on 32 bit Boolean on MacOS X only and led to major simulation problems,
  that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
  our own type.  I chose bx_bool for several reasons.
  1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
     platforms, which makes it much less likely to have more platform-specific
     simulation differences in the future.  (I spent hours on a borrowed
     MacOSX machine chasing bug 618388 before discovering that different sized
     Booleans were the problem, and I don't want to repeat that.)
  2. We still have at least one dependency on 32 bit Booleans which must be
     fixed some time, but I don't want to risk introducing new bugs into the
     simulation just before the 2.0 release.

Modified Files:
    bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
    pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
    cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
    cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
    cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
    cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
    cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
    cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
    cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
    cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
    cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
    disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
    docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
    gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
    gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
    gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
    gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
    gui/x.cc instrument/example0/instrument.cc
    instrument/example0/instrument.h
    instrument/example1/instrument.cc
    instrument/example1/instrument.h
    instrument/stubs/instrument.cc instrument/stubs/instrument.h
    iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
    iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
    iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
    iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
    iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
    iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
    iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
    iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
    iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
    iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
    iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 11:44:41 +00:00

1001 lines
36 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: tasking.cc,v 1.18 2002-10-25 11:44:35 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 2
// Notes:
// ======
// Step 2: TSS descriptor is not busy TS (for IRET); GP (for JMP, CALL, INT)
// returns error code (Task's backlink TSS)???
// * TSS selector must map to GDT
// * TSS is stored in linear address space
// * what to do with I/O Map Base
// * what to do with T flag
// * where to set CR3 and flush paging cache
// * what happens when fault occurs, with some seg regs having valid bit cleared?
// * should check validity of current TR(TSS) before writing into it
//
// ======================
// 286 Task State Segment
// ======================
// dynamic item | hex dec offset
// 0 task LDT selector | 2a 42
// 1 DS selector | 28 40
// 1 SS selector | 26 38
// 1 CS selector | 24 36
// 1 ES selector | 22 34
// 1 DI | 20 32
// 1 SI | 1e 30
// 1 BP | 1c 28
// 1 SP | 1a 26
// 1 BX | 18 24
// 1 DX | 16 22
// 1 CX | 14 20
// 1 AX | 12 18
// 1 flag word | 10 16
// 1 IP (entry point) | 0e 14
// 0 SS for CPL 2 | 0c 12
// 0 SP for CPL 2 | 0a 10
// 0 SS for CPL 1 | 08 08
// 0 SP for CPL 1 | 06 06
// 0 SS for CPL 0 | 04 04
// 0 SP for CPL 0 | 02 02
// back link selector to TSS | 00 00
// ======================
// 386 Task State Segment
// ======================
// |31 16|15 0|
// |I/O Map Base |000000000000000000000|T| 64 static
// |0000000000000000| LDT | 60 static
// |0000000000000000| GS selector | 5c dynamic
// |0000000000000000| FS selector | 58 dynamic
// |0000000000000000| DS selector | 54 dynamic
// |0000000000000000| SS selector | 50 dynamic
// |0000000000000000| CS selector | 4c dynamic
// |0000000000000000| ES selector | 48 dynamic
// | EDI | 44 dynamic
// | ESI | 40 dynamic
// | EBP | 3c dynamic
// | ESP | 38 dynamic
// | EBX | 34 dynamic
// | EDX | 30 dynamic
// | ECX | 2c dynamic
// | EAX | 28 dynamic
// | EFLAGS | 24 dynamic
// | EIP (entry point) | 20 dynamic
// | CR3 (PDPR) | 1c static
// |000000000000000 | SS for CPL 2 | 18 static
// | ESP for CPL 2 | 14 static
// |000000000000000 | SS for CPL 1 | 10 static
// | ESP for CPL 1 | 0c static
// |000000000000000 | SS for CPL 0 | 08 static
// | ESP for CPL 0 | 04 static
// |000000000000000 | back link to prev TSS | 00 dynamic (updated only when return expected)
// ==================================================
// Effect of task switch on Busy, NT, and Link Fields
// ==================================================
// Field jump call/interrupt iret
// ------------------------------------------------------
// new busy bit Set Set No change
// old busy bit Cleared No change Cleared
// new NT flag No change Set No change
// old NT flag No change No change Cleared
// new link No change old TSS selector No change
// old link No change No change No change
// CR0.TS Set Set Set
// Note: I checked 386, 486, and Pentium, and they all exhibited
// exactly the same behaviour as above. There seems to
// be some misprints in the Intel docs.
void
BX_CPU_C::task_switch(bx_selector_t *tss_selector,
bx_descriptor_t *tss_descriptor, unsigned source,
Bit32u dword1, Bit32u dword2)
{
Bit32u obase32; // base address of old TSS
Bit32u nbase32; // base address of new TSS
Bit32u temp32, newCR3;
Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
raw_fs_selector, raw_gs_selector, raw_ldt_selector;
Bit16u temp16, trap_word;
bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
fs_selector, gs_selector, ldt_selector;
bx_descriptor_t cs_descriptor, ss_descriptor, ds_descriptor, es_descriptor,
fs_descriptor, gs_descriptor, ldt_descriptor;
Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
Bit32u newEAX, newECX, newEDX, newEBX;
Bit32u newESP, newEBP, newESI, newEDI;
Bit32u newEFLAGS, oldEFLAGS, newEIP;
unsigned exception_no;
Bit16u error_code;
//BX_DEBUG(( "TASKING: ENTER" ));
invalidate_prefetch_q();
// Discard any traps and inhibits for new context; traps will
// resume upon return.
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
// The following checks are made before calling task_switch(), for
// JMP & CALL only. These checks are NOT made for exceptions,
// interrupts, & IRET.
//
// 1) TSS DPL must be >= CPL
// 2) TSS DPL must be >= TSS selector RPL
// 3) TSS descriptor is not busy. TS(for IRET); GP(for JMP, CALL, INT)
// Privilege and busy checks done in CALL, JUMP, INT, IRET
exception_no = 256; // no exception
error_code = 0;
oldEFLAGS = read_eflags();
// Gather info about old TSS
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
// sanity check type: cannot have busy bit
BX_ASSERT ((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
obase32 = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
old_TSS_max = 43;
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss286.limit;
}
else {
obase32 = BX_CPU_THIS_PTR tr.cache.u.tss386.base;
old_TSS_max = 103;
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled;
}
// Gather info about new TSS
if (tss_descriptor->type <= 3) { // {1,3}
nbase32 = tss_descriptor->u.tss286.base; // new TSS.base
new_TSS_max = 43;
new_TSS_limit = tss_descriptor->u.tss286.limit;
}
else { // tss_descriptor->type = {9,11}
nbase32 = tss_descriptor->u.tss386.base; // new TSS.base
new_TSS_max = 103;
new_TSS_limit = tss_descriptor->u.tss386.limit_scaled;
}
// Task State Seg must be present, else #NP(TSS selector)
if (tss_descriptor->p==0) {
BX_INFO(("task_switch: TSS.p == 0"));
exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
// TSS must have valid limit, else #TS(TSS selector)
if (tss_selector->ti ||
tss_descriptor->valid==0 ||
new_TSS_limit < new_TSS_max) {
BX_PANIC(("task_switch(): TR not valid"));
exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
#if BX_SUPPORT_PAGING
// Check that old TSS, new TSS, and all segment descriptors
// used in the task switch are paged in.
if (BX_CPU_THIS_PTR cr0.pg) {
// Old TSS
(void) dtranslate_linear(obase32, 0, BX_WRITE);
(void) dtranslate_linear(obase32+old_TSS_max, 0, BX_WRITE);
// New TSS
(void) dtranslate_linear(nbase32, 0, BX_READ);
(void) dtranslate_linear(nbase32+new_TSS_max, 0, BX_READ);
// ??? Humm, we check the new TSS region with READ above,
// but sometimes we need to write the link field in that
// region. We also sometimes update other fields, perhaps
// we need to WRITE check them here also, so that we keep
// the written state consistent (ie, we don't encounter a
// page fault in the middle).
//
// ??? fix RW above
// ??? touch old/new TSS descriptors here when necessary.
}
#endif // BX_SUPPORT_PAGING
// Need to fetch all new registers and temporarily store them.
if (tss_descriptor->type <= 3) {
access_linear(nbase32 + 14, 2, 0, BX_READ, &temp16);
newEIP = temp16; // zero out upper word
access_linear(nbase32 + 16, 2, 0, BX_READ, &temp16);
newEFLAGS = temp16;
// incoming TSS is 16bit:
// - upper word of general registers is set to 0xFFFF
// - upper word of eflags is zero'd
// - FS, GS are zero'd
// - upper word of eIP is zero'd
access_linear(nbase32 + 18, 2, 0, BX_READ, &temp16);
newEAX = 0xffff0000 | temp16;
access_linear(nbase32 + 20, 2, 0, BX_READ, &temp16);
newECX = 0xffff0000 | temp16;
access_linear(nbase32 + 22, 2, 0, BX_READ, &temp16);
newEDX = 0xffff0000 | temp16;
access_linear(nbase32 + 24, 2, 0, BX_READ, &temp16);
newEBX = 0xffff0000 | temp16;
access_linear(nbase32 + 26, 2, 0, BX_READ, &temp16);
newESP = 0xffff0000 | temp16;
access_linear(nbase32 + 28, 2, 0, BX_READ, &temp16);
newEBP = 0xffff0000 | temp16;
access_linear(nbase32 + 30, 2, 0, BX_READ, &temp16);
newESI = 0xffff0000 | temp16;
access_linear(nbase32 + 32, 2, 0, BX_READ, &temp16);
newEDI = 0xffff0000 | temp16;
access_linear(nbase32 + 34, 2, 0, BX_READ, &raw_es_selector);
access_linear(nbase32 + 36, 2, 0, BX_READ, &raw_cs_selector);
access_linear(nbase32 + 38, 2, 0, BX_READ, &raw_ss_selector);
access_linear(nbase32 + 40, 2, 0, BX_READ, &raw_ds_selector);
access_linear(nbase32 + 42, 2, 0, BX_READ, &raw_ldt_selector);
raw_fs_selector = 0; // use a NULL selector
raw_gs_selector = 0; // use a NULL selector
// No CR3 change for 286 task switch
newCR3 = 0; // keep compiler happy (not used)
trap_word = 0; // keep compiler happy (not used)
}
else {
if (BX_CPU_THIS_PTR cr0.pg)
access_linear(nbase32 + 0x1c, 4, 0, BX_READ, &newCR3);
else
newCR3 = 0; // keep compiler happy (not used)
access_linear(nbase32 + 0x20, 4, 0, BX_READ, &newEIP);
access_linear(nbase32 + 0x24, 4, 0, BX_READ, &newEFLAGS);
access_linear(nbase32 + 0x28, 4, 0, BX_READ, &newEAX);
access_linear(nbase32 + 0x2c, 4, 0, BX_READ, &newECX);
access_linear(nbase32 + 0x30, 4, 0, BX_READ, &newEDX);
access_linear(nbase32 + 0x34, 4, 0, BX_READ, &newEBX);
access_linear(nbase32 + 0x38, 4, 0, BX_READ, &newESP);
access_linear(nbase32 + 0x3c, 4, 0, BX_READ, &newEBP);
access_linear(nbase32 + 0x40, 4, 0, BX_READ, &newESI);
access_linear(nbase32 + 0x44, 4, 0, BX_READ, &newEDI);
access_linear(nbase32 + 0x48, 2, 0, BX_READ, &raw_es_selector);
access_linear(nbase32 + 0x4c, 2, 0, BX_READ, &raw_cs_selector);
access_linear(nbase32 + 0x50, 2, 0, BX_READ, &raw_ss_selector);
access_linear(nbase32 + 0x54, 2, 0, BX_READ, &raw_ds_selector);
access_linear(nbase32 + 0x58, 2, 0, BX_READ, &raw_fs_selector);
access_linear(nbase32 + 0x5c, 2, 0, BX_READ, &raw_gs_selector);
access_linear(nbase32 + 0x60, 2, 0, BX_READ, &raw_ldt_selector);
access_linear(nbase32 + 0x64, 2, 0, BX_READ, &trap_word);
// I/O Map Base Address ???
}
#if 0
if (ss_descriptor.u.segment.d_b && (tss_descriptor->type<9)) {
BX_DEBUG(( "++++++++++++++++++++++++++" ));
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
//exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
#endif
//
// Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
// otherwise leave set.
//
// effect on Busy bit of old task
if ( (source==BX_TASK_FROM_JUMP) || (source==BX_TASK_FROM_IRET) ) {
// Bit is cleared
Bit32u laddr;
laddr = BX_CPU_THIS_PTR gdtr.base +
(BX_CPU_THIS_PTR tr.selector.index<<3) + 4;
access_linear(laddr, 4, 0, BX_READ, &temp32);
temp32 &= ~0x00000200;
access_linear(laddr, 4, 0, BX_WRITE, &temp32);
}
//
// Step 7: If IRET, clear NT flag in temp image of EFLAGS, otherwise
// leave alone.
//
if (source == BX_TASK_FROM_IRET) {
// NT flags in old task is cleared with an IRET
oldEFLAGS &= ~0x00004000;
}
//
// Step 8: Save dynamic state of old task.
//
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
// sanity check: tr.cache.type cannot have busy bit
BX_ASSERT ((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
temp16 = IP; access_linear(obase32 + 14, 2, 0, BX_WRITE, &temp16);
temp16 = oldEFLAGS; access_linear(obase32 + 16, 2, 0, BX_WRITE, &temp16);
temp16 = AX; access_linear(obase32 + 18, 2, 0, BX_WRITE, &temp16);
temp16 = CX; access_linear(obase32 + 20, 2, 0, BX_WRITE, &temp16);
temp16 = DX; access_linear(obase32 + 22, 2, 0, BX_WRITE, &temp16);
temp16 = BX; access_linear(obase32 + 24, 2, 0, BX_WRITE, &temp16);
temp16 = SP; access_linear(obase32 + 26, 2, 0, BX_WRITE, &temp16);
temp16 = BP; access_linear(obase32 + 28, 2, 0, BX_WRITE, &temp16);
temp16 = SI; access_linear(obase32 + 30, 2, 0, BX_WRITE, &temp16);
temp16 = DI; access_linear(obase32 + 32, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_linear(obase32 + 34, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_linear(obase32 + 36, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_linear(obase32 + 38, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_linear(obase32 + 40, 2, 0, BX_WRITE, &temp16);
}
else {
temp32 = EIP; access_linear(obase32 + 0x20, 4, 0, BX_WRITE, &temp32);
temp32 = oldEFLAGS; access_linear(obase32 + 0x24, 4, 0, BX_WRITE, &temp32);
temp32 = EAX; access_linear(obase32 + 0x28, 4, 0, BX_WRITE, &temp32);
temp32 = ECX; access_linear(obase32 + 0x2c, 4, 0, BX_WRITE, &temp32);
temp32 = EDX; access_linear(obase32 + 0x30, 4, 0, BX_WRITE, &temp32);
temp32 = EBX; access_linear(obase32 + 0x34, 4, 0, BX_WRITE, &temp32);
temp32 = ESP; access_linear(obase32 + 0x38, 4, 0, BX_WRITE, &temp32);
temp32 = EBP; access_linear(obase32 + 0x3c, 4, 0, BX_WRITE, &temp32);
temp32 = ESI; access_linear(obase32 + 0x40, 4, 0, BX_WRITE, &temp32);
temp32 = EDI; access_linear(obase32 + 0x44, 4, 0, BX_WRITE, &temp32);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_linear(obase32 + 0x48, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_linear(obase32 + 0x4c, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_linear(obase32 + 0x50, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_linear(obase32 + 0x54, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
access_linear(obase32 + 0x58, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
access_linear(obase32 + 0x5c, 2, 0, BX_WRITE, &temp16);
}
//
// Commit point. At this point, we commit to the new
// context. If an unrecoverable error occurs in further
// processing, we complete the task switch without performing
// additional access and segment availablility checks and
// generate the appropriate exception prior to beginning
// execution of the new task.
//
// Task switch clears LE/L3/L2/L1/L0 in DR7
BX_CPU_THIS_PTR dr7 &= ~0x00000155;
// effect on link field of new task
if ( source==BX_TASK_FROM_CALL_OR_INT ) {
// set to selector of old task's TSS
temp16 = BX_CPU_THIS_PTR tr.selector.value;
access_linear(nbase32 + 0, 2, 0, BX_WRITE, &temp16);
}
//
// Step 9: If call or interrupt, set the NT flag in the eflags
// image stored in new task's TSS. If IRET or JMP,
// NT is restored from new TSS eflags image. (no change)
//
// effect on NT flag of new task
if ( source==BX_TASK_FROM_CALL_OR_INT ) {
newEFLAGS |= 0x4000; // flag is set
}
//
// Step 10: If CALL, interrupt, or JMP, set busy flag in new task's
// TSS descriptor. If IRET, leave set.
//
if ( (source==BX_TASK_FROM_JUMP) || (source==BX_TASK_FROM_CALL_OR_INT) ) {
// set the new task's busy bit
Bit32u laddr;
laddr = BX_CPU_THIS_PTR gdtr.base + (tss_selector->index<<3) + 4;
access_linear(laddr, 4, 0, BX_READ, &dword2);
dword2 |= 0x00000200;
access_linear(laddr, 4, 0, BX_WRITE, &dword2);
}
//
// Step 11: Set TS flag in the CR0 image stored in the new task TSS.
//
// set TS bit in CR0 register
BX_CPU_THIS_PTR cr0.ts = 1;
BX_CPU_THIS_PTR cr0.val32 |= 0x00000008;
//
// Step 12: Load the task register with the segment selector and
// descriptor for the new task TSS.
//
BX_CPU_THIS_PTR tr.selector = *tss_selector;
BX_CPU_THIS_PTR tr.cache = *tss_descriptor;
// Reset the busy-flag, because all functions expect non-busy types in
// tr.cache. From Peter Lammich <peterl@sourceforge.net>.
BX_CPU_THIS_PTR tr.cache.type &= ~2;
//
// Step 13: Load the new task (dynamic) state from new TSS.
// Any errors associated with loading and qualification of
// segment descriptors in this step occur in the new task's
// context. State loaded here includes LDTR, CR3,
// EFLAGS, EIP, general purpose registers, and segment
// descriptor parts of the segment registers.
//
if ( (tss_descriptor->type >= 9) && BX_CPU_THIS_PTR cr0.pg) {
CR3_change(newCR3); // Tell paging unit about new cr3 value
BX_DEBUG (("task_switch changing CR3 to 0x%08x", newCR3));
BX_INSTR_TLB_CNTRL(CPU_ID, BX_INSTR_TASKSWITCH, newCR3);
}
BX_CPU_THIS_PTR prev_eip = EIP = newEIP;
write_eflags(newEFLAGS, 1,1,1,1);
#if BX_SUPPORT_X86_64
RAX = newEAX;
RCX = newECX;
RDX = newEDX;
RBX = newEBX;
RSP = newESP;
RBP = newEBP;
RSI = newESI;
RDI = newEDI;
#else
EAX = newEAX;
ECX = newECX;
EDX = newEDX;
EBX = newEBX;
ESP = newESP;
EBP = newEBP;
ESI = newESI;
EDI = newEDI;
#endif
// Fill in selectors for all segment registers. If errors
// occur later, the selectors will at least be loaded.
parse_selector(raw_es_selector, &es_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
parse_selector(raw_cs_selector, &cs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
parse_selector(raw_ss_selector, &ss_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
parse_selector(raw_ds_selector, &ds_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
parse_selector(raw_fs_selector, &fs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
parse_selector(raw_gs_selector, &gs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;
parse_selector(raw_ldt_selector, &ldt_selector);
BX_CPU_THIS_PTR ldtr.selector = ldt_selector;
// Start out with invalid descriptor caches, fill in
// with values only as they are validated.
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
// need to test valid bit in fetch_raw_descriptor?()
// or set limit to 0 instead when LDT is loaded with
// null. ??? +++
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
// LDTR
if (ldt_selector.ti) {
// LDT selector must be in GDT
BX_INFO(("task_switch: bad LDT selector TI=1"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// ??? is LDT loaded in v8086 mode
if ( (raw_ldt_selector & 0xfffc) != 0 ) {
bx_bool good;
good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad LDT fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ldt_descriptor);
// LDT selector of new task is valid, else #TS(new task's LDT)
if (ldt_descriptor.valid==0 ||
ldt_descriptor.type!=2 ||
ldt_descriptor.segment ||
ldt_descriptor.u.ldt.limit<7) {
BX_INFO(("task_switch: bad LDT segment"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// LDT of new task is present in memory, else #TS(new tasks's LDT)
else if (ldt_descriptor.p==0) {
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in LDTR shadow cache
BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
}
else {
// NULL LDT selector is OK, leave cache invalid
}
if (v8086_mode()) {
// load seg regs as 8086 registers
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
}
else {
// CS
if ( (raw_cs_selector & 0xfffc) != 0 ) {
bx_bool good;
good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad CS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &cs_descriptor);
// CS descriptor AR byte must indicate code segment else #TS(CS)
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0) {
BX_PANIC(("task_switch: CS not valid executable seg"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// if non-conforming then DPL must equal selector RPL else #TS(CS)
else if (cs_descriptor.u.segment.c_ed==0 &&
cs_descriptor.dpl!=cs_selector.rpl) {
BX_INFO(("task_switch: non-conforming: CS.dpl!=CS.RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// if conforming then DPL must be <= selector RPL else #TS(CS)
else if (cs_descriptor.u.segment.c_ed &&
cs_descriptor.dpl>cs_selector.rpl) {
BX_INFO(("task_switch: conforming: CS.dpl>RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// Code segment is present in memory, else #NP(new code segment)
else if (cs_descriptor.p==0) {
BX_PANIC(("task_switch: CS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor;
}
else {
// If new cs selector is null #TS(CS)
BX_PANIC(("task_switch: CS NULL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// SS
if ( (raw_ss_selector & 0xfffc) != 0 ) {
bx_bool good;
good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad SS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ss_descriptor);
// SS selector must be within its descriptor table limits else #TS(SS)
// SS descriptor AR byte must must indicate writable data segment,
// else #TS(SS)
if (ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0) {
BX_INFO(("task_switch: SS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
//
// Stack segment is present in memory, else #SF(new stack segment)
//
else if (ss_descriptor.p==0) {
BX_PANIC(("task_switch: SS not present"));
exception_no = BX_SS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// Stack segment DPL matches CS.RPL, else #TS(new stack segment)
else if (ss_descriptor.dpl != cs_selector.rpl) {
BX_PANIC(("task_switch: SS.rpl != CS.RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// Stack segment DPL matches selector RPL, else #TS(new stack segment)
else if (ss_descriptor.dpl != ss_selector.rpl) {
BX_PANIC(("task_switch: SS.dpl != SS.rpl"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
#if 0
// +++
else if (ss_descriptor.u.segment.d_b && (tss_descriptor->type<9)) {
BX_DEBUG(( "++++++++++++++++++++++++++" ));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
#endif
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor;
}
else {
// SS selector is valid, else #TS(new stack segment)
BX_PANIC(("task_switch: SS NULL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// if new selector is not null then perform following checks:
// index must be within its descriptor table limits else #TS(selector)
// AR byte must indicate data or readable code else #TS(selector)
// if data or non-conforming code then:
// DPL must be >= CPL else #TS(selector)
// DPL must be >= RPL else #TS(selector)
// AR byte must indicate PRESENT else #NP(selector)
// load cache with new segment descriptor and set valid bit
// DS
if ( (raw_ds_selector & 0xfffc) != 0 ) {
bx_bool good;
good = fetch_raw_descriptor2(&ds_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad DS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ds_descriptor);
if (ds_descriptor.valid==0 || ds_descriptor.segment==0 ||
(ds_descriptor.u.segment.executable &&
ds_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: DS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (ds_descriptor.type<12 &&
(ds_descriptor.dpl<cs_selector.rpl ||
ds_descriptor.dpl<ds_selector.rpl)) {
BX_PANIC(("task_switch: DS.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
else if (ds_descriptor.p==0) {
BX_PANIC(("task_switch: DS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache = ds_descriptor;
}
else {
// NULL DS selector is OK, leave cache invalid
}
// ES
if ( (raw_es_selector & 0xfffc) != 0 ) {
bx_bool good;
good = fetch_raw_descriptor2(&es_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad ES fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &es_descriptor);
if (es_descriptor.valid==0 || es_descriptor.segment==0 ||
(es_descriptor.u.segment.executable &&
es_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: ES not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (es_descriptor.type<12 &&
(es_descriptor.dpl<cs_selector.rpl ||
es_descriptor.dpl<es_selector.rpl)) {
BX_PANIC(("task_switch: ES.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
else if (es_descriptor.p==0) {
BX_PANIC(("task_switch: ES.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache = es_descriptor;
}
else {
// NULL ES selector is OK, leave cache invalid
}
// FS
if ( (raw_fs_selector & 0xfffc) != 0 ) { // not NULL
bx_bool good;
good = fetch_raw_descriptor2(&fs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad FS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &fs_descriptor);
if (fs_descriptor.valid==0 || fs_descriptor.segment==0 ||
(fs_descriptor.u.segment.executable &&
fs_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: FS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (fs_descriptor.type<12 &&
(fs_descriptor.dpl<cs_selector.rpl ||
fs_descriptor.dpl<fs_selector.rpl)) {
BX_PANIC(("task_switch: FS.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
else if (fs_descriptor.p==0) {
BX_PANIC(("task_switch: FS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache = fs_descriptor;
}
else {
// NULL FS selector is OK, leave cache invalid
}
// GS
if ( (raw_gs_selector & 0xfffc) != 0 ) {
bx_bool good;
good = fetch_raw_descriptor2(&gs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad GS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &gs_descriptor);
if (gs_descriptor.valid==0 || gs_descriptor.segment==0 ||
(gs_descriptor.u.segment.executable &&
gs_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: GS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (gs_descriptor.type<12 &&
(gs_descriptor.dpl<cs_selector.rpl ||
gs_descriptor.dpl<gs_selector.rpl)) {
BX_PANIC(("task_switch: GS.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
else if (gs_descriptor.p==0) {
BX_PANIC(("task_switch: GS.p==0"));
//exception(BX_NP_EXCEPTION, raw_gs_selector & 0xfffc, 0);
exception_no = BX_NP_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache = gs_descriptor;
}
else {
// NULL GS selector is OK, leave cache invalid
}
}
if ((tss_descriptor->type>=9) && (trap_word & 0x0001)) {
BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
BX_INFO(("task_switch: T bit set in new TSS."));
}
//
// Step 14: Begin execution of new task.
//
//BX_DEBUG(( "TASKING: LEAVE" ));
return;
post_exception:
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
BX_INFO(("task switch: posting exception %u after commit point",
exception_no));
exception(exception_no, error_code, 0);
return;
}
void
BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));
if (BX_CPU_THIS_PTR tr.cache.type==9) {
// 32-bit TSS
Bit32u TSSstackaddr;
TSSstackaddr = 8*pl + 4;
if ( (TSSstackaddr+7) >
BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled )
exception(BX_TS_EXCEPTION,
BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
TSSstackaddr+4, 2, 0, BX_READ, ss);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
TSSstackaddr, 4, 0, BX_READ, esp);
}
else if (BX_CPU_THIS_PTR tr.cache.type==1) {
// 16-bit TSS
Bit16u temp16;
Bit32u TSSstackaddr;
TSSstackaddr = 4*pl + 2;
if ( (TSSstackaddr+4) > BX_CPU_THIS_PTR tr.cache.u.tss286.limit )
exception(BX_TS_EXCEPTION,
BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss286.base +
TSSstackaddr+2, 2, 0, BX_READ, ss);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss286.base +
TSSstackaddr, 2, 0, BX_READ, &temp16);
*esp = temp16; // truncate
}
else {
BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)",
(unsigned) BX_CPU_THIS_PTR tr.cache.type));
}
}
#if BX_SUPPORT_X86_64
void
BX_CPU_C::get_RSP_from_TSS(unsigned pl, Bit64u *rsp)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_RSP_from_TSS: TR.cache invalid"));
// 32-bit TSS
Bit32u TSSstackaddr;
TSSstackaddr = 8*pl + 4;
if ( (TSSstackaddr+7) >
BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled )
exception(BX_TS_EXCEPTION,
BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
TSSstackaddr, 8, 0, BX_READ, rsp);
}
#endif // #if BX_SUPPORT_X86_64
#endif