d10731f162
Update committed SF patches in changes
169 lines
6.1 KiB
C++
Executable File
169 lines
6.1 KiB
C++
Executable File
/*============================================================================
|
|
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
|
|
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
|
|
floating point emulation.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
=============================================================================*/
|
|
|
|
/*============================================================================
|
|
* Written for Bochs (x86 achitecture simulator) by
|
|
* Stanislav Shwartsman (stl at fidonet.org.il)
|
|
* ==========================================================================*/
|
|
|
|
#include "softfloatx80.h"
|
|
#include "softfloat-round-pack.h"
|
|
#include "softfloat-macros.h"
|
|
|
|
/* executes single exponent reduction cycle */
|
|
static Bit64u remainder_kernel(Bit64u aSig0, Bit64u bSig, int expDiff, Bit64u *zSig0, Bit64u *zSig1)
|
|
{
|
|
Bit64u term0, term1;
|
|
Bit64u aSig1 = 0;
|
|
|
|
shortShift128Left(aSig1, aSig0, expDiff, &aSig1, &aSig0);
|
|
Bit64u q = estimateDiv128To64(aSig1, aSig0, bSig);
|
|
mul64To128(bSig, q, &term0, &term1);
|
|
sub128(aSig1, aSig0, term0, term1, zSig1, zSig0);
|
|
while ((Bit64s)(*zSig1) < 0) {
|
|
--q;
|
|
add128(*zSig1, *zSig0, 0, bSig, zSig1, zSig0);
|
|
}
|
|
return q;
|
|
}
|
|
|
|
static floatx80 do_fprem(floatx80 a, floatx80 b, Bit64u &q, int rounding_mode, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp, expDiff;
|
|
Bit64u aSig0, aSig1, bSig;
|
|
int aSign;
|
|
q = 0;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig0 = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig0<<1)
|
|
|| ((bExp == 0x7FFF) && (Bit64u) (bSig<<1)))
|
|
{
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
goto invalid;
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if ((Bit64u) (aSig0<<1) == 0) return a;
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig1 = 0;
|
|
|
|
if (expDiff >= 64) {
|
|
int n = (expDiff & 0x1f) | 0x20;
|
|
remainder_kernel(aSig0, bSig, n, &aSig0, &aSig1);
|
|
zExp = aExp - n;
|
|
q = (Bit64u) -1;
|
|
}
|
|
else {
|
|
zExp = bExp;
|
|
|
|
if (expDiff < 0) {
|
|
if (expDiff < -1)
|
|
return (a.fraction & BX_CONST64(0x8000000000000000)) ?
|
|
packFloatx80(aSign, aExp, aSig0) : a;
|
|
shift128Right(aSig0, 0, 1, &aSig0, &aSig1);
|
|
expDiff = 0;
|
|
}
|
|
|
|
if (expDiff > 0) {
|
|
q = remainder_kernel(aSig0, bSig, expDiff, &aSig0, &aSig1);
|
|
}
|
|
else {
|
|
if (bSig <= aSig0) {
|
|
aSig0 -= bSig;
|
|
q = 1;
|
|
}
|
|
}
|
|
|
|
if (rounding_mode == float_round_nearest_even)
|
|
{
|
|
Bit64u term0, term1;
|
|
shift128Right(bSig, 0, 1, &term0, &term1);
|
|
|
|
if (! lt128(aSig0, aSig1, term0, term1))
|
|
{
|
|
int lt = lt128(term0, term1, aSig0, aSig1);
|
|
int eq = eq128(aSig0, aSig1, term0, term1);
|
|
|
|
if ((eq && (q & 1)) || lt) {
|
|
aSign = !aSign;
|
|
++q;
|
|
}
|
|
if (lt) sub128(bSig, 0, aSig0, aSig1, &aSig0, &aSig1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return normalizeRoundAndPackFloatx80(80, aSign, zExp, aSig0, aSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the extended double-precision floating-point value
|
|
| `a' with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_ieee754_remainder(floatx80 a, floatx80 b, Bit64u &q, float_status_t &status)
|
|
{
|
|
return do_fprem(a, b, q, float_round_nearest_even, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the extended double-precision floating-point value
|
|
| `a' with respect to the corresponding value `b'. Unlike previous function
|
|
| the function does not compute the remainder specified in the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic. This function operates
|
|
| differently from the previous function in the way that it rounds the
|
|
| quotient of 'a' divided by 'b' to an integer.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_remainder(floatx80 a, floatx80 b, Bit64u &q, float_status_t &status)
|
|
{
|
|
return do_fprem(a, b, q, float_round_to_zero, status);
|
|
}
|