Bochs/bochs/cpu/debugstuff.cc
Kevin Lawton 0d7a5fdf3c I rehashed the way the EFLAGS register was stored internally.
All the EFLAGS bits used to be cached in separate fields.  I left
a few of them in separate fields for now - might remove them
at some point also.  When the arithmetic fields are known
(ie they're not in lazy mode), they are all cached in a
32-bit EFLAGS image, just like the x86 EFLAGS register expects.
All other eflags are store in the 32-bit register also, with
a few also mirrored in separate fields for now.

The reason I did this, was so that on x86 hosts, asm() statements
can be #ifdef'd in to do the calculation and get the native
eflags results very cheaply.  Just to test that it works, I
coded ADD_EdId() and ADD_EwIw() with some conditionally compiled
asm()s for accelerated eflags processing and it works.

-Kevin
2002-09-08 04:08:14 +00:00

1018 lines
42 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: debugstuff.cc,v 1.12 2002-09-08 04:08:14 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::debug(Bit32u offset)
{
BX_INFO(("| EAX=%08x EBX=%08x ECX=%08x EDX=%08x",
(unsigned) EAX, (unsigned) EBX, (unsigned) ECX, (unsigned) EDX));
BX_INFO(("| ESP=%08x EBP=%08x ESI=%08x EDI=%08x",
(unsigned) ESP, (unsigned) EBP, (unsigned) ESI, (unsigned) EDI));
BX_INFO(("| IOPL=%1u %s %s %s %s %s %s %s %s",
IOPL,
BX_CPU_THIS_PTR get_OF() ? "OV" : "NV",
GetEFlagsDFLogical() ? "DW" : "UP",
BX_CPU_THIS_PTR eflags.if_ ? "EI" : "DI",
BX_CPU_THIS_PTR get_SF() ? "NG" : "PL",
BX_CPU_THIS_PTR get_ZF() ? "ZR" : "NZ",
BX_CPU_THIS_PTR get_AF() ? "AC" : "NA",
BX_CPU_THIS_PTR get_PF() ? "PE" : "PO",
BX_CPU_THIS_PTR get_CF() ? "CY" : "NC"));
BX_INFO(("| SEG selector base limit G D"));
BX_INFO(("| SEG sltr(index|ti|rpl) base limit G D"));
BX_INFO(("| DS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b));
BX_INFO(("| ES:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b));
BX_INFO(("| FS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b));
BX_INFO(("| GS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b));
BX_INFO(("| SS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b));
BX_INFO(("| CS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b));
BX_INFO(("| EIP=%08x (%08x)", (unsigned) BX_CPU_THIS_PTR eip,
(unsigned) BX_CPU_THIS_PTR prev_eip));
#if 0
/* (mch) Hack to display the area round EIP and prev_EIP */
char buf[100];
sprintf(buf, "%04x:%08x ", BX_CPU_THIS_PTR sregs[BX_SREG_CS].selector.value, BX_CPU_THIS_PTR eip);
for (int i = 0; i < 8; i++) {
Bit8u data;
BX_CPU_THIS_PTR read_virtual_byte(BX_SREG_CS, BX_CPU_THIS_PTR eip + i, &data);
sprintf(buf+strlen(buf), "%02x ", data);
}
BX_INFO((buf));
sprintf(buf, "%04x:%08x ", BX_CPU_THIS_PTR sregs[BX_SREG_CS].selector.value, BX_CPU_THIS_PTR prev_eip);
for (int i = 0; i < 8; i++) {
Bit8u data;
BX_CPU_THIS_PTR read_virtual_byte(BX_SREG_CS, BX_CPU_THIS_PTR prev_eip + i, &data);
sprintf(buf+strlen(buf), "%02x ", data);
}
BX_INFO((buf));
#endif
#if BX_DISASM
Boolean valid;
Bit32u phy_addr;
Bit8u instr_buf[32];
char char_buf[256];
unsigned isize;
dbg_xlate_linear2phy(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + offset,
&phy_addr, &valid);
if (valid) {
BX_CPU_THIS_PTR mem->dbg_fetch_mem(phy_addr, 16, instr_buf);
isize = bx_disassemble.disasm(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b,
instr_buf, char_buf);
for (unsigned j=0; j<isize; j++)
BX_INFO((">> %02x", (unsigned) instr_buf[j]));
BX_INFO((">> : %s", char_buf));
}
else {
BX_INFO(("(instruction unavailable) page not present"));
}
#else
UNUSED(offset);
#endif // #if BX_DISASM
}
#if BX_DEBUGGER
Bit32u
BX_CPU_C::dbg_get_reg(unsigned reg)
{
Bit32u return_val32;
switch (reg) {
case BX_DBG_REG_EAX: return(EAX);
case BX_DBG_REG_ECX: return(ECX);
case BX_DBG_REG_EDX: return(EDX);
case BX_DBG_REG_EBX: return(EBX);
case BX_DBG_REG_ESP: return(ESP);
case BX_DBG_REG_EBP: return(EBP);
case BX_DBG_REG_ESI: return(ESI);
case BX_DBG_REG_EDI: return(EDI);
case BX_DBG_REG_EIP: return(EIP);
case BX_DBG_REG_EFLAGS:
return_val32 = dbg_get_eflags();
return(return_val32);
case BX_DBG_REG_CS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
case BX_DBG_REG_SS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
case BX_DBG_REG_DS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
case BX_DBG_REG_ES: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
case BX_DBG_REG_FS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
case BX_DBG_REG_GS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
default:
BX_PANIC(("get_reg: request for unknown register"));
return(0);
}
}
Boolean
BX_CPU_C::dbg_set_reg(unsigned reg, Bit32u val)
{
// returns 1=OK, 0=can't change
bx_segment_reg_t *seg;
Bit32u current_sys_bits;
switch (reg) {
case BX_DBG_REG_EAX: EAX = val; return(1);
case BX_DBG_REG_ECX: ECX = val; return(1);
case BX_DBG_REG_EDX: EDX = val; return(1);
case BX_DBG_REG_EBX: EBX = val; return(1);
case BX_DBG_REG_ESP: ESP = val; return(1);
case BX_DBG_REG_EBP: EBP = val; return(1);
case BX_DBG_REG_ESI: ESI = val; return(1);
case BX_DBG_REG_EDI: EDI = val; return(1);
case BX_DBG_REG_EIP: EIP = val; return(1);
case BX_DBG_REG_EFLAGS:
BX_INFO(("dbg_set_reg: can not handle eflags yet."));
if ( val & 0xffff0000 ) {
BX_INFO(("dbg_set_reg: can not set upper 16 bits of eflags."));
return(0);
}
// make sure none of the system bits are being changed
current_sys_bits = (BX_CPU_THIS_PTR eflags.nt << 14) |
(BX_CPU_THIS_PTR eflags.iopl << 12) |
(BX_CPU_THIS_PTR eflags.tf << 8);
if ( current_sys_bits != (val & 0x0000f100) ) {
BX_INFO(("dbg_set_reg: can not modify NT, IOPL, or TF."));
return(0);
}
BX_CPU_THIS_PTR set_CF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_PF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_AF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_ZF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_SF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR eflags.if_ = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.df = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR set_OF(val & 0x01);
if (BX_CPU_THIS_PTR eflags.if_)
BX_CPU_THIS_PTR async_event = 1;
return(1);
case BX_DBG_REG_CS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS];
break;
case BX_DBG_REG_SS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS];
break;
case BX_DBG_REG_DS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
break;
case BX_DBG_REG_ES:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
break;
case BX_DBG_REG_FS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS];
break;
case BX_DBG_REG_GS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS];
break;
default:
BX_PANIC(("dbg_set_reg: unrecognized register ID (%u)", reg));
return(0);
}
if (BX_CPU_THIS_PTR real_mode()) {
seg->selector.value = val;
seg->cache.valid = 1;
seg->cache.p = 1;
seg->cache.dpl = 0;
seg->cache.segment = 1; // regular segment
if (reg == BX_DBG_REG_CS) {
seg->cache.u.segment.executable = 1; // code segment
}
else {
seg->cache.u.segment.executable = 0; // data segment
}
seg->cache.u.segment.c_ed = 0; // expand up/non-conforming
seg->cache.u.segment.r_w = 1; // writeable
seg->cache.u.segment.a = 1; // accessed
seg->cache.u.segment.base = val << 4;
seg->cache.u.segment.limit = 0xffff;
seg->cache.u.segment.limit_scaled = 0xffff;
seg->cache.u.segment.g = 0; // byte granular
seg->cache.u.segment.d_b = 0; // default 16bit size
seg->cache.u.segment.avl = 0;
return(1); // ok
}
return(0); // can't change when not in real mode
}
unsigned
BX_CPU_C::dbg_query_pending(void)
{
unsigned ret = 0;
if ( BX_HRQ ) { // DMA Hold Request
ret |= BX_DBG_PENDING_DMA;
}
if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ ) {
ret |= BX_DBG_PENDING_IRQ;
}
return(ret);
}
Bit32u
BX_CPU_C::dbg_get_eflags(void)
{
Bit32u val32;
val32 =
(BX_CPU_THIS_PTR get_CF()) |
(BX_CPU_THIS_PTR eflags.bit1 << 1) |
((BX_CPU_THIS_PTR get_PF()) << 2) |
(BX_CPU_THIS_PTR eflags.bit3 << 3) |
((BX_CPU_THIS_PTR get_AF()>0) << 4) |
(BX_CPU_THIS_PTR eflags.bit5 << 5) |
((BX_CPU_THIS_PTR get_ZF()>0) << 6) |
((BX_CPU_THIS_PTR get_SF()>0) << 7) |
(BX_CPU_THIS_PTR eflags.tf << 8) |
(BX_CPU_THIS_PTR eflags.if_ << 9) |
(BX_CPU_THIS_PTR eflags.df << 10) |
((BX_CPU_THIS_PTR get_OF()>0) << 11) |
(BX_CPU_THIS_PTR eflags.iopl << 12) |
(BX_CPU_THIS_PTR eflags.nt << 14) |
(BX_CPU_THIS_PTR eflags.bit15 << 15) |
(BX_CPU_THIS_PTR eflags.rf << 16) |
(BX_CPU_THIS_PTR eflags.vm << 17);
#if BX_CPU_LEVEL >= 4
val32 |= (BX_CPU_THIS_PTR eflags.ac << 18);
//val32 |= (BX_CPU_THIS_PTR eflags.vif << 19);
//val32 |= (BX_CPU_THIS_PTR eflags.vip << 20);
val32 |= (BX_CPU_THIS_PTR eflags.id << 21);
#endif
return(val32);
}
Bit32u
BX_CPU_C::dbg_get_descriptor_l(bx_descriptor_t *d)
{
Bit32u val;
if (d->valid == 0) {
return(0);
}
if (d->segment) {
val = ((d->u.segment.base & 0xffff) << 16) |
(d->u.segment.limit & 0xffff);
return(val);
}
else {
switch (d->type) {
case 0: // Reserved (not yet defined)
BX_ERROR(( "#get_descriptor_l(): type %d not finished", d->type ));
return(0);
case 1: // available 16bit TSS
val = ((d->u.tss286.base & 0xffff) << 16) |
(d->u.tss286.limit & 0xffff);
return(val);
case 2: // LDT
val = ((d->u.ldt.base & 0xffff) << 16) |
d->u.ldt.limit;
return(val);
case 9: // available 32bit TSS
val = ((d->u.tss386.base & 0xffff) << 16) |
(d->u.tss386.limit & 0xffff);
return(val);
default:
BX_ERROR(( "#get_descriptor_l(): type %d not finished", d->type ));
return(0);
}
}
}
Bit32u
BX_CPU_C::dbg_get_descriptor_h(bx_descriptor_t *d)
{
Bit32u val;
if (d->valid == 0) {
return(0);
}
if (d->segment) {
val = (d->u.segment.base & 0xff000000) |
((d->u.segment.base >> 16) & 0x000000ff) |
(d->u.segment.executable << 11) |
(d->u.segment.c_ed << 10) |
(d->u.segment.r_w << 9) |
(d->u.segment.a << 8) |
(d->segment << 12) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.segment.limit & 0xf0000) |
(d->u.segment.avl << 20) |
(d->u.segment.d_b << 22) |
(d->u.segment.g << 23);
return(val);
}
else {
switch (d->type) {
case 0: // Reserved (not yet defined)
BX_ERROR(( "#get_descriptor_h(): type %d not finished", d->type ));
return(0);
case 1: // available 16bit TSS
val = ((d->u.tss286.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15);
return(val);
case 2: // LDT
val = ((d->u.ldt.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.ldt.base & 0xff000000);
return(val);
case 9: // available 32bit TSS
val = ((d->u.tss386.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.tss386.limit & 0xf0000) |
(d->u.tss386.avl << 20) |
(d->u.tss386.g << 23) |
(d->u.tss386.base & 0xff000000);
return(val);
default:
BX_ERROR(( "#get_descriptor_h(): type %d not finished", d->type ));
return(0);
}
}
}
Boolean
BX_CPU_C::dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no)
{
if (sreg_no > 5)
return(0);
sreg->sel = BX_CPU_THIS_PTR sregs[sreg_no].selector.value;
sreg->des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[sreg_no].cache);
sreg->des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[sreg_no].cache);
sreg->valid = BX_CPU_THIS_PTR sregs[sreg_no].cache.valid;
return(1);
}
Boolean
BX_CPU_C::dbg_get_cpu(bx_dbg_cpu_t *cpu)
{
cpu->eax = EAX;
cpu->ebx = EBX;
cpu->ecx = ECX;
cpu->edx = EDX;
cpu->ebp = EBP;
cpu->esi = ESI;
cpu->edi = EDI;
cpu->esp = ESP;
cpu->eflags = dbg_get_eflags();
cpu->eip = BX_CPU_THIS_PTR eip;
cpu->cs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
cpu->cs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache);
cpu->cs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache);
cpu->cs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid;
cpu->ss.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
cpu->ss.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache);
cpu->ss.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache);
cpu->ss.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid;
cpu->ds.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
cpu->ds.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache);
cpu->ds.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache);
cpu->ds.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid;
cpu->es.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
cpu->es.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache);
cpu->es.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache);
cpu->es.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid;
cpu->fs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
cpu->fs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache);
cpu->fs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache);
cpu->fs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid;
cpu->gs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
cpu->gs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache);
cpu->gs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache);
cpu->gs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid;
cpu->ldtr.sel = BX_CPU_THIS_PTR ldtr.selector.value;
cpu->ldtr.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR ldtr.cache);
cpu->ldtr.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR ldtr.cache);
cpu->ldtr.valid = BX_CPU_THIS_PTR ldtr.cache.valid;
cpu->tr.sel = BX_CPU_THIS_PTR tr.selector.value;
cpu->tr.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR tr.cache);
cpu->tr.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR tr.cache);
cpu->tr.valid = BX_CPU_THIS_PTR tr.cache.valid;
cpu->gdtr.base = BX_CPU_THIS_PTR gdtr.base;
cpu->gdtr.limit = BX_CPU_THIS_PTR gdtr.limit;
cpu->idtr.base = BX_CPU_THIS_PTR idtr.base;
cpu->idtr.limit = BX_CPU_THIS_PTR idtr.limit;
cpu->dr0 = BX_CPU_THIS_PTR dr0;
cpu->dr1 = BX_CPU_THIS_PTR dr1;
cpu->dr2 = BX_CPU_THIS_PTR dr2;
cpu->dr3 = BX_CPU_THIS_PTR dr3;
cpu->dr6 = BX_CPU_THIS_PTR dr6;
cpu->dr7 = BX_CPU_THIS_PTR dr7;
cpu->tr3 = 0;
cpu->tr4 = 0;
cpu->tr5 = 0;
cpu->tr6 = 0;
cpu->tr7 = 0;
// cr0:32=pg,cd,nw,am,wp,ne,ts,em,mp,pe
cpu->cr0 = BX_CPU_THIS_PTR cr0.val32;
cpu->cr1 = 0;
cpu->cr2 = BX_CPU_THIS_PTR cr2;
cpu->cr3 = BX_CPU_THIS_PTR cr3;
cpu->cr4 = 0;
cpu->inhibit_mask = BX_CPU_THIS_PTR inhibit_mask;
return(1);
}
Boolean
BX_CPU_C::dbg_set_cpu(bx_dbg_cpu_t *cpu)
{
// returns 1=OK, 0=Error
Bit32u val;
Bit32u type;
// =================================================
// Do checks first, before setting any CPU registers
// =================================================
// CS, SS, DS, ES, FS, GS descriptor checks
if (!cpu->cs.valid) {
BX_ERROR(( "Error: CS not valid" ));
return(0); // error
}
if ( (cpu->cs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: CS not application type" ));
return(0); // error
}
if ( (cpu->cs.des_h & 0x0800) == 0 ) {
BX_ERROR(( "Error: CS not executable" ));
return(0); // error
}
if (!cpu->ss.valid) {
BX_ERROR(( "Error: SS not valid" ));
return(0); // error
}
if ( (cpu->ss.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: SS not application type" ));
return(0); // error
}
if (cpu->ds.valid) {
if ( (cpu->ds.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: DS not application type" ));
return(0); // error
}
}
if (cpu->es.valid) {
if ( (cpu->es.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: ES not application type" ));
return(0); // error
}
}
if (cpu->fs.valid) {
if ( (cpu->fs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: FS not application type" ));
return(0); // error
}
}
if (cpu->gs.valid) {
if ( (cpu->gs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: GS not application type" ));
return(0); // error
}
}
if (cpu->ldtr.valid) {
if ( cpu->ldtr.des_h & 0x1000 ) {
BX_ERROR(( "Error: LDTR not system type" ));
return(0); // error
}
if ( ((cpu->ldtr.des_h >> 8) & 0x0f) != 2 ) {
BX_ERROR(( "Error: LDTR descriptor type not LDT" ));
return(0); // error
}
}
if (cpu->tr.valid) {
if ( cpu->tr.des_h & 0x1000 ) {
BX_ERROR(( "Error: TR not system type"));
return(0); // error
}
type = (cpu->tr.des_h >> 8) & 0x0f;
if ( (type != 1) && (type != 9) ) {
BX_ERROR(( "Error: TR descriptor type not TSS" ));
return(0); // error
}
}
// =============
// end of checks
// =============
EAX = cpu->eax;
EBX = cpu->ebx;
ECX = cpu->ecx;
EDX = cpu->edx;
EBP = cpu->ebp;
ESI = cpu->esi;
EDI = cpu->edi;
ESP = cpu->esp;
// eflags
val = cpu->eflags;
BX_CPU_THIS_PTR set_CF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_PF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_AF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_ZF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_SF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR eflags.tf = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.if_ = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.df = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR set_OF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR eflags.iopl = val & 0x03; val >>= 2;
BX_CPU_THIS_PTR eflags.nt = val & 0x01; val >>= 2;
BX_CPU_THIS_PTR eflags.rf = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.vm = val & 0x01; val >>= 1;
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR eflags.ac = val & 0x01; val >>= 1;
//BX_CPU_THIS_PTR eflags.vif = val & 0x01;
val >>= 1;
//BX_CPU_THIS_PTR eflags.vip = val & 0x01;
val >>= 1;
BX_CPU_THIS_PTR eflags.id = val & 0x01;
#endif
BX_CPU_THIS_PTR eip = cpu->eip;
// CS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cpu->cs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cpu->cs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cpu->cs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = cpu->cs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = cpu->cs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (cpu->cs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (cpu->cs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (cpu->cs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type = (cpu->cs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (cpu->cs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (cpu->cs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (cpu->cs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (cpu->cs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (cpu->cs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base |= (cpu->cs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base |= (cpu->cs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = (cpu->cs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit |= (cpu->cs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = (cpu->cs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = (cpu->cs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = (cpu->cs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit;
// SS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = cpu->ss.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = cpu->ss.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (cpu->ss.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpu->ss.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = cpu->ss.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (cpu->ss.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (cpu->ss.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (cpu->ss.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type = (cpu->ss.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (cpu->ss.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (cpu->ss.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (cpu->ss.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (cpu->ss.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (cpu->ss.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base |= (cpu->ss.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base |= (cpu->ss.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = (cpu->ss.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit |= (cpu->ss.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = (cpu->ss.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = (cpu->ss.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = (cpu->ss.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit;
// DS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = cpu->ds.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = cpu->ds.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (cpu->ds.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = cpu->ds.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = cpu->ds.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (cpu->ds.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (cpu->ds.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (cpu->ds.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type = (cpu->ds.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (cpu->ds.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (cpu->ds.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (cpu->ds.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (cpu->ds.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (cpu->ds.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base |= (cpu->ds.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base |= (cpu->ds.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = (cpu->ds.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit |= (cpu->ds.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = (cpu->ds.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = (cpu->ds.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = (cpu->ds.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit;
// ES:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = cpu->es.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = cpu->es.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (cpu->es.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = cpu->es.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = cpu->es.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (cpu->es.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (cpu->es.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (cpu->es.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.type = (cpu->es.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (cpu->es.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (cpu->es.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (cpu->es.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (cpu->es.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (cpu->es.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base |= (cpu->es.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base |= (cpu->es.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = (cpu->es.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit |= (cpu->es.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g = (cpu->es.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b = (cpu->es.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl = (cpu->es.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit;
// FS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = cpu->fs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index = cpu->fs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti = (cpu->fs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl = cpu->fs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = cpu->fs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p = (cpu->fs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl = (cpu->fs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = (cpu->fs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.type = (cpu->fs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.executable = (cpu->fs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.c_ed = (cpu->fs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.r_w = (cpu->fs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.a = (cpu->fs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base = (cpu->fs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base |= (cpu->fs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base |= (cpu->fs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit = (cpu->fs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit |= (cpu->fs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g = (cpu->fs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b = (cpu->fs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl = (cpu->fs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit;
// GS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = cpu->gs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index = cpu->gs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti = (cpu->gs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl = cpu->gs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = cpu->gs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p = (cpu->gs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl = (cpu->gs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = (cpu->gs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.type = (cpu->gs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.executable = (cpu->gs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.c_ed = (cpu->gs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.r_w = (cpu->gs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.a = (cpu->gs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base = (cpu->gs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base |= (cpu->gs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base |= (cpu->gs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit = (cpu->gs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit |= (cpu->gs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g = (cpu->gs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b = (cpu->gs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl = (cpu->gs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit;
// LDTR:
BX_CPU_THIS_PTR ldtr.selector.value = cpu->ldtr.sel;
BX_CPU_THIS_PTR ldtr.selector.index = cpu->ldtr.sel >> 3;
BX_CPU_THIS_PTR ldtr.selector.ti = (cpu->ldtr.sel >> 2) & 0x01;
BX_CPU_THIS_PTR ldtr.selector.rpl = cpu->ldtr.sel & 0x03;
BX_CPU_THIS_PTR ldtr.cache.valid = cpu->ldtr.valid;
BX_CPU_THIS_PTR ldtr.cache.p = (cpu->ldtr.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.dpl = (cpu->ldtr.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR ldtr.cache.segment = (cpu->ldtr.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.type = (cpu->ldtr.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (cpu->ldtr.des_l >> 16);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base |= (cpu->ldtr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base |= (cpu->ldtr.des_h & 0xff000000);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = (cpu->ldtr.des_l & 0xffff);
// TR
type = (cpu->tr.des_h >> 8) & 0x0f;
type &= ~2; // never allow busy bit in tr.cache.type
BX_CPU_THIS_PTR tr.selector.value = cpu->tr.sel;
BX_CPU_THIS_PTR tr.selector.index = cpu->tr.sel >> 3;
BX_CPU_THIS_PTR tr.selector.ti = (cpu->tr.sel >> 2) & 0x01;
BX_CPU_THIS_PTR tr.selector.rpl = cpu->tr.sel & 0x03;
BX_CPU_THIS_PTR tr.cache.valid = cpu->tr.valid;
BX_CPU_THIS_PTR tr.cache.p = (cpu->tr.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR tr.cache.dpl = (cpu->tr.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR tr.cache.segment = (cpu->tr.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR tr.cache.type = type;
if (type == 1) { // 286 TSS
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (cpu->tr.des_l >> 16);
BX_CPU_THIS_PTR tr.cache.u.tss286.base |= (cpu->tr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = (cpu->tr.des_l & 0xffff);
}
else { // type == 9, 386 TSS
BX_CPU_THIS_PTR tr.cache.u.tss386.base = (cpu->tr.des_l >> 16);
BX_CPU_THIS_PTR tr.cache.u.tss386.base |= (cpu->tr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR tr.cache.u.tss386.base |= (cpu->tr.des_h & 0xff000000);
BX_CPU_THIS_PTR tr.cache.u.tss386.limit = (cpu->tr.des_l & 0xffff);
BX_CPU_THIS_PTR tr.cache.u.tss386.limit |= (cpu->tr.des_h & 0x000f0000);
BX_CPU_THIS_PTR tr.cache.u.tss386.g = (cpu->tr.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR tr.cache.u.tss386.avl = (cpu->tr.des_h >> 20) & 0x01;
}
// gdtr
BX_CPU_THIS_PTR gdtr.base = cpu->gdtr.base;
BX_CPU_THIS_PTR gdtr.limit = cpu->gdtr.limit;
// idtr
BX_CPU_THIS_PTR idtr.base = cpu->idtr.base;
BX_CPU_THIS_PTR idtr.limit = cpu->idtr.limit;
BX_CPU_THIS_PTR dr0 = cpu->dr0;
BX_CPU_THIS_PTR dr1 = cpu->dr1;
BX_CPU_THIS_PTR dr2 = cpu->dr2;
BX_CPU_THIS_PTR dr3 = cpu->dr3;
BX_CPU_THIS_PTR dr6 = cpu->dr6;
BX_CPU_THIS_PTR dr7 = cpu->dr7;
// BX_CPU_THIS_PTR tr3 = cpu->tr3;
// BX_CPU_THIS_PTR tr4 = cpu->tr4;
// BX_CPU_THIS_PTR tr5 = cpu->tr5;
// BX_CPU_THIS_PTR tr6 = cpu->tr6;
// BX_CPU_THIS_PTR tr7 = cpu->tr7;
// cr0, cr1, cr2, cr3, cr4
SetCR0(cpu->cr0);
BX_CPU_THIS_PTR cr1 = cpu->cr1;
BX_CPU_THIS_PTR cr2 = cpu->cr2;
BX_CPU_THIS_PTR cr3 = cpu->cr3;
#if BX_CPU_LEVEL >= 5
BX_CPU_THIS_PTR cr4 = cpu->cr4;
#endif
BX_CPU_THIS_PTR inhibit_mask = cpu->inhibit_mask;
//
// flush cached items, prefetch, paging, etc
//
BX_CPU_THIS_PTR CR3_change(cpu->cr3);
BX_CPU_THIS_PTR invalidate_prefetch_q();
BX_CPU_THIS_PTR async_event = 1;
return(1);
}
#if BX_SIM_ID == 0
# define BX_DBG_NULL_CALLBACK bx_dbg_null_callback0
#else
# define BX_DBG_NULL_CALLBACK bx_dbg_null_callback1
#endif
void
BX_DBG_NULL_CALLBACK(unsigned val)
{
// bochs uses the pc_system variables, so this function is
// a stub for notification by the debugger, that a change
// occurred.
UNUSED(val);
}
void
#if BX_SIM_ID == 0
bx_dbg_init_cpu_mem_env0(bx_dbg_callback_t *callback, int argc, char *argv[])
#else
bx_dbg_init_cpu_mem_env1(bx_dbg_callback_t *callback, int argc, char *argv[])
#endif
{
UNUSED(argc);
UNUSED(argv);
#if 0
#warning hardcoding BX_CPU_THIS_PTR mem[0] and cpu[0]
callback->setphymem = BX_MEM(0)->dbg_set_mem;
callback->getphymem = BX_MEM(0)->dbg_fetch_mem;
callback->xlate_linear2phy = BX_CPU(0)->dbg_xlate_linear2phy;
callback->set_reg = BX_CPU(0)->dbg_set_reg;
callback->get_reg = BX_CPU(0)->dbg_get_reg;
callback->get_sreg = BX_CPU(0)->dbg_get_sreg;
callback->get_cpu = BX_CPU(0)->dbg_get_cpu;
callback->set_cpu = BX_CPU(0)->dbg_set_cpu;
callback->dirty_page_tbl_size = sizeof(BX_MEM(0)->dbg_dirty_pages);
callback->dirty_page_tbl = BX_MEM(0)->dbg_dirty_pages;
callback->atexit = BX_CPU(0)->atexit;
callback->query_pending = BX_CPU(0)->dbg_query_pending;
callback->execute = BX_CPU(0)->cpu_loop;
callback->take_irq = BX_CPU(0)->dbg_take_irq;
callback->take_dma = BX_CPU(0)->dbg_take_dma;
callback->reset_cpu = BX_CPU(0)->reset;
callback->init_mem = BX_MEM(0)->init_memory;
callback->load_ROM = BX_MEM(0)->load_ROM;
callback->set_A20 = NULL;
callback->set_NMI = BX_DBG_NULL_CALLBACK;
callback->set_RESET = BX_DBG_NULL_CALLBACK;
callback->set_INTR = BX_CPU(0)->set_INTR;
callback->force_interrupt = BX_CPU(0)->dbg_force_interrupt;
#if BX_INSTRUMENTATION
callback->instr_start = bx_instr_start;
callback->instr_stop = bx_instr_stop;
callback->instr_reset = bx_instr_reset;
callback->instr_print = bx_instr_print;
#endif
#if BX_USE_LOADER
callback->loader = bx_dbg_loader;
#endif
callback->crc32 = BX_MEM(0)->dbg_crc32;
#endif
}
#endif // #if BX_DEBUGGER
void
BX_CPU_C::atexit(void)
{
if (protected_mode()) BX_INFO(("protected mode"));
else if (v8086_mode()) BX_INFO(("v8086 mode"));
else BX_INFO(("real mode"));
BX_INFO(("CS.d_b = %u bit",
BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.d_b ? 32 : 16));
BX_INFO(("SS.d_b = %u bit",
BX_CPU_THIS_PTR sregs[BX_SREG_SS].cache.u.segment.d_b ? 32 : 16));
debug(BX_CPU_THIS_PTR prev_eip);
}