Bochs/bochs/iodev/devices.cc
Volker Ruppert 835a745215 Added experimental "multiple NICs" support (currently NE2000 only). Unlike the
old SF patches this solution is compatible with the plugin architecture. The
ne2k plugin is loaded only once and a new ne2k_main_c object creates up to 4
ne2k device objects depending on the config. The new ne2k parameter "card"
specifies the zero-based card number to configure. If not given, the default
is card #0 for compatibility. The new ne2k parameter "type" specifies the bus
it is connected to ("isa" or "pci"). Card #0 defaults to PCI, the others to
ISA. In the PCI slot configuration the ne2k device can be used multiple times
if more than one card is configured.
Related changes:
- removed SMF stuff for ne2k
- always convert device prefix to uppercase (ne2k uses NE2K0 ... NE2K3)
- removed unused BXPN values
- TODO: add multiple NICs support for the E1000
2020-03-02 22:04:10 +00:00

1566 lines
48 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2020 The Bochs Project
//
// I/O port handlers API Copyright (C) 2003 by Frank Cornelis
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "iodev.h"
#include "iodev/virt_timer.h"
#include "iodev/slowdown_timer.h"
#include "iodev/sound/soundmod.h"
#include "iodev/network/netmod.h"
#include "iodev/usb/usb_common.h"
#define LOG_THIS bx_devices.
/* main memory size (in Kbytes)
* subtract 1k for extended BIOS area
* report only base memory, not extended mem
*/
#define BASE_MEMORY_IN_K 640
bx_devices_c bx_devices;
// constructor for bx_devices_c
bx_devices_c::bx_devices_c()
{
put("devices", "DEV");
read_port_to_handler = NULL;
write_port_to_handler = NULL;
io_read_handlers.next = NULL;
io_read_handlers.handler_name = NULL;
io_write_handlers.next = NULL;
io_write_handlers.handler_name = NULL;
init_stubs();
for (unsigned i=0; i < BX_MAX_IRQS; i++) {
irq_handler_name[i] = NULL;
}
}
bx_devices_c::~bx_devices_c()
{
// nothing needed for now
timer_handle = BX_NULL_TIMER_HANDLE;
}
void bx_devices_c::init_stubs()
{
pluginCmosDevice = &stubCmos;
pluginDmaDevice = &stubDma;
pluginFloppyDevice = &stubFloppy;
pluginHardDrive = &stubHardDrive;
pluginKeyboard = &stubKeyboard;
pluginPicDevice = &stubPic;
pluginPitDevice = &stubPit;
pluginSpeaker = &stubSpeaker;
pluginVgaDevice = &stubVga;
#if BX_SUPPORT_IODEBUG
pluginIODebug = &stubIODebug;
#endif
#if BX_SUPPORT_APIC
pluginIOAPIC = &stubIOAPIC;
#endif
#if BX_SUPPORT_GAMEPORT
pluginGameport = &stubGameport;
#endif
#if BX_SUPPORT_PCI
pluginPci2IsaBridge = &stubPci2Isa;
pluginPciIdeController = &stubPciIde;
pluginACPIController = &stubACPIController;
#endif
}
void bx_devices_c::init(BX_MEM_C *newmem)
{
#if BX_SUPPORT_PCI
unsigned chipset = SIM->get_param_enum(BXPN_PCI_CHIPSET)->get();
unsigned max_pci_slots = BX_N_PCI_SLOTS;
#endif
unsigned i;
const char def_name[] = "Default";
const char *vga_ext;
BX_DEBUG(("Init $Id$"));
mem = newmem;
/* set builtin default handlers, will be overwritten by the real default handler */
register_default_io_read_handler(NULL, &default_read_handler, def_name, 7);
io_read_handlers.next = &io_read_handlers;
io_read_handlers.prev = &io_read_handlers;
io_read_handlers.usage_count = 0; // not used with the default handler
register_default_io_write_handler(NULL, &default_write_handler, def_name, 7);
io_write_handlers.next = &io_write_handlers;
io_write_handlers.prev = &io_write_handlers;
io_write_handlers.usage_count = 0; // not used with the default handler
if (read_port_to_handler)
delete [] read_port_to_handler;
if (write_port_to_handler)
delete [] write_port_to_handler;
read_port_to_handler = new struct io_handler_struct *[PORTS];
write_port_to_handler = new struct io_handler_struct *[PORTS];
/* set handlers to the default one */
for (i=0; i < PORTS; i++) {
read_port_to_handler[i] = &io_read_handlers;
write_port_to_handler[i] = &io_write_handlers;
}
for (i=0; i < BX_MAX_IRQS; i++) {
delete [] irq_handler_name[i];
irq_handler_name[i] = NULL;
}
// removable devices init
bx_keyboard.dev = NULL;
bx_keyboard.gen_scancode = NULL;
for (i = 0; i < BX_KEY_NBKEYS; i++) {
bx_keyboard.bxkey_state[i] = 0;
}
for (i=0; i < 2; i++) {
bx_mouse[i].dev = NULL;
bx_mouse[i].enq_event = NULL;
bx_mouse[i].enabled_changed = NULL;
}
// common mouse settings
mouse_captured = SIM->get_param_bool(BXPN_MOUSE_ENABLED)->get();
mouse_type = SIM->get_param_enum(BXPN_MOUSE_TYPE)->get();
// register as soon as possible - the devices want to have their timers !
bx_virt_timer.init();
bx_slowdown_timer.init();
// BBD: At present, the only difference between "core" and "optional"
// plugins is that initialization and reset of optional plugins is handled
// by the plugin device list (). Init and reset of core plugins is done
// "by hand" in this file. Basically, we're using core plugins when we
// want to control the init order.
//
PLUG_load_plugin(hdimage, PLUGTYPE_CORE);
#if BX_NETWORKING
network_enabled = is_network_enabled();
if (network_enabled)
bx_netmod_ctl.init();
#endif
#if BX_SUPPORT_SOUNDLOW
sound_enabled = is_sound_enabled();
if (sound_enabled) {
bx_soundmod_ctl.init();
}
#endif
// PCI logic (i440FX)
pci.enabled = SIM->get_param_bool(BXPN_PCI_ENABLED)->get();
if (pci.enabled) {
#if BX_SUPPORT_PCI
PLUG_load_plugin(pci, PLUGTYPE_CORE);
PLUG_load_plugin(pci2isa, PLUGTYPE_CORE);
#if BX_SUPPORT_PCIUSB
usb_enabled = is_usb_enabled();
if (usb_enabled)
bx_usbdev_ctl.init();
if ((chipset == BX_PCI_CHIPSET_I440FX) ||
(chipset == BX_PCI_CHIPSET_I440BX)) {
// UHCI is a part of the PIIX3/PIIX4, so load / enable it
if (!PLUG_device_present("usb_uhci")) {
PLUG_load_plugin(usb_uhci, PLUGTYPE_OPTIONAL);
}
SIM->get_param_bool(BXPN_UHCI_ENABLED)->set(1);
}
#endif
if (chipset != BX_PCI_CHIPSET_I430FX) {
PLUG_load_plugin(acpi, PLUGTYPE_STANDARD);
}
if (chipset == BX_PCI_CHIPSET_I440FX) {
PLUG_load_plugin(hpet, PLUGTYPE_STANDARD);
}
#else
BX_ERROR(("Bochs is not compiled with PCI support"));
#endif
}
PLUG_load_plugin(cmos, PLUGTYPE_CORE);
PLUG_load_plugin(dma, PLUGTYPE_CORE);
PLUG_load_plugin(pic, PLUGTYPE_CORE);
PLUG_load_plugin(pit, PLUGTYPE_CORE);
vga_ext = SIM->get_param_string(BXPN_VGA_EXTENSION)->getptr();
if (!strcmp(vga_ext, "cirrus")) {
#if BX_SUPPORT_CLGD54XX
PLUG_load_plugin(svga_cirrus, PLUGTYPE_CORE);
#else
BX_PANIC(("Bochs is not compiled with Cirrus support"));
#endif
} else if (!strcmp(vga_ext, "vbe") || !strcmp(vga_ext, "none")) {
PLUG_load_plugin(vga, PLUGTYPE_CORE);
} else if (pluginVgaDevice == &stubVga) {
BX_PANIC(("No VGA compatible display adapter present"));
}
PLUG_load_plugin(floppy, PLUGTYPE_CORE);
#if BX_SUPPORT_APIC
PLUG_load_plugin(ioapic, PLUGTYPE_STANDARD);
#endif
PLUG_load_plugin(keyboard, PLUGTYPE_STANDARD);
#if BX_SUPPORT_BUSMOUSE
if ((mouse_type == BX_MOUSE_TYPE_INPORT) ||
(mouse_type == BX_MOUSE_TYPE_BUS)) {
PLUG_load_plugin(busmouse, PLUGTYPE_OPTIONAL);
}
#endif
if (is_harddrv_enabled()) {
PLUG_load_plugin(harddrv, PLUGTYPE_STANDARD);
#if BX_SUPPORT_PCI
if (pci.enabled) {
PLUG_load_plugin(pci_ide, PLUGTYPE_STANDARD);
}
#endif
}
// system hardware
register_io_read_handler(this, &read_handler, 0x0092,
"Port 92h System Control", 1);
register_io_write_handler(this, &write_handler, 0x0092,
"Port 92h System Control", 1);
#if BX_SUPPORT_PCI
if (pci.enabled) {
pci.num_pci_handlers = 0;
/* set unused elements to appropriate values */
for (i=0; i < BX_MAX_PCI_DEVICES; i++) {
pci.pci_handler[i].handler = NULL;
}
for (i=0; i < 0x101; i++) {
pci.handler_id[i] = BX_MAX_PCI_DEVICES; // not assigned
}
for (i=0; i < BX_N_PCI_SLOTS; i++) {
pci.slot_used[i] = 0; // no device connected
}
// confAddr accepts dword i/o only
DEV_register_ioread_handler(this, read_handler, 0x0CF8, "i440FX", 4);
DEV_register_iowrite_handler(this, write_handler, 0x0CF8, "i440FX", 4);
for (i=0x0CFC; i<=0x0CFF; i++) {
DEV_register_ioread_handler(this, read_handler, i, "i440FX", 7);
DEV_register_iowrite_handler(this, write_handler, i, "i440FX", 7);
}
}
#endif
// misc. CMOS
Bit64u memory_in_k = mem->get_memory_len() / 1024;
Bit64u extended_memory_in_k = memory_in_k > 1024 ? (memory_in_k - 1024) : 0;
if (extended_memory_in_k > 0xfc00) extended_memory_in_k = 0xfc00;
DEV_cmos_set_reg(0x15, (Bit8u) BASE_MEMORY_IN_K);
DEV_cmos_set_reg(0x16, (Bit8u) (BASE_MEMORY_IN_K >> 8));
DEV_cmos_set_reg(0x17, (Bit8u) (extended_memory_in_k & 0xff));
DEV_cmos_set_reg(0x18, (Bit8u) ((extended_memory_in_k >> 8) & 0xff));
DEV_cmos_set_reg(0x30, (Bit8u) (extended_memory_in_k & 0xff));
DEV_cmos_set_reg(0x31, (Bit8u) ((extended_memory_in_k >> 8) & 0xff));
Bit64u extended_memory_in_64k = memory_in_k > 16384 ? (memory_in_k - 16384) / 64 : 0;
// Limit to 3 GB - 16 MB. PCI Memory Address Space starts at 3 GB.
if (extended_memory_in_64k > 0xbf00) extended_memory_in_64k = 0xbf00;
DEV_cmos_set_reg(0x34, (Bit8u) (extended_memory_in_64k & 0xff));
DEV_cmos_set_reg(0x35, (Bit8u) ((extended_memory_in_64k >> 8) & 0xff));
Bit64u memory_above_4gb = (mem->get_memory_len() > BX_CONST64(0x100000000)) ?
(mem->get_memory_len() - BX_CONST64(0x100000000)) : 0;
if (memory_above_4gb) {
DEV_cmos_set_reg(0x5b, (Bit8u)(memory_above_4gb >> 16));
DEV_cmos_set_reg(0x5c, (Bit8u)(memory_above_4gb >> 24));
DEV_cmos_set_reg(0x5d, memory_above_4gb >> 32);
}
// TODO: add support for a comma-separated list of BIOS options
if (!strcmp(SIM->get_param_string(BXPN_ROM_OPTIONS)->getptr(), "fastboot")) {
DEV_cmos_set_reg(0x3f, 0x01);
}
if (timer_handle != BX_NULL_TIMER_HANDLE) {
timer_handle = DEV_register_timer(this, timer_handler,
(unsigned) BX_IODEV_HANDLER_PERIOD, 1, 1, "devices.cc");
}
// Clear fields for bulk IO acceleration transfers.
bulkIOHostAddr = 0;
bulkIOQuantumsRequested = 0;
bulkIOQuantumsTransferred = 0;
bx_init_plugins();
/* now perform checksum of CMOS memory */
DEV_cmos_checksum();
#if BX_SUPPORT_PCI
// verify PCI slot configuration
char devname[80];
char *device;
if (pci.enabled) {
if (chipset == BX_PCI_CHIPSET_I440BX) {
device = SIM->get_param_string("pci.slot.5")->getptr();
if ((strlen(device) > 0) && !pci.slot_used[4]) {
BX_PANIC(("Unknown plugin '%s' at AGP slot", device));
}
max_pci_slots = 4;
}
for (i = 0; i < max_pci_slots; i++) {
sprintf(devname, "pci.slot.%d", i+1);
device = SIM->get_param_string(devname)->getptr();
if ((strlen(device) > 0) && !pci.slot_used[i]) {
BX_PANIC(("Unknown plugin '%s' at PCI slot #%d", device, i+1));
}
}
}
#endif
}
void bx_devices_c::reset(unsigned type)
{
#if BX_SUPPORT_PCI
if (pci.enabled) {
pci.confAddr = 0;
}
#endif
mem->disable_smram();
bx_reset_plugins(type);
release_keys();
}
void bx_devices_c::register_state()
{
#if BX_SUPPORT_PCI
if (pci.enabled) {
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pcicore", "Generic PCI State");
BXRS_HEX_PARAM_FIELD(list, confAddr, pci.confAddr);
}
#endif
bx_virt_timer.register_state();
bx_plugins_register_state();
}
void bx_devices_c::after_restore_state()
{
bx_slowdown_timer.after_restore_state();
bx_virt_timer.set_realtime_delay();
bx_plugins_after_restore_state();
}
void bx_devices_c::exit()
{
// delete i/o handlers before unloading plugins
struct io_handler_struct *io_read_handler = io_read_handlers.next;
struct io_handler_struct *curr = NULL;
while (io_read_handler != &io_read_handlers) {
io_read_handler->prev->next = io_read_handler->next;
io_read_handler->next->prev = io_read_handler->prev;
curr = io_read_handler;
io_read_handler = io_read_handler->next;
delete [] curr->handler_name;
delete curr;
}
struct io_handler_struct *io_write_handler = io_write_handlers.next;
while (io_write_handler != &io_write_handlers) {
io_write_handler->prev->next = io_write_handler->next;
io_write_handler->next->prev = io_write_handler->prev;
curr = io_write_handler;
io_write_handler = io_write_handler->next;
delete [] curr->handler_name;
delete curr;
}
bx_virt_timer.setup();
bx_slowdown_timer.exit();
// unload optional and user plugins first
bx_unload_plugins();
bx_unload_core_plugins();
PLUG_unload_plugin(hdimage);
#if BX_NETWORKING
if (network_enabled)
bx_netmod_ctl.exit();
#endif
#if BX_SUPPORT_SOUNDLOW
if (sound_enabled)
bx_soundmod_ctl.exit();
#endif
#if BX_SUPPORT_PCIUSB
if (usb_enabled)
bx_usbdev_ctl.exit();
#endif
init_stubs();
}
Bit32u bx_devices_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_DEV_SMF
bx_devices_c *class_ptr = (bx_devices_c *) this_ptr;
return class_ptr->read(address, io_len);
}
Bit32u bx_devices_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_DEV_SMF
switch (address) {
case 0x0092:
BX_DEBUG(("port92h read partially supported!!!"));
BX_DEBUG((" returning %02x", (unsigned) (BX_GET_ENABLE_A20() << 1)));
return(BX_GET_ENABLE_A20() << 1);
#if BX_SUPPORT_PCI
case 0x0CF8:
return BX_DEV_THIS pci.confAddr;
case 0x0CFC:
case 0x0CFD:
case 0x0CFE:
case 0x0CFF:
{
Bit32u handle, retval = 0xffffffff;
Bit8u regnum;
Bit16u bus_devfunc;
if ((BX_DEV_THIS pci.confAddr & 0x80fe0000) == 0x80000000) {
bus_devfunc = (BX_DEV_THIS pci.confAddr >> 8) & 0x1ff;
regnum = (BX_DEV_THIS pci.confAddr & 0xfc) + (address & 0x03);
if (bus_devfunc <= 0x100) {
handle = BX_DEV_THIS pci.handler_id[bus_devfunc];
if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) {
retval = BX_DEV_THIS pci.pci_handler[handle].handler->pci_read_handler(regnum, io_len);
}
}
}
return retval;
}
#endif
}
BX_PANIC(("unsupported IO read to port 0x%x", (unsigned) address));
return(0xffffffff);
}
void bx_devices_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_DEV_SMF
bx_devices_c *class_ptr = (bx_devices_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void bx_devices_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_DEV_SMF
#if BX_SUPPORT_PCI
Bit8u bus, devfunc, handle;
Bit16u bus_devfunc;
bx_pci_device_c *dev = NULL;
#endif
switch (address) {
case 0x0092:
BX_DEBUG(("port92h write of %02x partially supported!!!", (unsigned) value));
BX_DEBUG(("A20: set_enable_a20() called"));
BX_SET_ENABLE_A20((value & 0x02) >> 1);
BX_DEBUG(("A20: now %u", (unsigned) BX_GET_ENABLE_A20()));
if (value & 0x01) { /* high speed reset */
BX_INFO(("iowrite to port0x92 : reset resquested"));
bx_pc_system.Reset(BX_RESET_SOFTWARE);
}
break;
#if BX_SUPPORT_PCI
case 0xCF8:
BX_DEV_THIS pci.confAddr = value;
if ((value & 0x80000000) == 0x80000000) {
bus = (BX_DEV_THIS pci.confAddr >> 16) & 0xff;
devfunc = (BX_DEV_THIS pci.confAddr >> 8) & 0xff;
bus_devfunc = (bus << 8) | devfunc;
if (bus_devfunc <= 0x100) {
handle = BX_DEV_THIS pci.handler_id[bus_devfunc];
if (handle != BX_MAX_PCI_DEVICES) {
dev = BX_DEV_THIS pci.pci_handler[handle].handler;
}
}
if ((bus == 0) && (devfunc == 0x00)) {
BX_DEBUG(("%s register 0x%02x selected", dev->get_name(), value & 0xfc));
} else if (dev != NULL) {
BX_DEBUG(("PCI: request for bus %d device %d function %d (%s)", bus,
(devfunc >> 3), devfunc & 0x07, dev->get_name()));
} else if (bus == 1) {
BX_DEBUG(("PCI: request for AGP bus device %d function %d", (devfunc >> 3),
devfunc & 0x07));
} else {
BX_DEBUG(("PCI: request for bus %d device %d function %d", bus,
(devfunc >> 3), devfunc & 0x07));
}
}
break;
case 0xCFC:
case 0xCFD:
case 0xCFE:
case 0xCFF:
if ((BX_DEV_THIS pci.confAddr & 0x80fe0000) == 0x80000000) {
bus_devfunc = (BX_DEV_THIS pci.confAddr >> 8) & 0x1ff;
Bit8u regnum = (BX_DEV_THIS pci.confAddr & 0xfc) + (address & 0x03);
if (bus_devfunc <= 0x100) {
handle = BX_DEV_THIS pci.handler_id[bus_devfunc];
if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) {
BX_DEV_THIS pci.pci_handler[handle].handler->pci_write_handler_common(regnum, value, io_len);
}
}
}
break;
#endif
default:
BX_PANIC(("IO write to port 0x%x", (unsigned) address));
}
}
// This defines the builtin default read handler,
// so Bochs does not segfault if unmapped is not loaded
Bit32u bx_devices_c::default_read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
UNUSED(this_ptr);
return 0xffffffff;
}
// This defines the builtin default write handler,
// so Bochs does not segfault if unmapped is not loaded
void bx_devices_c::default_write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
UNUSED(this_ptr);
}
void bx_devices_c::timer_handler(void *this_ptr)
{
bx_devices_c *class_ptr = (bx_devices_c *) this_ptr;
class_ptr->timer();
}
void bx_devices_c::timer()
{
SIM->periodic();
if (!bx_pc_system.kill_bochs_request)
bx_gui->handle_events();
}
bx_bool bx_devices_c::register_irq(unsigned irq, const char *name)
{
if (irq >= BX_MAX_IRQS) {
BX_PANIC(("IO device %s registered with IRQ=%d above %u",
name, irq, (unsigned) BX_MAX_IRQS-1));
return 0;
}
if (irq_handler_name[irq]) {
BX_PANIC(("IRQ %u conflict, %s with %s", irq, irq_handler_name[irq], name));
return 0;
}
irq_handler_name[irq] = new char[strlen(name)+1];
strcpy(irq_handler_name[irq], name);
return 1;
}
bx_bool bx_devices_c::unregister_irq(unsigned irq, const char *name)
{
if (irq >= BX_MAX_IRQS) {
BX_PANIC(("IO device %s tried to unregister IRQ %d above %u",
name, irq, (unsigned) BX_MAX_IRQS-1));
return 0;
}
if (!irq_handler_name[irq]) {
BX_INFO(("IO device %s tried to unregister IRQ %d, not registered",
name, irq));
return 0;
}
if (strcmp(irq_handler_name[irq], name)) {
BX_INFO(("IRQ %u not registered to %s but to %s", irq,
name, irq_handler_name[irq]));
return 0;
}
delete [] irq_handler_name[irq];
irq_handler_name[irq] = NULL;
return 1;
}
bx_bool bx_devices_c::register_io_read_handler(void *this_ptr, bx_read_handler_t f,
Bit32u addr, const char *name, Bit8u mask)
{
addr &= 0xffff;
if (!f)
return 0;
/* first check if the port already has a handlers != the default handler */
if (read_port_to_handler[addr] &&
read_port_to_handler[addr] != &io_read_handlers) { // the default
BX_ERROR(("IO device address conflict(read) at IO address %Xh",
(unsigned) addr));
BX_ERROR((" conflicting devices: %s & %s",
read_port_to_handler[addr]->handler_name, name));
return 0;
}
/* first find existing handle for function or create new one */
struct io_handler_struct *curr = &io_read_handlers;
struct io_handler_struct *io_read_handler = NULL;
do {
if (curr->funct == f &&
curr->mask == mask &&
curr->this_ptr == this_ptr &&
!strcmp(curr->handler_name, name)) { // really want the same name too
io_read_handler = curr;
break;
}
curr = curr->next;
} while (curr->next != &io_read_handlers);
if (!io_read_handler) {
io_read_handler = new struct io_handler_struct;
io_read_handler->funct = (void *)f;
io_read_handler->this_ptr = this_ptr;
io_read_handler->handler_name = new char[strlen(name)+1];
strcpy(io_read_handler->handler_name, name);
io_read_handler->mask = mask;
io_read_handler->usage_count = 0;
// add the handler to the double linked list of handlers
io_read_handlers.prev->next = io_read_handler;
io_read_handler->next = &io_read_handlers;
io_read_handler->prev = io_read_handlers.prev;
io_read_handlers.prev = io_read_handler;
}
io_read_handler->usage_count++;
read_port_to_handler[addr] = io_read_handler;
return 1; // address mapped successfully
}
bx_bool bx_devices_c::register_io_write_handler(void *this_ptr, bx_write_handler_t f,
Bit32u addr, const char *name, Bit8u mask)
{
addr &= 0xffff;
if (!f)
return 0;
/* first check if the port already has a handlers != the default handler */
if (write_port_to_handler[addr] &&
write_port_to_handler[addr] != &io_write_handlers) { // the default
BX_ERROR(("IO device address conflict(write) at IO address %Xh",
(unsigned) addr));
BX_ERROR((" conflicting devices: %s & %s",
write_port_to_handler[addr]->handler_name, name));
return 0;
}
/* first find existing handle for function or create new one */
struct io_handler_struct *curr = &io_write_handlers;
struct io_handler_struct *io_write_handler = NULL;
do {
if (curr->funct == f &&
curr->mask == mask &&
curr->this_ptr == this_ptr &&
!strcmp(curr->handler_name, name)) { // really want the same name too
io_write_handler = curr;
break;
}
curr = curr->next;
} while (curr->next != &io_write_handlers);
if (!io_write_handler) {
io_write_handler = new struct io_handler_struct;
io_write_handler->funct = (void *)f;
io_write_handler->this_ptr = this_ptr;
io_write_handler->handler_name = new char[strlen(name)+1];
strcpy(io_write_handler->handler_name, name);
io_write_handler->mask = mask;
io_write_handler->usage_count = 0;
// add the handler to the double linked list of handlers
io_write_handlers.prev->next = io_write_handler;
io_write_handler->next = &io_write_handlers;
io_write_handler->prev = io_write_handlers.prev;
io_write_handlers.prev = io_write_handler;
}
io_write_handler->usage_count++;
write_port_to_handler[addr] = io_write_handler;
return 1; // address mapped successfully
}
bx_bool bx_devices_c::register_io_read_handler_range(void *this_ptr, bx_read_handler_t f,
Bit32u begin_addr, Bit32u end_addr,
const char *name, Bit8u mask)
{
Bit32u addr;
begin_addr &= 0xffff;
end_addr &= 0xffff;
if (end_addr < begin_addr) {
BX_ERROR(("!!! end_addr < begin_addr !!!"));
return 0;
}
if (!f) {
BX_ERROR(("!!! f == NULL !!!"));
return 0;
}
/* first check if the port already has a handlers != the default handler */
for (addr = begin_addr; addr <= end_addr; addr++)
if (read_port_to_handler[addr] &&
read_port_to_handler[addr] != &io_read_handlers) { // the default
BX_ERROR(("IO device address conflict(read) at IO address %Xh",
(unsigned) addr));
BX_ERROR((" conflicting devices: %s & %s",
read_port_to_handler[addr]->handler_name, name));
return 0;
}
/* first find existing handle for function or create new one */
struct io_handler_struct *curr = &io_read_handlers;
struct io_handler_struct *io_read_handler = NULL;
do {
if (curr->funct == f &&
curr->mask == mask &&
curr->this_ptr == this_ptr &&
!strcmp(curr->handler_name, name)) {
io_read_handler = curr;
break;
}
curr = curr->next;
} while (curr->next != &io_read_handlers);
if (!io_read_handler) {
io_read_handler = new struct io_handler_struct;
io_read_handler->funct = (void *)f;
io_read_handler->this_ptr = this_ptr;
io_read_handler->handler_name = new char[strlen(name)+1];
strcpy(io_read_handler->handler_name, name);
io_read_handler->mask = mask;
io_read_handler->usage_count = 0;
// add the handler to the double linked list of handlers
io_read_handlers.prev->next = io_read_handler;
io_read_handler->next = &io_read_handlers;
io_read_handler->prev = io_read_handlers.prev;
io_read_handlers.prev = io_read_handler;
}
io_read_handler->usage_count += end_addr - begin_addr + 1;
for (addr = begin_addr; addr <= end_addr; addr++)
read_port_to_handler[addr] = io_read_handler;
return 1; // address mapped successfully
}
bx_bool bx_devices_c::register_io_write_handler_range(void *this_ptr, bx_write_handler_t f,
Bit32u begin_addr, Bit32u end_addr,
const char *name, Bit8u mask)
{
Bit32u addr;
begin_addr &= 0xffff;
end_addr &= 0xffff;
if (end_addr < begin_addr) {
BX_ERROR(("!!! end_addr < begin_addr !!!"));
return 0;
}
if (!f) {
BX_ERROR(("!!! f == NULL !!!"));
return 0;
}
/* first check if the port already has a handlers != the default handler */
for (addr = begin_addr; addr <= end_addr; addr++)
if (write_port_to_handler[addr] &&
write_port_to_handler[addr] != &io_write_handlers) { // the default
BX_ERROR(("IO device address conflict(read) at IO address %Xh",
(unsigned) addr));
BX_ERROR((" conflicting devices: %s & %s",
write_port_to_handler[addr]->handler_name, name));
return 0;
}
/* first find existing handle for function or create new one */
struct io_handler_struct *curr = &io_write_handlers;
struct io_handler_struct *io_write_handler = NULL;
do {
if (curr->funct == f &&
curr->mask == mask &&
curr->this_ptr == this_ptr &&
!strcmp(curr->handler_name, name)) {
io_write_handler = curr;
break;
}
curr = curr->next;
} while (curr->next != &io_write_handlers);
if (!io_write_handler) {
io_write_handler = new struct io_handler_struct;
io_write_handler->funct = (void *)f;
io_write_handler->this_ptr = this_ptr;
io_write_handler->handler_name = new char[strlen(name)+1];
strcpy(io_write_handler->handler_name, name);
io_write_handler->mask = mask;
io_write_handler->usage_count = 0;
// add the handler to the double linked list of handlers
io_write_handlers.prev->next = io_write_handler;
io_write_handler->next = &io_write_handlers;
io_write_handler->prev = io_write_handlers.prev;
io_write_handlers.prev = io_write_handler;
}
io_write_handler->usage_count += end_addr - begin_addr + 1;
for (addr = begin_addr; addr <= end_addr; addr++)
write_port_to_handler[addr] = io_write_handler;
return 1; // address mapped successfully
}
// Registration of default handlers (mainly be the unmapped device)
bx_bool bx_devices_c::register_default_io_read_handler(void *this_ptr, bx_read_handler_t f,
const char *name, Bit8u mask)
{
io_read_handlers.funct = (void *)f;
io_read_handlers.this_ptr = this_ptr;
if (io_read_handlers.handler_name) {
delete [] io_read_handlers.handler_name;
}
io_read_handlers.handler_name = new char[strlen(name)+1];
strcpy(io_read_handlers.handler_name, name);
io_read_handlers.mask = mask;
return 1;
}
bx_bool bx_devices_c::register_default_io_write_handler(void *this_ptr, bx_write_handler_t f,
const char *name, Bit8u mask)
{
io_write_handlers.funct = (void *)f;
io_write_handlers.this_ptr = this_ptr;
if (io_write_handlers.handler_name) {
delete [] io_write_handlers.handler_name;
}
io_write_handlers.handler_name = new char[strlen(name)+1];
strcpy(io_write_handlers.handler_name, name);
io_write_handlers.mask = mask;
return 1;
}
bx_bool bx_devices_c::unregister_io_read_handler(void *this_ptr, bx_read_handler_t f,
Bit32u addr, Bit8u mask)
{
addr &= 0xffff;
struct io_handler_struct *io_read_handler = read_port_to_handler[addr];
//BX_INFO(("Unregistering I/O read handler at %#x", addr));
if (!io_read_handler) {
BX_ERROR((">>> NO IO_READ_HANDLER <<<"));
return 0;
}
if (io_read_handler == &io_read_handlers) {
BX_ERROR((">>> CANNOT UNREGISTER THE DEFAULT IO_READ_HANDLER <<<"));
return 0; // cannot unregister the default handler
}
if (io_read_handler->funct != f) {
BX_ERROR((">>> NOT THE SAME IO_READ_HANDLER FUNC <<<"));
return 0;
}
if (io_read_handler->this_ptr != this_ptr) {
BX_ERROR((">>> NOT THE SAME IO_READ_HANDLER THIS_PTR <<<"));
return 0;
}
if (io_read_handler->mask != mask) {
BX_ERROR((">>> NOT THE SAME IO_READ_HANDLER MASK <<<"));
return 0;
}
read_port_to_handler[addr] = &io_read_handlers; // reset to default
io_read_handler->usage_count--;
if (!io_read_handler->usage_count) { // kill this handler entry
io_read_handler->prev->next = io_read_handler->next;
io_read_handler->next->prev = io_read_handler->prev;
delete [] io_read_handler->handler_name;
delete io_read_handler;
}
return 1;
}
bx_bool bx_devices_c::unregister_io_write_handler(void *this_ptr, bx_write_handler_t f,
Bit32u addr, Bit8u mask)
{
addr &= 0xffff;
struct io_handler_struct *io_write_handler = write_port_to_handler[addr];
if (!io_write_handler)
return 0;
if (io_write_handler == &io_write_handlers)
return 0; // cannot unregister the default handler
if (io_write_handler->funct != f)
return 0;
if (io_write_handler->this_ptr != this_ptr)
return 0;
if (io_write_handler->mask != mask)
return 0;
write_port_to_handler[addr] = &io_write_handlers; // reset to default
io_write_handler->usage_count--;
if (!io_write_handler->usage_count) { // kill this handler entry
io_write_handler->prev->next = io_write_handler->next;
io_write_handler->next->prev = io_write_handler->prev;
delete [] io_write_handler->handler_name;
delete io_write_handler;
}
return 1;
}
bx_bool bx_devices_c::unregister_io_read_handler_range(void *this_ptr, bx_read_handler_t f,
Bit32u begin, Bit32u end, Bit8u mask)
{
begin &= 0xffff;
end &= 0xffff;
Bit32u addr;
bx_bool ret = 1;
/*
* the easy way this time
*/
for (addr = begin; addr <= end; addr++)
if (!unregister_io_read_handler(this_ptr, f, addr, mask))
ret = 0;
return ret;
}
bx_bool bx_devices_c::unregister_io_write_handler_range(void *this_ptr, bx_write_handler_t f,
Bit32u begin, Bit32u end, Bit8u mask)
{
begin &= 0xffff;
end &= 0xffff;
Bit32u addr;
bx_bool ret = 1;
/*
* the easy way this time
*/
for (addr = begin; addr <= end; addr++)
if (!unregister_io_write_handler(this_ptr, f, addr, mask))
ret = 0;
return ret;
}
/*
* Read a byte of data from the IO memory address space
*/
Bit32u BX_CPP_AttrRegparmN(2)
bx_devices_c::inp(Bit16u addr, unsigned io_len)
{
struct io_handler_struct *io_read_handler;
Bit32u ret;
BX_INSTR_INP(addr, io_len);
io_read_handler = read_port_to_handler[addr];
if (io_read_handler->mask & io_len) {
ret = ((bx_read_handler_t)io_read_handler->funct)(io_read_handler->this_ptr, (Bit32u)addr, io_len);
} else {
switch (io_len) {
case 1: ret = 0xff; break;
case 2: ret = 0xffff; break;
default: ret = 0xffffffff; break;
}
if (addr != 0x0cf8) { // don't flood the logfile when probing PCI
BX_ERROR(("read from port 0x%04x with len %d returns 0x%x", addr, io_len, ret));
}
}
BX_INSTR_INP2(addr, io_len, ret);
BX_DBG_IO_REPORT(addr, io_len, BX_READ, ret);
return(ret);
}
/*
* Write a byte of data to the IO memory address space.
*/
void BX_CPP_AttrRegparmN(3)
bx_devices_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
{
struct io_handler_struct *io_write_handler;
BX_INSTR_OUTP(addr, io_len, value);
BX_DBG_IO_REPORT(addr, io_len, BX_WRITE, value);
io_write_handler = write_port_to_handler[addr];
if (io_write_handler->mask & io_len) {
((bx_write_handler_t)io_write_handler->funct)(io_write_handler->this_ptr, (Bit32u)addr, value, io_len);
} else if (addr != 0x0cf8) { // don't flood the logfile when probing PCI
BX_ERROR(("write to port 0x%04x with len %d ignored", addr, io_len));
}
}
bx_bool bx_devices_c::is_harddrv_enabled(void)
{
char pname[24];
for (int i=0; i<BX_MAX_ATA_CHANNEL; i++) {
sprintf(pname, "ata.%d.resources.enabled", i);
if (SIM->get_param_bool(pname)->get())
return 1;
}
return 0;
}
bx_bool bx_devices_c::is_network_enabled(void)
{
if (PLUG_device_present("e1000") ||
PLUG_device_present("ne2k") ||
PLUG_device_present("pcipnic")) {
return 1;
}
return 0;
}
bx_bool bx_devices_c::is_sound_enabled(void)
{
if (PLUG_device_present("es1370") ||
PLUG_device_present("sb16") ||
PLUG_device_present("speaker")) {
return 1;
}
return 0;
}
bx_bool bx_devices_c::is_usb_enabled(void)
{
if (PLUG_device_present("usb_ohci") ||
PLUG_device_present("usb_uhci") ||
PLUG_device_present("usb_ehci") ||
PLUG_device_present("usb_xhci")) {
return 1;
}
return 0;
}
// removable keyboard/mouse registration
void bx_devices_c::register_removable_keyboard(void *dev, bx_kbd_gen_scancode_t kbd_gen_scancode)
{
if (bx_keyboard.dev == NULL) {
bx_keyboard.dev = dev;
bx_keyboard.gen_scancode = kbd_gen_scancode;
}
}
void bx_devices_c::unregister_removable_keyboard(void *dev)
{
if (dev == bx_keyboard.dev) {
bx_keyboard.dev = NULL;
bx_keyboard.gen_scancode = NULL;
}
}
void bx_devices_c::register_default_mouse(void *dev, bx_mouse_enq_t mouse_enq,
bx_mouse_enabled_changed_t mouse_enabled_changed)
{
if (bx_mouse[0].dev == NULL) {
bx_mouse[0].dev = dev;
bx_mouse[0].enq_event = mouse_enq;
bx_mouse[0].enabled_changed = mouse_enabled_changed;
}
}
void bx_devices_c::register_removable_mouse(void *dev, bx_mouse_enq_t mouse_enq,
bx_mouse_enabled_changed_t mouse_enabled_changed)
{
if (bx_mouse[1].dev == NULL) {
bx_mouse[1].dev = dev;
bx_mouse[1].enq_event = mouse_enq;
bx_mouse[1].enabled_changed = mouse_enabled_changed;
}
}
void bx_devices_c::unregister_removable_mouse(void *dev)
{
if (dev == bx_mouse[1].dev) {
bx_mouse[1].dev = NULL;
bx_mouse[1].enq_event = NULL;
bx_mouse[1].enabled_changed = NULL;
}
}
// common keyboard device handlers
void bx_devices_c::gen_scancode(Bit32u key)
{
bx_bool ret = 0;
bx_keyboard.bxkey_state[key & 0xff] = ((key & BX_KEY_RELEASED) == 0);
if (bx_keyboard.dev != NULL) {
ret = bx_keyboard.gen_scancode(bx_keyboard.dev, key);
}
if (ret == 0) {
pluginKeyboard->gen_scancode(key);
}
}
void bx_devices_c::release_keys()
{
for (int i = 0; i < BX_KEY_NBKEYS; i++) {
if (bx_keyboard.bxkey_state[i]) {
gen_scancode(i | BX_KEY_RELEASED);
bx_keyboard.bxkey_state[i] = 0;
}
}
}
// common mouse device handlers
void bx_devices_c::mouse_enabled_changed(bx_bool enabled)
{
mouse_captured = enabled;
if ((bx_mouse[1].dev != NULL) && (bx_mouse[1].enabled_changed != NULL)) {
bx_mouse[1].enabled_changed(bx_mouse[1].dev, enabled);
return;
}
if ((bx_mouse[0].dev != NULL) && (bx_mouse[0].enabled_changed != NULL)) {
bx_mouse[0].enabled_changed(bx_mouse[0].dev, enabled);
}
}
void bx_devices_c::mouse_motion(int delta_x, int delta_y, int delta_z, unsigned button_state, bx_bool absxy)
{
// If mouse events are disabled on the GUI headerbar, don't
// generate any mouse data
if (!mouse_captured)
return;
// if a removable mouse is connected, redirect mouse data to the device
if (bx_mouse[1].dev != NULL) {
bx_mouse[1].enq_event(bx_mouse[1].dev, delta_x, delta_y, delta_z, button_state, absxy);
return;
}
// if a mouse is connected, direct mouse data to the device
if (bx_mouse[0].dev != NULL) {
bx_mouse[0].enq_event(bx_mouse[0].dev, delta_x, delta_y, delta_z, button_state, absxy);
}
}
#if BX_SUPPORT_PCI
// generic PCI support
bx_bool bx_devices_c::register_pci_handlers(bx_pci_device_c *dev,
Bit8u *devfunc, const char *name,
const char *descr, Bit8u bus)
{
unsigned i, offset, handle, max_pci_slots = BX_N_PCI_SLOTS;
int first_free_slot = -1;
Bit16u bus_devfunc = *devfunc;
char devname[80];
char *device;
if (strcmp(name, "pci") && strcmp(name, "pci2isa") && strcmp(name, "pci_ide")
&& ((*devfunc & 0xf8) == 0x00)) {
if (SIM->get_param_enum(BXPN_PCI_CHIPSET)->get() == BX_PCI_CHIPSET_I440BX) {
offset = 8;
max_pci_slots = 4;
} else {
offset = 2;
}
if (bus == 0) {
for (i = 0; i < max_pci_slots; i++) {
sprintf(devname, "pci.slot.%d", i+1);
device = SIM->get_param_string(devname)->getptr();
if (strlen(device) > 0) {
if (!strcmp(name, device) && !pci.slot_used[i]) {
*devfunc = ((i + offset) << 3) | (*devfunc & 0x07);
pci.slot_used[i] = 1;
BX_INFO(("PCI slot #%d used by plugin '%s'", i+1, name));
break;
}
} else if (first_free_slot == -1) {
first_free_slot = i;
}
}
if ((*devfunc & 0xf8) == 0x00) {
// auto-assign device to PCI slot if possible
if (first_free_slot != -1) {
i = (unsigned)first_free_slot;
sprintf(devname, "pci.slot.%d", i+1);
SIM->get_param_string(devname)->set(name);
*devfunc = ((i + offset) << 3) | (*devfunc & 0x07);
pci.slot_used[i] = 1;
BX_INFO(("PCI slot #%d used by plugin '%s'", i+1, name));
} else {
BX_ERROR(("Plugin '%s' not connected to a PCI slot", name));
return 0;
}
}
bus_devfunc = *devfunc;
} else if ((bus == 1) && (max_pci_slots == 4)) {
pci.slot_used[4] = 1;
bus_devfunc = 0x100;
} else {
BX_PANIC(("Invalid bus number #%d", bus));
return 0;
}
}
/* check if device/function is available */
if (pci.handler_id[bus_devfunc] == BX_MAX_PCI_DEVICES) {
if (pci.num_pci_handlers >= BX_MAX_PCI_DEVICES) {
BX_INFO(("too many PCI devices installed."));
BX_PANIC((" try increasing BX_MAX_PCI_DEVICES"));
return 0;
}
handle = pci.num_pci_handlers++;
pci.pci_handler[handle].handler = dev;
pci.handler_id[bus_devfunc] = handle;
if (bus_devfunc < 0x100) {
BX_INFO(("%s present at device %d, function %d", descr, *devfunc >> 3,
*devfunc & 0x07));
} else {
BX_INFO(("%s present on AGP bus device #0", descr));
}
dev->set_name(descr);
return 1; // device/function mapped successfully
} else {
return 0; // device/function not available, return false.
}
}
bx_bool bx_devices_c::pci_set_base_mem(void *this_ptr, memory_handler_t f1, memory_handler_t f2,
Bit32u *addr, Bit8u *pci_conf, unsigned size)
{
Bit32u oldbase = *addr, newbase;
Bit32u mask = ~(size - 1);
Bit8u pci_flags = pci_conf[0x00] & 0x0f;
if ((pci_flags & 0x06) > 0) {
BX_ERROR(("Ignoring PCI base memory flag 0x%02x for now", pci_flags));
}
pci_conf[0x00] &= (mask & 0xf0);
pci_conf[0x01] &= (mask >> 8) & 0xff;
pci_conf[0x02] &= (mask >> 16) & 0xff;
pci_conf[0x03] &= (mask >> 24) & 0xff;
newbase = ReadHostDWordFromLittleEndian((Bit32u*)pci_conf);
pci_conf[0x00] |= pci_flags;
if (newbase != mask && newbase != oldbase) { // skip PCI probe
if (oldbase > 0) {
DEV_unregister_memory_handlers(this_ptr, oldbase, oldbase + size - 1);
}
if (newbase > 0) {
DEV_register_memory_handlers(this_ptr, f1, f2, newbase, newbase + size - 1);
}
*addr = newbase;
return 1;
}
return 0;
}
bx_bool bx_devices_c::pci_set_base_io(void *this_ptr, bx_read_handler_t f1, bx_write_handler_t f2,
Bit32u *addr, Bit8u *pci_conf, unsigned size,
const Bit8u *iomask, const char *name)
{
unsigned i;
Bit32u oldbase = *addr, newbase;
Bit16u mask = ~(size - 1);
Bit8u pci_flags = pci_conf[0x00] & 0x03;
pci_conf[0x00] &= (mask & 0xfc);
pci_conf[0x01] &= (mask >> 8);
newbase = ReadHostDWordFromLittleEndian((Bit32u*)pci_conf);
pci_conf[0x00] |= pci_flags;
if (((newbase & 0xfffc) != mask) && (newbase != oldbase)) { // skip PCI probe
if (oldbase > 0) {
for (i=0; i<size; i++) {
if (iomask[i] > 0) {
DEV_unregister_ioread_handler(this_ptr, f1, oldbase + i, iomask[i]);
DEV_unregister_iowrite_handler(this_ptr, f2, oldbase + i, iomask[i]);
}
}
}
if (newbase > 0) {
for (i=0; i<size; i++) {
if (iomask[i] > 0) {
DEV_register_ioread_handler(this_ptr, f1, newbase + i, name, iomask[i]);
DEV_register_iowrite_handler(this_ptr, f2, newbase + i, name, iomask[i]);
}
}
}
*addr = newbase;
return 1;
}
return 0;
}
// PCI device base class (common methods)
#undef LOG_THIS
#define LOG_THIS
void bx_pci_device_c::init_pci_conf(Bit16u vid, Bit16u did, Bit8u rev,
Bit32u classc, Bit8u headt, Bit8u intpin)
{
memset(pci_conf, 0, 256);
pci_conf[0x00] = (Bit8u)(vid & 0xff);
pci_conf[0x01] = (Bit8u)(vid >> 8);
pci_conf[0x02] = (Bit8u)(did & 0xff);
pci_conf[0x03] = (Bit8u)(did >> 8);
pci_conf[0x08] = rev;
pci_conf[0x09] = (Bit8u)(classc & 0xff);
pci_conf[0x0a] = (Bit8u)((classc >> 8) & 0xff);
pci_conf[0x0b] = (Bit8u)((classc >> 16) & 0xff);
pci_conf[0x0e] = headt;
pci_conf[0x3d] = intpin;
}
void bx_pci_device_c::init_bar_io(Bit8u num, Bit16u size, bx_read_handler_t rh,
bx_write_handler_t wh, const Bit8u *mask)
{
if (num < 6) {
pci_bar[num].type = BX_PCI_BAR_TYPE_IO;
pci_bar[num].size = size;
pci_bar[num].io.rh = rh;
pci_bar[num].io.wh = wh;
pci_bar[num].io.mask = mask;
pci_conf[0x10 + num * 4] = 0x01;
}
}
void bx_pci_device_c::init_bar_mem(Bit8u num, Bit32u size, memory_handler_t rh,
memory_handler_t wh)
{
if (num < 6) {
pci_bar[num].type = BX_PCI_BAR_TYPE_MEM;
pci_bar[num].size = size;
pci_bar[num].mem.rh = rh;
pci_bar[num].mem.wh = wh;
}
}
void bx_pci_device_c::register_pci_state(bx_list_c *list)
{
new bx_shadow_data_c(list, "pci_conf", pci_conf, 256, 1);
}
void bx_pci_device_c::after_restore_pci_state(memory_handler_t mem_read_handler)
{
for (int i = 0; i < 6; i++) {
if (pci_bar[i].type == BX_PCI_BAR_TYPE_MEM) {
if (DEV_pci_set_base_mem(this, pci_bar[i].mem.rh, pci_bar[i].mem.wh,
&pci_bar[i].addr, &pci_conf[0x10 + i * 4],
pci_bar[i].size)) {
BX_INFO(("BAR #%d: mem base address = 0x%08x", i, pci_bar[i].addr));
pci_bar_change_notify();
}
} else if (pci_bar[i].type == BX_PCI_BAR_TYPE_IO) {
if (DEV_pci_set_base_io(this, pci_bar[i].io.rh, pci_bar[i].io.wh,
&pci_bar[i].addr, &pci_conf[0x10 + i * 4],
pci_bar[i].size, pci_bar[i].io.mask, pci_name)) {
BX_INFO(("BAR #%d: i/o base address = 0x%04x", i, pci_bar[i].addr));
pci_bar_change_notify();
}
}
}
if (pci_rom_size > 0) {
if (DEV_pci_set_base_mem(this, mem_read_handler, NULL, &pci_rom_address,
&pci_conf[0x30], pci_rom_size)) {
BX_INFO(("new ROM address: 0x%08x", pci_rom_address));
}
}
}
void bx_pci_device_c::load_pci_rom(const char *path)
{
struct stat stat_buf;
int fd, ret;
unsigned long size, max_size;
if (*path == '\0') {
BX_PANIC(("PCI ROM image undefined"));
return;
}
// read in PCI ROM image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
BX_PANIC(("couldn't open PCI ROM image file '%s'.", path));
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
close(fd);
BX_PANIC(("couldn't stat PCI ROM image file '%s'.", path));
return;
}
max_size = 0x20000;
size = (unsigned long)stat_buf.st_size;
if (size > max_size) {
close(fd);
BX_PANIC(("PCI ROM image too large"));
return;
}
if ((size % 512) != 0) {
close(fd);
BX_PANIC(("PCI ROM image size must be multiple of 512 (size = %ld)", size));
return;
}
while ((size - 1) < max_size) {
max_size >>= 1;
}
pci_rom_size = (max_size << 1);
pci_rom = new Bit8u[pci_rom_size];
while (size > 0) {
ret = read(fd, (bx_ptr_t) pci_rom, size);
if (ret <= 0) {
BX_PANIC(("read failed on PCI ROM image: '%s'", path));
}
size -= ret;
}
close(fd);
BX_INFO(("loaded PCI ROM '%s' (size=%u / PCI=%uk)", path, (unsigned) stat_buf.st_size, pci_rom_size >> 10));
}
// pci configuration space write callback handler (common registers)
void bx_pci_device_c::pci_write_handler_common(Bit8u address, Bit32u value, unsigned io_len)
{
Bit8u bnum, value8, oldval;
bx_bool bar_change = 0, rom_change = 0;
// ignore readonly registers
if ((address < 4) || ((address > 7) && (address < 12)) || (address == 14) ||
(address == 0x3d)) {
BX_DEBUG(("write to r/o PCI register 0x%02x ignored", address));
return;
}
// handle base address registers if header type bit #0 and #1 are clear
if (((pci_conf[0x0e] & 0x03) == 0) && (address >= 0x10) && (address < 0x28)) {
bnum = ((address - 0x10) >> 2);
if (pci_bar[bnum].type != BX_PCI_BAR_TYPE_NONE) {
BX_DEBUG_PCI_WRITE(address, value, io_len);
for (unsigned i=0; i<io_len; i++) {
value8 = (value >> (i*8)) & 0xff;
oldval = pci_conf[address+i];
if (((address+i) & 0x03) == 0) {
if (pci_bar[bnum].type == BX_PCI_BAR_TYPE_IO) {
value8 = (value8 & 0xfc) | 0x01;
} else {
value8 = (value8 & 0xf0) | (oldval & 0x0f);
}
}
bar_change |= (value8 != oldval);
pci_conf[address+i] = value8;
}
if (bar_change) {
if (pci_bar[bnum].type == BX_PCI_BAR_TYPE_IO) {
if (DEV_pci_set_base_io(this, pci_bar[bnum].io.rh, pci_bar[bnum].io.wh,
&pci_bar[bnum].addr, &pci_conf[0x10 + bnum * 4],
pci_bar[bnum].size, pci_bar[bnum].io.mask, pci_name)) {
BX_INFO(("BAR #%d: i/o base address = 0x%04x", bnum, pci_bar[bnum].addr));
pci_bar_change_notify();
}
} else {
if (DEV_pci_set_base_mem(this, pci_bar[bnum].mem.rh, pci_bar[bnum].mem.wh,
&pci_bar[bnum].addr, &pci_conf[0x10 + bnum * 4],
pci_bar[bnum].size)) {
BX_INFO(("BAR #%d: mem base address = 0x%08x", bnum, pci_bar[bnum].addr));
pci_bar_change_notify();
}
}
}
}
} else if ((address & 0xfc) == 0x30) {
BX_DEBUG_PCI_WRITE(address, value, io_len);
value &= (0xfffffc01 >> ((address & 0x03) * 8));
for (unsigned i=0; i<io_len; i++) {
value8 = (value >> (i*8)) & 0xff;
oldval = pci_conf[address+i];
rom_change |= (value8 != oldval);
pci_conf[address+i] = value8;
}
if (rom_change) {
if (DEV_pci_set_base_mem(this, pci_rom_read_handler, NULL,
&pci_rom_address, &pci_conf[0x30],
pci_rom_size)) {
BX_INFO(("new ROM address = 0x%08x", pci_rom_address));
}
}
} else if (address == 0x3c) {
value8 = (Bit8u)value;
if (value8 != pci_conf[0x3c]) {
if (pci_conf[0x3d] != 0) {
BX_INFO(("new IRQ line = %d", value8));
}
pci_conf[0x3c] = value8;
}
} else {
pci_write_handler(address, value, io_len);
}
}
// pci configuration space read callback handler
Bit32u bx_pci_device_c::pci_read_handler(Bit8u address, unsigned io_len)
{
Bit32u value = 0;
for (unsigned i=0; i<io_len; i++) {
value |= (pci_conf[address+i] << (i*8));
}
BX_DEBUG_PCI_READ(address, value, io_len);
return value;
}
#endif