cdfc3cbce4
* renamed CPU_ID to BX_CPU_ID. with this new name there is no possibility for name contentions and BX_CPU_ID definition could be moved out to NEED_CPU_REG_SHORTCUTS block * returned back `unsigned BX_CPU::which_cpu(void)` function * added BX_CPU_ID parameter for BX_INSTR_PHY_READ(a20addr, len); BX_INSTR_PHY_WRITE(a20addr, len); now it will be BX_INSTR_PHY_READ(cpu_id, a20addr, len); BX_INSTR_PHY_WRITE(cpu_id, a20addr, len);
1065 lines
33 KiB
C++
1065 lines
33 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: cpu.cc,v 1.74 2003-02-13 15:03:57 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#if BX_USE_CPU_SMF
|
|
#define this (BX_CPU(0))
|
|
#endif
|
|
|
|
|
|
#if BX_SIM_ID == 0 // only need to define once
|
|
// This array defines a look-up table for the even parity-ness
|
|
// of an 8bit quantity, for optimal assignment of the parity bit
|
|
// in the EFLAGS register
|
|
const bx_bool bx_parity_lookup[256] = {
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
|
|
};
|
|
#endif
|
|
|
|
|
|
#if BX_SMP_PROCESSORS==1
|
|
// single processor simulation, so there's one of everything
|
|
BOCHSAPI BX_CPU_C bx_cpu;
|
|
BOCHSAPI BX_MEM_C bx_mem;
|
|
#else
|
|
// multiprocessor simulation, we need an array of cpus and memories
|
|
BOCHSAPI BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
|
|
BOCHSAPI BX_MEM_C *bx_mem_array[BX_ADDRESS_SPACES];
|
|
#endif
|
|
|
|
|
|
|
|
// notes:
|
|
//
|
|
// check limit of CS?
|
|
|
|
#ifdef REGISTER_IADDR
|
|
extern void REGISTER_IADDR(bx_addr addr);
|
|
#endif
|
|
|
|
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
|
|
// instructions and then return so that the other processors have a chance to
|
|
// run. This is used only when simulating multiple processors.
|
|
//
|
|
// If maximum instructions have been executed, return. A count less
|
|
// than zero means run forever.
|
|
#define CHECK_MAX_INSTRUCTIONS(count) \
|
|
if (count >= 0) { \
|
|
count--; if (count == 0) return; \
|
|
}
|
|
|
|
#if BX_SMP_PROCESSORS==1
|
|
# define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1()
|
|
#else
|
|
# define BX_TICK1_IF_SINGLE_PROCESSOR()
|
|
#endif
|
|
|
|
// Make code more tidy with a few macros.
|
|
#if BX_SUPPORT_X86_64==0
|
|
#define RIP EIP
|
|
#define RSP ESP
|
|
#endif
|
|
|
|
|
|
void
|
|
BX_CPU_C::cpu_loop(Bit32s max_instr_count)
|
|
{
|
|
unsigned ret;
|
|
bxInstruction_c iStorage BX_CPP_AlignN(32);
|
|
bxInstruction_c *i = &iStorage;
|
|
|
|
BxExecutePtr_t execute;
|
|
|
|
#if BX_DEBUGGER
|
|
BX_CPU_THIS_PTR break_point = 0;
|
|
#ifdef MAGIC_BREAKPOINT
|
|
BX_CPU_THIS_PTR magic_break = 0;
|
|
#endif
|
|
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
|
|
#endif
|
|
|
|
#if BX_INSTRUMENTATION
|
|
if (setjmp( BX_CPU_THIS_PTR jmp_buf_env ))
|
|
{
|
|
// only from exception function can we get here ...
|
|
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
|
|
}
|
|
#else
|
|
(void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );
|
|
#endif
|
|
|
|
#if BX_DEBUGGER
|
|
// If the exception() routine has encountered a nasty fault scenario,
|
|
// the debugger may request that control is returned to it so that
|
|
// the situation may be examined.
|
|
if (bx_guard.special_unwind_stack) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// We get here either by a normal function call, or by a longjmp
|
|
// back from an exception() call. In either case, commit the
|
|
// new EIP/ESP, and set up other environmental fields. This code
|
|
// mirrors similar code below, after the interrupt() call.
|
|
BX_CPU_THIS_PTR prev_eip = RIP; // commit new EIP
|
|
BX_CPU_THIS_PTR prev_esp = RSP; // commit new ESP
|
|
BX_CPU_THIS_PTR EXT = 0;
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
|
|
while (1) {
|
|
|
|
// First check on events which occurred for previous instructions
|
|
// (traps) and ones which are asynchronous to the CPU
|
|
// (hardware interrupts).
|
|
if (BX_CPU_THIS_PTR async_event) {
|
|
if (handleAsyncEvent()) {
|
|
// If request to return to caller ASAP.
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if BX_DEBUGGER
|
|
{
|
|
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
|
|
if ( dbg_is_begin_instr_bpoint(
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
|
|
return;
|
|
}
|
|
}
|
|
#endif // #if BX_DEBUGGER
|
|
|
|
#if BX_EXTERNAL_DEBUGGER
|
|
if (regs.debug_state != debug_run) {
|
|
bx_external_debugger(this);
|
|
}
|
|
#endif
|
|
|
|
{
|
|
bx_address eipBiased;
|
|
Bit8u *fetchPtr;
|
|
|
|
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
|
|
|
|
if ( eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize ) {
|
|
prefetch();
|
|
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
|
|
}
|
|
|
|
#if BX_SupportICache
|
|
unsigned iCacheHash;
|
|
Bit32u pAddr, pageWriteStamp, fetchModeMask;
|
|
|
|
pAddr = BX_CPU_THIS_PTR pAddrA20Page + eipBiased;
|
|
iCacheHash = BX_CPU_THIS_PTR iCache.hash( pAddr );
|
|
i = & BX_CPU_THIS_PTR iCache.entry[iCacheHash].i;
|
|
|
|
pageWriteStamp = BX_CPU_THIS_PTR iCache.pageWriteStampTable[pAddr>>12];
|
|
fetchModeMask = BX_CPU_THIS_PTR iCache.fetchModeMask;
|
|
|
|
if ( (BX_CPU_THIS_PTR iCache.entry[iCacheHash].pAddr == pAddr) &&
|
|
(BX_CPU_THIS_PTR iCache.entry[iCacheHash].writeStamp == pageWriteStamp) &&
|
|
((pageWriteStamp & fetchModeMask) == fetchModeMask) ) {
|
|
|
|
// iCache hit. Instruction is already decoded and stored in
|
|
// the instruction cache.
|
|
BxExecutePtr_t resolveModRM = i->ResolveModrm; // Get as soon as possible for speculation.
|
|
|
|
execute = i->execute; // fetch as soon as possible for speculation.
|
|
if (resolveModRM) {
|
|
BX_CPU_CALL_METHOD(resolveModRM, (i));
|
|
}
|
|
#if BX_INSTRUMENTATION
|
|
// An instruction was found in the iCache.
|
|
BX_INSTR_OPCODE(BX_CPU_ID, BX_CPU_THIS_PTR eipFetchPtr + eipBiased,
|
|
i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// iCache miss. No validated instruction with matching fetch parameters
|
|
// is in the iCache. Or we're not compiling iCache support in, in which
|
|
// case we always have an iCache miss. :^)
|
|
bx_address remainingInPage;
|
|
unsigned maxFetch;
|
|
|
|
remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
|
|
maxFetch = 15;
|
|
if (remainingInPage < 15)
|
|
maxFetch = remainingInPage;
|
|
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
|
|
|
|
#if BX_SupportICache
|
|
// In the case where the page is marked ICacheWriteStampInvalid, all
|
|
// counter bits will be high, being eqivalent to ICacheWriteStampMax.
|
|
// In the case where the page is marked as possibly having associated
|
|
// iCache entries, we need to leave the counter as-is, unless we're
|
|
// willing to dump all iCache entries which can hash to this page.
|
|
// Therefore, in either case, we can keep the counter as-is and
|
|
// replace the fetch mode bits.
|
|
pageWriteStamp &= 0x1fffffff; // Clear out old fetch mode bits.
|
|
pageWriteStamp |= fetchModeMask; // Add in new ones.
|
|
BX_CPU_THIS_PTR iCache.pageWriteStampTable[pAddr>>12] = pageWriteStamp;
|
|
BX_CPU_THIS_PTR iCache.entry[iCacheHash].pAddr = pAddr;
|
|
BX_CPU_THIS_PTR iCache.entry[iCacheHash].writeStamp = pageWriteStamp;
|
|
#endif
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
ret = fetchDecode64(fetchPtr, i, maxFetch);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
ret = fetchDecode(fetchPtr, i, maxFetch);
|
|
}
|
|
|
|
BxExecutePtr_t resolveModRM = i->ResolveModrm; // Get function pointers early.
|
|
if (ret==0) {
|
|
#if BX_SupportICache
|
|
// Invalidate entry, since fetch-decode failed with partial updates
|
|
// to the i-> structure.
|
|
BX_CPU_THIS_PTR iCache.entry[iCacheHash].writeStamp =
|
|
ICacheWriteStampInvalid;
|
|
i = &iStorage;
|
|
#endif
|
|
boundaryFetch(i);
|
|
resolveModRM = i->ResolveModrm; // Get function pointers as early
|
|
}
|
|
#if BX_INSTRUMENTATION
|
|
else
|
|
{
|
|
// An instruction was either fetched, or found in the iCache.
|
|
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, i->ilen(),
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
|
|
}
|
|
#endif
|
|
execute = i->execute; // fetch as soon as possible for speculation.
|
|
if (resolveModRM) {
|
|
BX_CPU_CALL_METHOD(resolveModRM, (i));
|
|
}
|
|
}
|
|
}
|
|
|
|
// An instruction will have been fetched using either the normal case,
|
|
// or the boundary fetch (across pages), by this point.
|
|
BX_INSTR_FETCH_DECODE_COMPLETED(BX_CPU_ID, i);
|
|
|
|
#if BX_DEBUGGER
|
|
if (BX_CPU_THIS_PTR trace) {
|
|
// print the instruction that is about to be executed.
|
|
bx_dbg_disassemble_current (BX_CPU_ID, 1); // only one cpu, print time stamp
|
|
}
|
|
#endif
|
|
|
|
if ( !(i->repUsedL() && i->repeatableL()) ) {
|
|
// non repeating instruction
|
|
RIP += i->ilen();
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
|
|
BX_CPU_THIS_PTR prev_eip = RIP; // commit new EIP
|
|
BX_CPU_THIS_PTR prev_esp = RSP; // commit new ESP
|
|
#ifdef REGISTER_IADDR
|
|
REGISTER_IADDR(RIP + BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base);
|
|
#endif
|
|
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
|
}
|
|
|
|
else {
|
|
repeat_loop:
|
|
if (i->repeatableZFL()) {
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
if (RCX != 0) {
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
RCX -= 1;
|
|
}
|
|
if ((i->repUsedValue()==3) && (get_ZF()==0)) goto repeat_done;
|
|
if ((i->repUsedValue()==2) && (get_ZF()!=0)) goto repeat_done;
|
|
if (RCX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
if (ECX != 0) {
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
ECX -= 1;
|
|
}
|
|
if ((i->repUsedValue()==3) && (get_ZF()==0)) goto repeat_done;
|
|
if ((i->repUsedValue()==2) && (get_ZF()!=0)) goto repeat_done;
|
|
if (ECX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
else {
|
|
if (CX != 0) {
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
CX -= 1;
|
|
}
|
|
if ((i->repUsedValue()==3) && (get_ZF()==0)) goto repeat_done;
|
|
if ((i->repUsedValue()==2) && (get_ZF()!=0)) goto repeat_done;
|
|
if (CX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
}
|
|
else { // normal repeat, no concern for ZF
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
if (RCX != 0) {
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
RCX -= 1;
|
|
}
|
|
if (RCX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
if (ECX != 0) {
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
ECX -= 1;
|
|
}
|
|
if (ECX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
else { // 16bit addrsize
|
|
if (CX != 0) {
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
|
CX -= 1;
|
|
}
|
|
if (CX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
}
|
|
// shouldn't get here from above
|
|
repeat_not_done:
|
|
#ifdef REGISTER_IADDR
|
|
REGISTER_IADDR(RIP + BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base);
|
|
#endif
|
|
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID);
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
|
|
|
#if BX_DEBUGGER == 0
|
|
if (BX_CPU_THIS_PTR async_event) {
|
|
invalidate_prefetch_q();
|
|
goto debugger_check;
|
|
}
|
|
goto repeat_loop;
|
|
#else /* if BX_DEBUGGER == 1 */
|
|
invalidate_prefetch_q();
|
|
goto debugger_check;
|
|
#endif
|
|
|
|
|
|
repeat_done:
|
|
RIP += i->ilen();
|
|
|
|
BX_CPU_THIS_PTR prev_eip = RIP; // commit new EIP
|
|
BX_CPU_THIS_PTR prev_esp = RSP; // commit new ESP
|
|
#ifdef REGISTER_IADDR
|
|
REGISTER_IADDR(RIP + BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base);
|
|
#endif
|
|
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID);
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
|
}
|
|
|
|
debugger_check:
|
|
|
|
// inform instrumentation about new instruction
|
|
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
|
|
|
|
#if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0)
|
|
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
|
|
// instructions and then return so that the other processors have a chance
|
|
// to run. This is used only when simulating multiple processors. If only
|
|
// one processor, don't waste any cycles on it! Also, it is not needed
|
|
// with the debugger because its guard mechanism provides the same
|
|
// functionality.
|
|
CHECK_MAX_INSTRUCTIONS(max_instr_count);
|
|
#endif
|
|
|
|
#if BX_DEBUGGER
|
|
|
|
// BW vm mode switch support is in dbg_is_begin_instr_bpoint
|
|
// note instr generating exceptions never reach this point.
|
|
|
|
// (mch) Read/write, time break point support
|
|
if (BX_CPU_THIS_PTR break_point) {
|
|
switch (BX_CPU_THIS_PTR break_point) {
|
|
case BREAK_POINT_TIME:
|
|
BX_INFO(("[%lld] Caught time breakpoint", bx_pc_system.time_ticks()));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
|
|
return;
|
|
case BREAK_POINT_READ:
|
|
BX_INFO(("[%lld] Caught read watch point", bx_pc_system.time_ticks()));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
|
|
return;
|
|
case BREAK_POINT_WRITE:
|
|
BX_INFO(("[%lld] Caught write watch point", bx_pc_system.time_ticks()));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
|
|
return;
|
|
default:
|
|
BX_PANIC(("Weird break point condition"));
|
|
}
|
|
}
|
|
#ifdef MAGIC_BREAKPOINT
|
|
// (mch) Magic break point support
|
|
if (BX_CPU_THIS_PTR magic_break) {
|
|
if (bx_dbg.magic_break_enabled) {
|
|
BX_DEBUG(("Stopped on MAGIC BREAKPOINT"));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
|
|
return;
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR magic_break = 0;
|
|
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
|
|
BX_DEBUG(("Ignoring MAGIC BREAKPOINT"));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
{
|
|
// check for icount or control-C. If found, set guard reg and return.
|
|
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
|
|
if ( dbg_is_end_instr_bpoint(
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
#endif // #if BX_DEBUGGER
|
|
#if BX_GDBSTUB
|
|
{
|
|
unsigned int reason;
|
|
if ((reason = bx_gdbstub_check(EIP)) != GDBSTUB_STOP_NO_REASON) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
} // while (1)
|
|
}
|
|
|
|
unsigned
|
|
BX_CPU_C::handleAsyncEvent(void)
|
|
{
|
|
//
|
|
// This area is where we process special conditions and events.
|
|
//
|
|
|
|
if (BX_CPU_THIS_PTR debug_trap & 0x80000000) {
|
|
// I made up the bitmask above to mean HALT state.
|
|
#if BX_SMP_PROCESSORS==1
|
|
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
|
|
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
|
|
// for one processor, pass the time as quickly as possible until
|
|
// an interrupt wakes up the CPU.
|
|
#if BX_DEBUGGER
|
|
while (bx_guard.interrupt_requested != 1)
|
|
#else
|
|
while (1)
|
|
#endif
|
|
{
|
|
if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF ()) {
|
|
break;
|
|
}
|
|
if (BX_CPU_THIS_PTR async_event == 2) {
|
|
BX_INFO(("decode: reset detected in halt state"));
|
|
break;
|
|
}
|
|
BX_TICK1();
|
|
}
|
|
#else /* BX_SMP_PROCESSORS != 1 */
|
|
// for multiprocessor simulation, even if this CPU is halted we still
|
|
// must give the others a chance to simulate. If an interrupt has
|
|
// arrived, then clear the HALT condition; otherwise just return from
|
|
// the CPU loop with stop_reason STOP_CPU_HALTED.
|
|
if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF ()) {
|
|
// interrupt ends the HALT condition
|
|
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
|
|
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
|
|
//bx_printf ("halt condition has been cleared in %s", name);
|
|
} else {
|
|
// HALT condition remains, return so other CPUs have a chance
|
|
#if BX_DEBUGGER
|
|
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
|
|
#endif
|
|
return 1; // Return to caller of cpu_loop.
|
|
}
|
|
#endif
|
|
} else if (BX_CPU_THIS_PTR kill_bochs_request) {
|
|
// setting kill_bochs_request causes the cpu loop to return ASAP.
|
|
return 1; // Return to caller of cpu_loop.
|
|
}
|
|
|
|
|
|
// Priority 1: Hardware Reset and Machine Checks
|
|
// RESET
|
|
// Machine Check
|
|
// (bochs doesn't support these)
|
|
|
|
// Priority 2: Trap on Task Switch
|
|
// T flag in TSS is set
|
|
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
|
|
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
|
}
|
|
|
|
// Priority 3: External Hardware Interventions
|
|
// FLUSH
|
|
// STOPCLK
|
|
// SMI
|
|
// INIT
|
|
// (bochs doesn't support these)
|
|
|
|
// Priority 4: Traps on Previous Instruction
|
|
// Breakpoints
|
|
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
|
|
if ( BX_CPU_THIS_PTR debug_trap &&
|
|
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
|
|
// A trap may be inhibited on this boundary due to an instruction
|
|
// which loaded SS. If so we clear the inhibit_mask below
|
|
// and don't execute this code until the next boundary.
|
|
// Commit debug events to DR6
|
|
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
|
}
|
|
|
|
// Priority 5: External Interrupts
|
|
// NMI Interrupts
|
|
// Maskable Hardware Interrupts
|
|
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
|
|
// Processing external interrupts is inhibited on this
|
|
// boundary because of certain instructions like STI.
|
|
// inhibit_mask is cleared below, in which case we will have
|
|
// an opportunity to check interrupts on the next instruction
|
|
// boundary.
|
|
}
|
|
else if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF () &&
|
|
BX_DBG_ASYNC_INTR) {
|
|
Bit8u vector;
|
|
|
|
// NOTE: similar code in ::take_irq()
|
|
#if BX_SUPPORT_APIC
|
|
if (BX_CPU_THIS_PTR local_apic.INTR)
|
|
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int ();
|
|
else
|
|
vector = DEV_pic_iac(); // may set INTR with next interrupt
|
|
#else
|
|
// if no local APIC, always acknowledge the PIC.
|
|
vector = DEV_pic_iac(); // may set INTR with next interrupt
|
|
#endif
|
|
//BX_DEBUG(("decode: interrupt %u",
|
|
// (unsigned) vector));
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
BX_CPU_THIS_PTR EXT = 1; /* external event */
|
|
interrupt(vector, 0, 0, 0);
|
|
BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP);
|
|
// Set up environment, as would be when this main cpu loop gets
|
|
// invoked. At the end of normal instructions, we always commmit
|
|
// the new EIP/ESP values. But here, we call interrupt() much like
|
|
// it was a sofware interrupt instruction, and need to effect the
|
|
// commit here. This code mirrors similar code above.
|
|
BX_CPU_THIS_PTR prev_eip = RIP; // commit new RIP
|
|
BX_CPU_THIS_PTR prev_esp = RSP; // commit new RSP
|
|
BX_CPU_THIS_PTR EXT = 0;
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
}
|
|
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
|
|
// NOTE: similar code in ::take_dma()
|
|
// assert Hold Acknowledge (HLDA) and go into a bus hold state
|
|
DEV_dma_raise_hlda();
|
|
}
|
|
|
|
// Priority 6: Faults from fetching next instruction
|
|
// Code breakpoint fault
|
|
// Code segment limit violation (priority 7 on 486/Pentium)
|
|
// Code page fault (priority 7 on 486/Pentium)
|
|
// (handled in main decode loop)
|
|
|
|
// Priority 7: Faults from decoding next instruction
|
|
// Instruction length > 15 bytes
|
|
// Illegal opcode
|
|
// Coprocessor not available
|
|
// (handled in main decode loop etc)
|
|
|
|
// Priority 8: Faults on executing an instruction
|
|
// Floating point execution
|
|
// Overflow
|
|
// Bound error
|
|
// Invalid TSS
|
|
// Segment not present
|
|
// Stack fault
|
|
// General protection
|
|
// Data page fault
|
|
// Alignment check
|
|
// (handled by rest of the code)
|
|
|
|
|
|
if (BX_CPU_THIS_PTR get_TF ()) {
|
|
// TF is set before execution of next instruction. Schedule
|
|
// a debug trap (#DB) after execution. After completion of
|
|
// next instruction, the code above will invoke the trap.
|
|
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
|
|
}
|
|
|
|
// Now we can handle things which are synchronous to instruction
|
|
// execution.
|
|
if (BX_CPU_THIS_PTR get_RF ()) {
|
|
BX_CPU_THIS_PTR clear_RF ();
|
|
}
|
|
#if BX_X86_DEBUGGER
|
|
else {
|
|
// only bother comparing if any breakpoints enabled
|
|
if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
|
|
Bit32u iaddr =
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
|
|
BX_CPU_THIS_PTR prev_eip;
|
|
Bit32u dr6_bits;
|
|
if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction,
|
|
BX_HWDebugInstruction)) ) {
|
|
// Add to the list of debug events thus far.
|
|
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
|
|
BX_CPU_THIS_PTR async_event = 1;
|
|
// If debug events are not inhibited on this boundary,
|
|
// fire off a debug fault. Otherwise handle it on the next
|
|
// boundary. (becomes a trap)
|
|
if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
|
|
// Commit debug events to DR6
|
|
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// We have ignored processing of external interrupts and
|
|
// debug events on this boundary. Reset the mask so they
|
|
// will be processed on the next boundary.
|
|
BX_CPU_THIS_PTR inhibit_mask = 0;
|
|
|
|
if ( !(BX_CPU_INTR ||
|
|
BX_CPU_THIS_PTR debug_trap ||
|
|
BX_HRQ ||
|
|
BX_CPU_THIS_PTR get_TF ()) )
|
|
BX_CPU_THIS_PTR async_event = 0;
|
|
|
|
return 0; // Continue executing cpu_loop.
|
|
}
|
|
|
|
|
|
|
|
|
|
// boundaries of consideration:
|
|
//
|
|
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
|
|
// * A20 boundary: 1024k (1Megabyte)
|
|
// * page boundary: 4k
|
|
// * ROM boundary: 2k (dont care since we are only reading)
|
|
// * segment boundary: any
|
|
|
|
|
|
|
|
void
|
|
BX_CPU_C::prefetch(void)
|
|
{
|
|
// cs:eIP
|
|
// prefetch QSIZE byte quantity aligned on corresponding boundary
|
|
bx_address laddr;
|
|
Bit32u pAddr;
|
|
bx_address temp_rip;
|
|
Bit32u temp_limit;
|
|
bx_address laddrPageOffset0, eipPageOffset0;
|
|
|
|
temp_rip = RIP;
|
|
temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
|
|
|
|
laddr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
|
|
temp_rip;
|
|
|
|
if (((Bit32u)temp_rip) > temp_limit) {
|
|
BX_PANIC(("prefetch: RIP > CS.limit"));
|
|
}
|
|
|
|
#if BX_SUPPORT_PAGING
|
|
if (BX_CPU_THIS_PTR cr0.pg) {
|
|
// aligned block guaranteed to be all in one page, same A20 address
|
|
pAddr = itranslate_linear(laddr, CPL==3);
|
|
pAddr = A20ADDR(pAddr);
|
|
}
|
|
else
|
|
#endif // BX_SUPPORT_PAGING
|
|
{
|
|
pAddr = A20ADDR(laddr);
|
|
}
|
|
|
|
// check if segment boundary comes into play
|
|
//if ((temp_limit - (Bit32u)temp_rip) < 4096) {
|
|
// }
|
|
|
|
// Linear address at the beginning of the page.
|
|
laddrPageOffset0 = laddr & 0xfffff000;
|
|
// Calculate RIP at the beginning of the page.
|
|
eipPageOffset0 = RIP - (laddr - laddrPageOffset0);
|
|
BX_CPU_THIS_PTR eipPageBias = - eipPageOffset0;
|
|
BX_CPU_THIS_PTR eipPageWindowSize = 4096; // FIXME:
|
|
BX_CPU_THIS_PTR pAddrA20Page = pAddr & 0xfffff000;
|
|
BX_CPU_THIS_PTR eipFetchPtr =
|
|
BX_CPU_THIS_PTR mem->getHostMemAddr(this, BX_CPU_THIS_PTR pAddrA20Page,
|
|
BX_READ);
|
|
|
|
// Sanity checks
|
|
if ( !BX_CPU_THIS_PTR eipFetchPtr ) {
|
|
if ( pAddr >= BX_CPU_THIS_PTR mem->len ) {
|
|
BX_PANIC(("prefetch: running in bogus memory"));
|
|
}
|
|
else {
|
|
BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x%x.",
|
|
pAddr));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::boundaryFetch(bxInstruction_c *i)
|
|
{
|
|
unsigned j;
|
|
Bit8u fetchBuffer[16]; // Really only need 15
|
|
bx_address eipBiased, remainingInPage;
|
|
Bit8u *fetchPtr;
|
|
unsigned ret;
|
|
|
|
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
|
|
remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
|
|
if (remainingInPage > 15) {
|
|
BX_PANIC(("fetch_decode: remaining > max ilen"));
|
|
}
|
|
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
|
|
|
|
// Read all leftover bytes in current page up to boundary.
|
|
for (j=0; j<remainingInPage; j++) {
|
|
fetchBuffer[j] = *fetchPtr++;
|
|
}
|
|
|
|
// The 2nd chunk of the instruction is on the next page.
|
|
// Set RIP to the 0th byte of the 2nd page, and force a
|
|
// prefetch so direct access of that physical page is possible, and
|
|
// all the associated info is updated.
|
|
RIP += remainingInPage;
|
|
prefetch();
|
|
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
|
|
BX_PANIC(("fetch_decode: small window size after prefetch"));
|
|
}
|
|
|
|
// We can fetch straight from the 0th byte, which is eipFetchPtr;
|
|
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
|
|
|
|
// read leftover bytes in next page
|
|
for (; j<15; j++) {
|
|
fetchBuffer[j] = *fetchPtr++;
|
|
}
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
ret = fetchDecode64(fetchBuffer, i, 15);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
ret = fetchDecode(fetchBuffer, i, 15);
|
|
}
|
|
// Restore EIP since we fudged it to start at the 2nd page boundary.
|
|
RIP = BX_CPU_THIS_PTR prev_eip;
|
|
if (ret==0)
|
|
BX_PANIC(("fetchDecode: cross boundary: ret==0"));
|
|
|
|
// Since we cross an instruction boundary, note that we need a prefetch()
|
|
// again on the next instruction. Perhaps we can optimize this to
|
|
// eliminate the extra prefetch() since we do it above, but have to
|
|
// think about repeated instructions, etc.
|
|
BX_CPU_THIS_PTR eipPageWindowSize = 0; // Fixme
|
|
|
|
BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(),
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
|
|
}
|
|
|
|
|
|
#if 0
|
|
// Now a no-op.
|
|
|
|
// If control has transfered locally, it is possible the prefetch Q is
|
|
// still valid. This would happen for repeat instructions, and small
|
|
// branches.
|
|
void
|
|
BX_CPU_C::revalidate_prefetch_q(void)
|
|
{
|
|
#ifdef __GNUC__
|
|
#warning "::revalidate_prefetch_q() is ifdef'd out."
|
|
#endif
|
|
bx_address eipBiased;
|
|
|
|
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
|
|
if ( eipBiased < BX_CPU_THIS_PTR eipPageWindowSize ) {
|
|
// Good, EIP still within prefetch window.
|
|
}
|
|
else {
|
|
// EIP has branched outside the prefetch window. Mark the
|
|
// prefetch info as invalid, and requiring update.
|
|
BX_CPU_THIS_PTR eipPageWindowSize = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
#if BX_EXTERNAL_DEBUGGER
|
|
|
|
void
|
|
BX_CPU_C::ask (int level, const char *prefix, const char *fmt, va_list ap)
|
|
{
|
|
char buf1[1024];
|
|
vsprintf (buf1, fmt, ap);
|
|
printf ("%s %s\n", prefix, buf1);
|
|
trap_debugger(1);
|
|
//this->logfunctions::ask(level,prefix,fmt,ap);
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::trap_debugger (bx_bool callnow)
|
|
{
|
|
regs.debug_state = debug_step;
|
|
if (callnow) {
|
|
bx_external_debugger(this);
|
|
}
|
|
}
|
|
|
|
#endif // #if BX_EXTERNAL_DEBUGGER
|
|
|
|
|
|
#if BX_DEBUGGER
|
|
extern unsigned int dbg_show_mask;
|
|
|
|
bx_bool
|
|
BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
|
|
Bit32u is_32)
|
|
{
|
|
//fprintf (stderr, "begin_instr_bp: checking cs:eip %04x:%08x\n", cs, eip);
|
|
BX_CPU_THIS_PTR guard_found.cs = cs;
|
|
BX_CPU_THIS_PTR guard_found.eip = eip;
|
|
BX_CPU_THIS_PTR guard_found.laddr = laddr;
|
|
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
|
|
|
|
// BW mode switch breakpoint
|
|
// instruction which generate exceptions never reach the end of the
|
|
// loop due to a long jump. Thats why we check at start of instr.
|
|
// Downside is that we show the instruction about to be executed
|
|
// (not the one generating the mode switch).
|
|
if (BX_CPU_THIS_PTR mode_break &&
|
|
(BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR getB_VM ())) {
|
|
BX_INFO(("Caught vm mode switch breakpoint"));
|
|
BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR getB_VM ();
|
|
BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
|
|
return 1;
|
|
}
|
|
|
|
if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) {
|
|
int rv;
|
|
if((rv = bx_dbg_symbolic_output()))
|
|
return rv;
|
|
}
|
|
|
|
// see if debugger is looking for iaddr breakpoint of any type
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
|
|
#if BX_DBG_SUPPORT_VIR_BPOINT
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
|
|
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
|
|
if ( (bx_guard.iaddr.vir[i].cs == cs) &&
|
|
(bx_guard.iaddr.vir[i].eip == eip) ) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
|
return(1); // on a breakpoint
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#if BX_DBG_SUPPORT_LIN_BPOINT
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
|
|
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
|
|
if ( bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr ) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
|
return(1); // on a breakpoint
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#if BX_DBG_SUPPORT_PHY_BPOINT
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
|
|
Bit32u phy;
|
|
bx_bool valid;
|
|
dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr,
|
|
&phy, &valid);
|
|
// The "guard_found.icount!=0" condition allows you to step or
|
|
// continue beyond a breakpoint. Bryce tried removing it once,
|
|
// and once you get to a breakpoint you are stuck there forever.
|
|
// Not pretty.
|
|
if (valid && (BX_CPU_THIS_PTR guard_found.icount!=0)) {
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
|
|
if ( bx_guard.iaddr.phy[i].addr == phy ) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
|
return(1); // on a breakpoint
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
return(0); // not on a breakpoint
|
|
}
|
|
|
|
|
|
bx_bool
|
|
BX_CPU_C::dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
|
|
Bit32u is_32)
|
|
{
|
|
//fprintf (stderr, "end_instr_bp: checking for icount or ^C\n");
|
|
BX_CPU_THIS_PTR guard_found.icount++;
|
|
|
|
// convenient point to see if user typed Ctrl-C
|
|
if (bx_guard.interrupt_requested &&
|
|
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
|
|
return(1);
|
|
}
|
|
|
|
// see if debugger requesting icount guard
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
|
|
if (BX_CPU_THIS_PTR guard_found.icount >= bx_guard.icount) {
|
|
BX_CPU_THIS_PTR guard_found.cs = cs;
|
|
BX_CPU_THIS_PTR guard_found.eip = eip;
|
|
BX_CPU_THIS_PTR guard_found.laddr = laddr;
|
|
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT;
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
#if (BX_NUM_SIMULATORS >= 2)
|
|
// if async event pending, acknowlege them
|
|
if (bx_guard.async_changes_pending.which) {
|
|
if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20)
|
|
bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20,
|
|
bx_guard.async_changes_pending.a20);
|
|
if (bx_guard.async_changes_pending.which) {
|
|
BX_PANIC(("decode: async pending unrecognized."));
|
|
}
|
|
}
|
|
#endif
|
|
return(0); // no breakpoint
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::dbg_take_irq(void)
|
|
{
|
|
unsigned vector;
|
|
|
|
// NOTE: similar code in ::cpu_loop()
|
|
|
|
if ( BX_CPU_INTR && BX_CPU_THIS_PTR get_IF () ) {
|
|
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
|
|
// normal return from setjmp setup
|
|
vector = DEV_pic_iac(); // may set INTR with next interrupt
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
BX_CPU_THIS_PTR EXT = 1; // external event
|
|
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
|
|
interrupt(vector, 0, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::dbg_force_interrupt(unsigned vector)
|
|
{
|
|
// Used to force slave simulator to take an interrupt, without
|
|
// regard to IF
|
|
|
|
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
|
|
// normal return from setjmp setup
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
BX_CPU_THIS_PTR EXT = 1; // external event
|
|
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
|
|
interrupt(vector, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::dbg_take_dma(void)
|
|
{
|
|
// NOTE: similar code in ::cpu_loop()
|
|
if ( BX_HRQ ) {
|
|
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
|
|
DEV_dma_raise_hlda();
|
|
}
|
|
}
|
|
#endif // #if BX_DEBUGGER
|
|
|