Bochs/bochs/iodev/iodev.h
Volker Ruppert caf52aacac Added advanced PCI option 'noagp' for the i440BX chipset.
Since AGP support is incomplete, it may be useful to disable this subsystem.
2021-06-27 14:50:26 +00:00

673 lines
23 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2021 The Bochs Project
//
// I/O port handlers API Copyright (C) 2003 by Frank Cornelis
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#ifndef IODEV_H
#define IODEV_H
#include "bochs.h"
#include "plugin.h"
#include "param_names.h"
#include "pc_system.h"
#include "bx_debug/debug.h"
#include "memory/memory-bochs.h"
#include "gui/siminterface.h"
#include "gui/gui.h"
/* number of IRQ lines supported. In an ISA PC there are two
PIC chips cascaded together. each has 8 IRQ lines, so there
should be 16 IRQ's total */
#define BX_MAX_IRQS 16
/* keyboard indicators */
#define BX_KBD_LED_NUM 0
#define BX_KBD_LED_CAPS 1
#define BX_KBD_LED_SCRL 2
#define BX_KBD_LED_MASK_NUM 1
#define BX_KBD_LED_MASK_ALL 7
/* size of internal buffer for keyboard devices */
#define BX_KBD_ELEMENTS 16
/* size of internal buffer for mouse devices */
#define BX_MOUSE_BUFF_SIZE 48
/* maximum size of the ISA DMA buffer */
#define BX_DMA_BUFFER_SIZE 512
#define BX_MAX_PCI_DEVICES 20
typedef Bit32u (*bx_read_handler_t)(void *, Bit32u, unsigned);
typedef void (*bx_write_handler_t)(void *, Bit32u, Bit32u, unsigned);
typedef bool (*bx_kbd_gen_scancode_t)(void *, Bit32u);
typedef Bit8u (*bx_kbd_get_elements_t)(void *);
typedef void (*bx_mouse_enq_t)(void *, int, int, int, unsigned, bool);
typedef void (*bx_mouse_enabled_changed_t)(void *, bool);
#if BX_USE_DEV_SMF
# define BX_DEV_SMF static
# define BX_DEV_THIS bx_devices.
#else
# define BX_DEV_SMF
# define BX_DEV_THIS this->
#endif
//////////////////////////////////////////////////////////////////////
// bx_devmodel_c declaration
//////////////////////////////////////////////////////////////////////
// This class defines virtual methods that are common to all devices.
// Child classes do not need to implement all of them, because in this
// definition they are defined as empty, as opposed to being pure
// virtual (= 0).
class BOCHSAPI bx_devmodel_c : public logfunctions {
public:
virtual ~bx_devmodel_c() {}
virtual void init(void) {}
virtual void reset(unsigned type) {}
virtual void register_state(void) {}
virtual void after_restore_state(void) {}
#if BX_DEBUGGER
virtual void debug_dump(int argc, char **argv) {}
#endif
};
// forward declarations
class bx_list_c;
class device_image_t;
class cdrom_base_c;
//////////////////////////////////////////////////////////////////////
// bx_pci_device_c declaration
//////////////////////////////////////////////////////////////////////
#if BX_SUPPORT_PCI
#define BX_DEBUG_PCI_READ(addr, value, io_len) \
if (io_len == 1) \
BX_DEBUG(("read PCI register 0x%02X value 0x%02X (len=1)", address, value)); \
else if (io_len == 2) \
BX_DEBUG(("read PCI register 0x%02X value 0x%04X (len=2)", address, value)); \
else if (io_len == 4) \
BX_DEBUG(("read PCI register 0x%02X value 0x%08X (len=4)", address, value));
#define BX_DEBUG_PCI_WRITE(addr, value, io_len) \
if (io_len == 1) \
BX_DEBUG(("write PCI register 0x%02X value 0x%02X (len=1)", addr, value)); \
else if (io_len == 2) \
BX_DEBUG(("write PCI register 0x%02X value 0x%04X (len=2)", addr, value)); \
else if (io_len == 4) \
BX_DEBUG(("write PCI register 0x%02X value 0x%08X (len=4)", addr, value));
#define BX_PCI_BAR_TYPE_NONE 0
#define BX_PCI_BAR_TYPE_MEM 1
#define BX_PCI_BAR_TYPE_IO 2
#define BX_PCI_ADVOPT_NOACPI 0x01
#define BX_PCI_ADVOPT_NOHPET 0x02
#define BX_PCI_ADVOPT_NOAGP 0x04
typedef struct {
Bit8u type;
Bit32u size;
Bit32u addr;
union {
struct {
memory_handler_t rh;
memory_handler_t wh;
const Bit8u *dummy;
} mem;
struct {
bx_read_handler_t rh;
bx_write_handler_t wh;
const Bit8u *mask;
} io;
};
} bx_pci_bar_t;
class BOCHSAPI bx_pci_device_c : public bx_devmodel_c {
public:
bx_pci_device_c(): pci_rom(NULL), pci_rom_size(0) {
for (int i = 0; i < 6; i++) memset(&pci_bar[i], 0, sizeof(bx_pci_bar_t));
}
virtual ~bx_pci_device_c() {
if (pci_rom != NULL) delete [] pci_rom;
}
virtual Bit32u pci_read_handler(Bit8u address, unsigned io_len);
void pci_write_handler_common(Bit8u address, Bit32u value, unsigned io_len);
virtual void pci_write_handler(Bit8u address, Bit32u value, unsigned io_len) {}
virtual void pci_bar_change_notify(void) {}
void init_pci_conf(Bit16u vid, Bit16u did, Bit8u rev, Bit32u classc,
Bit8u headt, Bit8u intpin);
void init_bar_io(Bit8u num, Bit16u size, bx_read_handler_t rh,
bx_write_handler_t wh, const Bit8u *mask);
void init_bar_mem(Bit8u num, Bit32u size, memory_handler_t rh, memory_handler_t wh);
void register_pci_state(bx_list_c *list);
void after_restore_pci_state(memory_handler_t mem_read_handler);
void load_pci_rom(const char *path);
void set_name(const char *name) {pci_name = name;}
const char* get_name(void) {return pci_name;}
protected:
const char *pci_name;
Bit8u pci_conf[256];
bx_pci_bar_t pci_bar[6];
Bit8u *pci_rom;
Bit32u pci_rom_address;
Bit32u pci_rom_size;
memory_handler_t pci_rom_read_handler;
};
#endif
//////////////////////////////////////////////////////////////////////
// declare stubs for devices
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
#define STUBFUNC(dev,method) \
pluginlog->panic("%s called in %s stub. you must not have loaded the %s plugin", #dev, #method, #dev)
//////////////////////////////////////////////////////////////////////
class BOCHSAPI bx_hard_drive_stub_c : public bx_devmodel_c {
public:
virtual Bit32u virt_read_handler(Bit32u address, unsigned io_len) { return 0; }
virtual void virt_write_handler(Bit32u address, Bit32u value, unsigned io_len) {}
virtual bool bmdma_read_sector(Bit8u channel, Bit8u *buffer, Bit32u *sector_size) {
STUBFUNC(HD, bmdma_read_sector); return 0;
}
virtual bool bmdma_write_sector(Bit8u channel, Bit8u *buffer) {
STUBFUNC(HD, bmdma_write_sector); return 0;
}
virtual void bmdma_complete(Bit8u channel) {
STUBFUNC(HD, bmdma_complete);
}
};
class BOCHSAPI bx_cmos_stub_c : public bx_devmodel_c {
public:
virtual Bit32u get_reg(Bit8u reg) {
STUBFUNC(cmos, get_reg); return 0;
}
virtual void set_reg(Bit8u reg, Bit32u val) {
STUBFUNC(cmos, set_reg);
}
virtual void checksum_cmos(void) {
STUBFUNC(cmos, checksum);
}
virtual void enable_irq(bool enabled) {
STUBFUNC(cmos, enable_irq);
}
};
class BOCHSAPI bx_pit_stub_c : public bx_devmodel_c {
public:
virtual void enable_irq(bool enabled) {
STUBFUNC(pit, enable_irq);
}
};
class BOCHSAPI bx_dma_stub_c : public bx_devmodel_c {
public:
virtual unsigned registerDMA8Channel(
unsigned channel,
Bit16u (* dmaRead)(Bit8u *data_byte, Bit16u maxlen),
Bit16u (* dmaWrite)(Bit8u *data_byte, Bit16u maxlen),
const char *name)
{
STUBFUNC(dma, registerDMA8Channel); return 0;
}
virtual unsigned registerDMA16Channel(
unsigned channel,
Bit16u (* dmaRead)(Bit16u *data_word, Bit16u maxlen),
Bit16u (* dmaWrite)(Bit16u *data_word, Bit16u maxlen),
const char *name)
{
STUBFUNC(dma, registerDMA16Channel); return 0;
}
virtual unsigned unregisterDMAChannel(unsigned channel) {
STUBFUNC(dma, unregisterDMAChannel); return 0;
}
virtual unsigned get_TC(void) {
STUBFUNC(dma, get_TC); return 0;
}
virtual void set_DRQ(unsigned channel, bool val) {
STUBFUNC(dma, set_DRQ);
}
virtual void raise_HLDA(void) {
STUBFUNC(dma, raise_HLDA);
}
};
class BOCHSAPI bx_pic_stub_c : public bx_devmodel_c {
public:
virtual void raise_irq(unsigned irq_no) {
STUBFUNC(pic, raise_irq);
}
virtual void lower_irq(unsigned irq_no) {
STUBFUNC(pic, lower_irq);
}
virtual void set_mode(bool ma_sl, Bit8u mode) {
STUBFUNC(pic, set_mode);
}
virtual Bit8u IAC(void) {
STUBFUNC(pic, IAC); return 0;
}
};
class BOCHSAPI bx_vga_stub_c
#if BX_SUPPORT_PCI
: public bx_pci_device_c
#else
: public bx_devmodel_c
#endif
{
public:
virtual void vga_redraw_area(unsigned x0, unsigned y0, unsigned width,
unsigned height) {
STUBFUNC(vga, vga_redraw_area);
}
virtual Bit8u mem_read(bx_phy_address addr) {
STUBFUNC(vga, mem_read); return 0;
}
virtual void mem_write(bx_phy_address addr, Bit8u value) {
STUBFUNC(vga, mem_write);
}
virtual void get_text_snapshot(Bit8u **text_snapshot,
unsigned *txHeight, unsigned *txWidth) {
STUBFUNC(vga, get_text_snapshot);
}
virtual void set_override(bool enabled, void *dev) {
STUBFUNC(vga, set_override);
}
virtual void refresh_display(void *this_ptr, bool redraw) {
STUBFUNC(vga, refresh_display);
}
};
class BOCHSAPI bx_speaker_stub_c : public bx_devmodel_c {
public:
virtual void beep_on(float frequency) {
bx_gui->beep_on(frequency);
}
virtual void beep_off() {
bx_gui->beep_off();
}
virtual void set_line(bool level) {}
};
#if BX_SUPPORT_PCI
class BOCHSAPI bx_pci2isa_stub_c : public bx_pci_device_c {
public:
virtual void pci_set_irq (Bit8u devfunc, unsigned line, bool level) {
STUBFUNC(pci2isa, pci_set_irq);
}
};
class BOCHSAPI bx_pci_ide_stub_c : public bx_pci_device_c {
public:
virtual bool bmdma_present(void) {
return 0;
}
virtual void bmdma_start_transfer(Bit8u channel) {}
virtual void bmdma_set_irq(Bit8u channel) {}
};
class BOCHSAPI bx_acpi_ctrl_stub_c : public bx_pci_device_c {
public:
virtual void generate_smi(Bit8u value) {}
};
#endif
#if BX_SUPPORT_IODEBUG
class BOCHSAPI bx_iodebug_stub_c : public bx_devmodel_c {
public:
virtual void mem_write(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data) {}
virtual void mem_read(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data) {}
};
#endif
#if BX_SUPPORT_APIC
class BOCHSAPI bx_ioapic_stub_c : public bx_devmodel_c {
public:
virtual void set_enabled(bool enabled, Bit16u base_offset) {}
virtual void receive_eoi(Bit8u vector) {}
virtual void set_irq_level(Bit8u int_in, bool level) {}
};
#endif
#if BX_SUPPORT_GAMEPORT
class BOCHSAPI bx_game_stub_c : public bx_devmodel_c {
public:
virtual void set_enabled(bool val) {
STUBFUNC(gameport, set_enabled);
}
};
#endif
class BOCHSAPI bx_devices_c : public logfunctions {
public:
bx_devices_c();
~bx_devices_c();
// Initialize the device stubs (in constructur and exit())
void init_stubs(void);
// Register I/O addresses and IRQ lines. Initialize any internal
// structures. init() is called only once, even if the simulator
// reboots or is restarted.
void init(BX_MEM_C *);
// Enter reset state in response to a reset condition.
// The types of reset conditions are defined in bochs.h:
// power-on, hardware, or software.
void reset(unsigned type);
// Cleanup the devices when the simulation quits.
void exit(void);
void register_state(void);
void after_restore_state(void);
BX_MEM_C *mem; // address space associated with these devices
bool register_io_read_handler(void *this_ptr, bx_read_handler_t f,
Bit32u addr, const char *name, Bit8u mask);
bool unregister_io_read_handler(void *this_ptr, bx_read_handler_t f,
Bit32u addr, Bit8u mask);
bool register_io_write_handler(void *this_ptr, bx_write_handler_t f,
Bit32u addr, const char *name, Bit8u mask);
bool unregister_io_write_handler(void *this_ptr, bx_write_handler_t f,
Bit32u addr, Bit8u mask);
bool register_io_read_handler_range(void *this_ptr, bx_read_handler_t f,
Bit32u begin_addr, Bit32u end_addr,
const char *name, Bit8u mask);
bool register_io_write_handler_range(void *this_ptr, bx_write_handler_t f,
Bit32u begin_addr, Bit32u end_addr,
const char *name, Bit8u mask);
bool unregister_io_read_handler_range(void *this_ptr, bx_read_handler_t f,
Bit32u begin, Bit32u end, Bit8u mask);
bool unregister_io_write_handler_range(void *this_ptr, bx_write_handler_t f,
Bit32u begin, Bit32u end, Bit8u mask);
bool register_default_io_read_handler(void *this_ptr, bx_read_handler_t f, const char *name, Bit8u mask);
bool register_default_io_write_handler(void *this_ptr, bx_write_handler_t f, const char *name, Bit8u mask);
bool register_irq(unsigned irq, const char *name);
bool unregister_irq(unsigned irq, const char *name);
Bit32u inp(Bit16u addr, unsigned io_len) BX_CPP_AttrRegparmN(2);
void outp(Bit16u addr, Bit32u value, unsigned io_len) BX_CPP_AttrRegparmN(3);
void register_default_keyboard(void *dev, bx_kbd_gen_scancode_t kbd_gen_scancode,
bx_kbd_get_elements_t kbd_get_elements);
void register_removable_keyboard(void *dev, bx_kbd_gen_scancode_t kbd_gen_scancode,
bx_kbd_get_elements_t kbd_get_elements,
Bit8u led_mask);
void unregister_removable_keyboard(void *dev);
void register_default_mouse(void *dev, bx_mouse_enq_t mouse_enq, bx_mouse_enabled_changed_t mouse_enabled_changed);
void register_removable_mouse(void *dev, bx_mouse_enq_t mouse_enq, bx_mouse_enabled_changed_t mouse_enabled_changed);
void unregister_removable_mouse(void *dev);
void gen_scancode(Bit32u key);
Bit8u kbd_get_elements(void);
void release_keys(void);
void paste_bytes(Bit8u *data, Bit32s length);
void kbd_set_indicator(Bit8u devid, Bit8u ledid, bool state);
void mouse_enabled_changed(bool enabled);
void mouse_motion(int delta_x, int delta_y, int delta_z, unsigned button_state, bool absxy);
void add_sound_device(void);
void remove_sound_device(void);
#if BX_SUPPORT_PCI
Bit32u pci_get_confAddr(void) {return pci.confAddr;}
Bit32u pci_get_slot_mapping(void) {return pci.map_slot_to_dev;}
bool register_pci_handlers(bx_pci_device_c *device, Bit8u *devfunc,
const char *name, const char *descr, Bit8u bus = 0);
bool pci_set_base_mem(void *this_ptr, memory_handler_t f1, memory_handler_t f2,
Bit32u *addr, Bit8u *pci_conf, unsigned size);
bool pci_set_base_io(void *this_ptr, bx_read_handler_t f1, bx_write_handler_t f2,
Bit32u *addr, Bit8u *pci_conf, unsigned size,
const Bit8u *iomask, const char *name);
#endif
bool is_agp_present();
static void timer_handler(void *);
void timer(void);
bx_cmos_stub_c *pluginCmosDevice;
bx_dma_stub_c *pluginDmaDevice;
bx_hard_drive_stub_c *pluginHardDrive;
bx_pic_stub_c *pluginPicDevice;
bx_pit_stub_c *pluginPitDevice;
bx_speaker_stub_c *pluginSpeaker;
bx_vga_stub_c *pluginVgaDevice;
#if BX_SUPPORT_IODEBUG
bx_iodebug_stub_c *pluginIODebug;
#endif
#if BX_SUPPORT_APIC
bx_ioapic_stub_c *pluginIOAPIC;
#endif
#if BX_SUPPORT_GAMEPORT
bx_game_stub_c *pluginGameport;
#endif
#if BX_SUPPORT_PCI
bx_pci2isa_stub_c *pluginPci2IsaBridge;
bx_pci_ide_stub_c *pluginPciIdeController;
bx_acpi_ctrl_stub_c *pluginACPIController;
#endif
// stub classes that the pointers (above) can point to until a plugin is
// loaded
bx_cmos_stub_c stubCmos;
bx_dma_stub_c stubDma;
bx_hard_drive_stub_c stubHardDrive;
bx_pic_stub_c stubPic;
bx_pit_stub_c stubPit;
bx_speaker_stub_c stubSpeaker;
bx_vga_stub_c stubVga;
#if BX_SUPPORT_IODEBUG
bx_iodebug_stub_c stubIODebug;
#endif
#if BX_SUPPORT_APIC
bx_ioapic_stub_c stubIOAPIC;
#endif
#if BX_SUPPORT_GAMEPORT
bx_game_stub_c stubGameport;
#endif
#if BX_SUPPORT_PCI
bx_pci2isa_stub_c stubPci2Isa;
bx_pci_ide_stub_c stubPciIde;
bx_acpi_ctrl_stub_c stubACPIController;
#endif
// Some info to pass to devices which can handled bulk IO. This allows
// the interface to remain the same for IO devices which can't handle
// bulk IO. We should probably implement special INPBulk() and OUTBulk()
// functions which stick these values in the bx_devices_c class, and
// then call the normal functions rather than having gross globals
// variables.
Bit8u* bulkIOHostAddr;
unsigned bulkIOQuantumsRequested;
unsigned bulkIOQuantumsTransferred;
private:
struct io_handler_struct {
struct io_handler_struct *next;
struct io_handler_struct *prev;
void *funct; // C++ type checking is great, but annoying
void *this_ptr;
char *handler_name; // name of device
int usage_count;
Bit8u mask; // io_len mask
};
struct io_handler_struct io_read_handlers;
struct io_handler_struct io_write_handlers;
#define PORTS 0x10000
struct io_handler_struct **read_port_to_handler;
struct io_handler_struct **write_port_to_handler;
// more for informative purposes, the names of the devices which
// are use each of the IRQ 0..15 lines are stored here
char *irq_handler_name[BX_MAX_IRQS];
static Bit32u read_handler(void *this_ptr, Bit32u address, unsigned io_len);
static void write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len);
BX_DEV_SMF Bit32u read(Bit32u address, unsigned io_len);
BX_DEV_SMF void write(Bit32u address, Bit32u value, unsigned io_len);
static Bit32u default_read_handler(void *this_ptr, Bit32u address, unsigned io_len);
static void default_write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len);
// runtime options / paste feature
static Bit64s param_handler(bx_param_c *param, bool set, Bit64s val);
void paste_delay_changed(Bit32u value);
void service_paste_buf();
bool mouse_captured; // host mouse capture enabled
Bit8u mouse_type;
struct {
void *dev;
bx_mouse_enq_t enq_event;
bx_mouse_enabled_changed_t enabled_changed;
} bx_mouse[2];
struct {
void *dev;
bx_kbd_gen_scancode_t gen_scancode;
bx_kbd_get_elements_t get_elements;
Bit8u led_mask;
bool bxkey_state[BX_KEY_NBKEYS];
} bx_keyboard[2];
// The paste buffer does NOT exist in the hardware. It is a bochs
// construction that allows the user to "paste" arbitrary length sequences of
// keystrokes into the emulated machine. Since the hardware buffer is only
// 16 bytes, a very small amount of data can be added to the hardware buffer
// at a time. The paste buffer keeps track of the bytes that have not yet
// been pasted.
//
// Lifetime of a paste buffer: The paste data comes from the system
// clipboard, which must be accessed using platform independent code in the
// gui. Because every gui has its own way of managing the clipboard memory
// (in X windows, you're supposed to call Xfree for example), in the platform
// specific code we make a copy of the clipboard buffer with
// "new Bit8u[length]". Then the pointer is passed into
// bx_device_c::paste_bytes, along with the length. The gui code never touches
// the pastebuf again, and does not free it. The devices code is
// responsible for deallocating the paste buffer using delete [] buf. The
// paste buffer is binary data, and it is probably NOT null terminated.
//
// Summary: A paste buffer is allocated (new) in the platform-specific gui
// code, passed to the devices code, and is freed (delete[]) when it is no
// longer needed.
struct {
Bit8u *buf; // ptr to bytes to be pasted, or NULL if none in progress
Bit32u buf_len; // length of pastebuf
Bit32u buf_ptr; // ptr to next byte to be added to hw buffer
Bit32u delay; // number of timer events before paste
Bit32u counter; // count before paste
bool service; // set to 1 when gen_scancode() is called from paste service
bool stop; // stop the current paste operation on keypress or hardware reset
} paste;
struct {
bool enabled;
#if BX_SUPPORT_PCI
Bit32u advopts;
Bit8u handler_id[0x101]; // 256 PCI devices/functions + 1 AGP device
struct {
bx_pci_device_c *handler;
} pci_handler[BX_MAX_PCI_DEVICES];
unsigned num_pci_handlers;
Bit8u map_slot_to_dev;
bool slot_used[BX_N_PCI_SLOTS];
Bit32u confAddr;
#endif
} pci;
int timer_handle;
int statusbar_id[3];
Bit8u sound_device_count;
bool is_harddrv_enabled();
};
// memory stub has an assumption that there are no memory accesses splitting 4K page
BX_CPP_INLINE void DEV_MEM_READ_PHYSICAL(bx_phy_address phy_addr, unsigned len, Bit8u *ptr)
{
unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff);
if (len <= remainingInPage) {
BX_MEM(0)->readPhysicalPage(NULL, phy_addr, len, ptr);
}
else {
BX_MEM(0)->readPhysicalPage(NULL, phy_addr, remainingInPage, ptr);
ptr += remainingInPage;
phy_addr += remainingInPage;
len -= remainingInPage;
BX_MEM(0)->readPhysicalPage(NULL, phy_addr, len, ptr);
}
}
BX_CPP_INLINE void DEV_MEM_READ_PHYSICAL_DMA(bx_phy_address phy_addr, unsigned len, Bit8u *ptr)
{
while(len > 0) {
unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff);
if (len < remainingInPage) remainingInPage = len;
BX_MEM(0)->dmaReadPhysicalPage(phy_addr, remainingInPage, ptr);
ptr += remainingInPage;
phy_addr += remainingInPage;
len -= remainingInPage;
}
}
// memory stub has an assumption that there are no memory accesses splitting 4K page
BX_CPP_INLINE void DEV_MEM_WRITE_PHYSICAL(bx_phy_address phy_addr, unsigned len, Bit8u *ptr)
{
unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff);
if (len <= remainingInPage) {
BX_MEM(0)->writePhysicalPage(NULL, phy_addr, len, ptr);
}
else {
BX_MEM(0)->writePhysicalPage(NULL, phy_addr, remainingInPage, ptr);
ptr += remainingInPage;
phy_addr += remainingInPage;
len -= remainingInPage;
BX_MEM(0)->writePhysicalPage(NULL, phy_addr, len, ptr);
}
}
BX_CPP_INLINE void DEV_MEM_WRITE_PHYSICAL_DMA(bx_phy_address phy_addr, unsigned len, Bit8u *ptr)
{
while(len > 0) {
unsigned remainingInPage = 0x1000 - (phy_addr & 0xfff);
if (len < remainingInPage) remainingInPage = len;
BX_MEM(0)->dmaWritePhysicalPage(phy_addr, remainingInPage, ptr);
ptr += remainingInPage;
phy_addr += remainingInPage;
len -= remainingInPage;
}
}
BOCHSAPI extern bx_devices_c bx_devices;
#endif /* IODEV_H */