Bochs/bochs/cpu/io.cc
Stanislav Shwartsman 0eab037907 dynamically allocate VMCB_CACHE only if SVM is actually enabled by CPU model
also reduces include dependency on svm.h
2024-01-12 00:56:09 +02:00

930 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2019 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_SVM
#include "svm.h"
#endif
#include "iodev/iodev.h"
//
// Repeat Speedups methods
//
#if BX_SUPPORT_REPEAT_SPEEDUPS
Bit32u BX_CPU_C::FastRepINSW(Bit32u dstOff, Bit16u port, Bit32u wordCount)
{
Bit32u wordsFitDst;
signed int pointerDelta;
Bit8u *hostAddrDst;
unsigned count;
bx_address laddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(BX_SEG_REG_ES, dstOff);
}
// check that the address is word aligned
if (laddrDst & 1) return 0;
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many words can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward
// 1st word must cannot cross page boundary because it is word aligned
wordsFitDst = (2 + (PAGE_OFFSET(laddrDst))) >> 1;
pointerDelta = -2;
}
else {
// Counting upward
wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1;
pointerDelta = 2;
}
// Restrict word count to the number that will fit in this page.
if (wordCount > wordsFitDst)
wordCount = wordsFitDst;
// If after all the restrictions, there is anything left to do...
if (wordCount) {
for (count=0; count<wordCount; ) {
bx_devices.bulkIOQuantumsTransferred = 0;
if (BX_CPU_THIS_PTR get_DF()==0) { // Only do accel for DF=0
bx_devices.bulkIOHostAddr = hostAddrDst;
bx_devices.bulkIOQuantumsRequested = (wordCount - count);
}
else
bx_devices.bulkIOQuantumsRequested = 0;
Bit16u temp16 = BX_INP(port, 2);
if (bx_devices.bulkIOQuantumsTransferred) {
hostAddrDst = bx_devices.bulkIOHostAddr;
count += bx_devices.bulkIOQuantumsTransferred;
}
else {
WriteHostWordToLittleEndian((Bit16u*)hostAddrDst, temp16);
hostAddrDst += pointerDelta;
count++;
}
// Terminate early if there was an event.
if (BX_CPU_THIS_PTR async_event) break;
}
// Reset for next non-bulk IO
bx_devices.bulkIOQuantumsRequested = 0;
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepOUTSW(unsigned srcSeg, Bit32u srcOff, Bit16u port, Bit32u wordCount)
{
Bit32u wordsFitSrc;
signed int pointerDelta;
Bit8u *hostAddrSrc;
unsigned count;
bx_address laddrSrc;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
if (srcSegPtr->cache.valid & SegAccessROK4G) {
laddrSrc = srcOff;
}
else {
if (!(srcSegPtr->cache.valid & SegAccessROK))
return 0;
if ((srcOff | 0xfff) > srcSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrSrc = get_laddr32(srcSeg, srcOff);
}
// check that the address is word aligned
if (laddrSrc & 1) return 0;
hostAddrSrc = v2h_read_byte(laddrSrc, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrSrc) return 0;
// See how many words can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward
// 1st word must cannot cross page boundary because it is word aligned
wordsFitSrc = (2 + (PAGE_OFFSET(laddrSrc))) >> 1;
pointerDelta = (unsigned) -2;
}
else {
// Counting upward
wordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 1;
pointerDelta = 2;
}
// Restrict word count to the number that will fit in this page.
if (wordCount > wordsFitSrc)
wordCount = wordsFitSrc;
// If after all the restrictions, there is anything left to do...
if (wordCount) {
for (count=0; count<wordCount; ) {
bx_devices.bulkIOQuantumsTransferred = 0;
if (BX_CPU_THIS_PTR get_DF()==0) { // Only do accel for DF=0
bx_devices.bulkIOHostAddr = hostAddrSrc;
bx_devices.bulkIOQuantumsRequested = (wordCount - count);
}
else
bx_devices.bulkIOQuantumsRequested = 0;
Bit16u temp16 = ReadHostWordFromLittleEndian((Bit16u*)hostAddrSrc);
BX_OUTP(port, temp16, 2);
if (bx_devices.bulkIOQuantumsTransferred) {
hostAddrSrc = bx_devices.bulkIOHostAddr;
count += bx_devices.bulkIOQuantumsTransferred;
}
else {
hostAddrSrc += pointerDelta;
count++;
}
// Terminate early if there was an event.
if (BX_CPU_THIS_PTR async_event) break;
}
// Reset for next non-bulk IO
bx_devices.bulkIOQuantumsRequested = 0;
return count;
}
return 0;
}
#endif
//
// REP INS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSB_YbDX(bxInstruction_c *i)
{
if (! allow_io(i, DX, 1)) {
BX_DEBUG(("INSB_YbDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB64_YbDX);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB32_YbDX);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB16_YbDX);
}
BX_NEXT_TRACE(i);
}
// 16-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB16_YbDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit8u value8 = read_RMW_virtual_byte_32(BX_SEG_REG_ES, DI); // no lock
value8 = BX_INP(DX, 1);
write_RMW_linear_byte(value8);
if (BX_CPU_THIS_PTR get_DF())
DI--;
else
DI++;
}
// 32-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB32_YbDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit8u value8 = read_RMW_virtual_byte(BX_SEG_REG_ES, EDI); // no lock
value8 = BX_INP(DX, 1);
/* no seg override possible */
write_RMW_linear_byte(value8);
if (BX_CPU_THIS_PTR get_DF()) {
RDI = EDI - 1;
}
else {
RDI = EDI + 1;
}
}
#if BX_SUPPORT_X86_64
// 64-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB64_YbDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit8u value8 = read_RMW_linear_byte(BX_SEG_REG_ES, RDI); // no lock
value8 = BX_INP(DX, 1);
write_RMW_linear_byte(value8);
if (BX_CPU_THIS_PTR get_DF())
RDI--;
else
RDI++;
}
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSW_YwDX(bxInstruction_c *i)
{
if (! allow_io(i, DX, 2)) {
BX_DEBUG(("INSW_YwDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW64_YwDX);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW32_YwDX);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW16_YwDX);
}
BX_NEXT_TRACE(i);
}
// 16-bit operand size, 16-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW16_YwDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit16u value16 = read_RMW_virtual_word_32(BX_SEG_REG_ES, DI); // no lock
value16 = BX_INP(DX, 2);
write_RMW_linear_word(value16);
if (BX_CPU_THIS_PTR get_DF())
DI -= 2;
else
DI += 2;
}
// 16-bit operand size, 32-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW32_YwDX(bxInstruction_c *i)
{
Bit16u value16=0;
Bit32u edi = EDI;
unsigned increment = 2;
#if (BX_SUPPORT_REPEAT_SPEEDUPS) && (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time.
*/
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
{
Bit32u wordCount = ECX;
BX_ASSERT(wordCount > 0);
wordCount = FastRepINSW(edi, DX, wordCount);
if (wordCount) {
// Decrement the ticks count by the number of iterations, minus
// one, since the main cpu loop will decrement one. Also,
// the count is predecremented before examined, so defintely
// don't roll it under zero.
BX_TICKN(wordCount-1);
RCX = ECX - (wordCount-1);
increment = wordCount << 1; // count * 2.
}
else {
// trigger any segment or page faults before reading from IO port
value16 = read_RMW_virtual_word(BX_SEG_REG_ES, edi); // no lock
value16 = BX_INP(DX, 2);
write_RMW_linear_word(value16);
}
}
else
#endif
{
// trigger any segment or page faults before reading from IO port
value16 = read_RMW_virtual_word_32(BX_SEG_REG_ES, edi); // no lock
value16 = BX_INP(DX, 2);
write_RMW_linear_word(value16);
}
if (BX_CPU_THIS_PTR get_DF())
RDI = EDI - increment;
else
RDI = EDI + increment;
}
#if BX_SUPPORT_X86_64
// 16-bit operand size, 64-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW64_YwDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit16u value16 = read_RMW_linear_word(BX_SEG_REG_ES, RDI); // no lock
value16 = BX_INP(DX, 2);
write_RMW_linear_word(value16);
if (BX_CPU_THIS_PTR get_DF())
RDI -= 2;
else
RDI += 2;
}
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSD_YdDX(bxInstruction_c *i)
{
if (! allow_io(i, DX, 4)) {
BX_DEBUG(("INSD_YdDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD64_YdDX);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD32_YdDX);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD16_YdDX);
}
BX_NEXT_TRACE(i);
}
// 32-bit operand size, 16-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD16_YdDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit32u value32 = read_RMW_virtual_dword_32(BX_SEG_REG_ES, DI); // no lock
value32 = BX_INP(DX, 4);
write_RMW_linear_dword(value32);
if (BX_CPU_THIS_PTR get_DF())
DI -= 4;
else
DI += 4;
}
// 32-bit operand size, 32-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD32_YdDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit32u value32 = read_RMW_virtual_dword(BX_SEG_REG_ES, EDI); // no lock
value32 = BX_INP(DX, 4);
write_RMW_linear_dword(value32);
if (BX_CPU_THIS_PTR get_DF())
RDI = EDI - 4;
else
RDI = EDI + 4;
}
#if BX_SUPPORT_X86_64
// 32-bit operand size, 64-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD64_YdDX(bxInstruction_c *i)
{
// trigger any segment or page faults before reading from IO port
Bit32u value32 = read_RMW_linear_dword(BX_SEG_REG_ES, RDI); // no lock
value32 = BX_INP(DX, 4);
write_RMW_linear_dword(value32);
if (BX_CPU_THIS_PTR get_DF())
RDI -= 4;
else
RDI += 4;
}
#endif
//
// REP OUTS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSB_DXXb(bxInstruction_c *i)
{
if (! allow_io(i, DX, 1)) {
BX_DEBUG(("OUTSB_DXXb: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB64_DXXb);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB32_DXXb);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB16_DXXb);
}
BX_NEXT_TRACE(i);
}
// 16-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB16_DXXb(bxInstruction_c *i)
{
Bit8u value8 = read_virtual_byte_32(i->seg(), SI);
BX_OUTP(DX, value8, 1);
if (BX_CPU_THIS_PTR get_DF())
SI--;
else
SI++;
}
// 32-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB32_DXXb(bxInstruction_c *i)
{
Bit8u value8 = read_virtual_byte(i->seg(), ESI);
BX_OUTP(DX, value8, 1);
if (BX_CPU_THIS_PTR get_DF())
RSI = ESI - 1;
else
RSI = ESI + 1;
}
#if BX_SUPPORT_X86_64
// 64-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB64_DXXb(bxInstruction_c *i)
{
Bit8u value8 = read_linear_byte(i->seg(), get_laddr64(i->seg(), RSI));
BX_OUTP(DX, value8, 1);
if (BX_CPU_THIS_PTR get_DF())
RSI--;
else
RSI++;
}
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSW_DXXw(bxInstruction_c *i)
{
if (! allow_io(i, DX, 2)) {
BX_DEBUG(("OUTSW_DXXw: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW64_DXXw);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW32_DXXw);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW16_DXXw);
}
BX_NEXT_TRACE(i);
}
// 16-bit operand size, 16-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW16_DXXw(bxInstruction_c *i)
{
Bit16u value16 = read_virtual_word_32(i->seg(), SI);
BX_OUTP(DX, value16, 2);
if (BX_CPU_THIS_PTR get_DF())
SI -= 2;
else
SI += 2;
}
// 16-bit operand size, 32-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW32_DXXw(bxInstruction_c *i)
{
Bit16u value16;
Bit32u esi = ESI;
unsigned increment = 2;
#if (BX_SUPPORT_REPEAT_SPEEDUPS) && (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time.
*/
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) {
Bit32u wordCount = ECX;
wordCount = FastRepOUTSW(i->seg(), esi, DX, wordCount);
if (wordCount) {
// Decrement eCX. Note, the main loop will decrement 1 also, so
// decrement by one less than expected, like the case above.
BX_TICKN(wordCount-1); // Main cpu loop also decrements one more.
RCX = ECX - (wordCount-1);
increment = wordCount << 1; // count * 2.
}
else {
value16 = read_virtual_word(i->seg(), esi);
BX_OUTP(DX, value16, 2);
}
}
else
#endif
{
value16 = read_virtual_word(i->seg(), esi);
BX_OUTP(DX, value16, 2);
}
if (BX_CPU_THIS_PTR get_DF())
RSI = ESI - increment;
else
RSI = ESI + increment;
}
#if BX_SUPPORT_X86_64
// 16-bit operand size, 64-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW64_DXXw(bxInstruction_c *i)
{
Bit16u value16 = read_linear_word(i->seg(), get_laddr64(i->seg(), RSI));
BX_OUTP(DX, value16, 2);
if (BX_CPU_THIS_PTR get_DF())
RSI -= 2;
else
RSI += 2;
}
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSD_DXXd(bxInstruction_c *i)
{
if (! allow_io(i, DX, 4)) {
BX_DEBUG(("OUTSD_DXXd: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD64_DXXd);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD32_DXXd);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD16_DXXd);
}
BX_NEXT_TRACE(i);
}
// 32-bit operand size, 16-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD16_DXXd(bxInstruction_c *i)
{
Bit32u value32 = read_virtual_dword_32(i->seg(), SI);
BX_OUTP(DX, value32, 4);
if (BX_CPU_THIS_PTR get_DF())
SI -= 4;
else
SI += 4;
}
// 32-bit operand size, 32-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD32_DXXd(bxInstruction_c *i)
{
Bit32u value32 = read_virtual_dword(i->seg(), ESI);
BX_OUTP(DX, value32, 4);
if (BX_CPU_THIS_PTR get_DF())
RSI = ESI - 4;
else
RSI = ESI + 4;
}
#if BX_SUPPORT_X86_64
// 32-bit operand size, 64-bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD64_DXXd(bxInstruction_c *i)
{
Bit32u value32 = read_linear_dword(i->seg(), get_laddr64(i->seg(), RSI));
BX_OUTP(DX, value32, 4);
if (BX_CPU_THIS_PTR get_DF())
RSI -= 4;
else
RSI += 4;
}
#endif
//
// non repeatable IN/OUT methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_ALIb(bxInstruction_c *i)
{
unsigned port = i->Ib();
if (! allow_io(i, port, 1)) {
BX_DEBUG(("IN_ALIb: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
AL = BX_INP(port, 1);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_AXIb(bxInstruction_c *i)
{
unsigned port = i->Ib();
if (! allow_io(i, port, 2)) {
BX_DEBUG(("IN_AXIb: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
AX = BX_INP(port, 2);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_EAXIb(bxInstruction_c *i)
{
unsigned port = i->Ib();
if (! allow_io(i, port, 4)) {
BX_DEBUG(("IN_EAXIb: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
RAX = BX_INP(port, 4);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbAL(bxInstruction_c *i)
{
unsigned port = i->Ib();
if (! allow_io(i, port, 1)) {
BX_DEBUG(("OUT_IbAL: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
BX_OUTP(port, AL, 1);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbAX(bxInstruction_c *i)
{
unsigned port = i->Ib();
if (! allow_io(i, port, 2)) {
BX_DEBUG(("OUT_IbAX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
BX_OUTP(port, AX, 2);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbEAX(bxInstruction_c *i)
{
unsigned port = i->Ib();
if (! allow_io(i, port, 4)) {
BX_DEBUG(("OUT_IbEAX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
BX_OUTP(port, EAX, 4);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_ALDX(bxInstruction_c *i)
{
unsigned port = DX;
if (! allow_io(i, port, 1)) {
BX_DEBUG(("IN_ALDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
AL = BX_INP(port, 1);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_AXDX(bxInstruction_c *i)
{
unsigned port = DX;
if (! allow_io(i, port, 2)) {
BX_DEBUG(("IN_AXDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
AX = BX_INP(port, 2);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_EAXDX(bxInstruction_c *i)
{
unsigned port = DX;
if (! allow_io(i, port, 4)) {
BX_DEBUG(("IN_EAXDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
RAX = BX_INP(port, 4);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXAL(bxInstruction_c *i)
{
unsigned port = DX;
if (! allow_io(i, port, 1)) {
BX_DEBUG(("OUT_DXAL: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
BX_OUTP(port, AL, 1);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXAX(bxInstruction_c *i)
{
unsigned port = DX;
if (! allow_io(i, port, 2)) {
BX_DEBUG(("OUT_DXAX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
BX_OUTP(port, AX, 2);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXEAX(bxInstruction_c *i)
{
unsigned port = DX;
if (! allow_io(i, port, 4)) {
BX_DEBUG(("OUT_DXEAX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0);
}
BX_OUTP(port, EAX, 4);
BX_NEXT_TRACE(i);
}
bool BX_CPP_AttrRegparmN(3) BX_CPU_C::allow_io(bxInstruction_c *i, Bit16u port, unsigned len)
{
/* If CPL <= IOPL, then all IO portesses are accessible.
* Otherwise, must check the IO permission map on >286.
* On the 286, there is no IO permissions map */
static bool port_e9_hack_all_rings = SIM->get_param_bool(BXPN_PORT_E9_HACK)->get() && SIM->get_param_bool(BXPN_PORT_E9_HACK_ALL_RINGS)->get();
if (0xe9 == port && port_e9_hack_all_rings)
return(1); // port e9 hack can be used by unprivileged code
#if BX_SUPPORT_IODEBUG
static bool iodebug_all_rings = SIM->get_param_bool(BXPN_IODEBUG_ALL_RINGS)->get();
if (0x8A00 == (port & 0xfffe) && iodebug_all_rings)
return(1); // iodebug ports (0x8A00 & 0x8A01) can be used by unprivileged code
#endif /* if BX_SUPPORT_IODEBUG */
if (BX_CPU_THIS_PTR cr0.get_PE() && (BX_CPU_THIS_PTR get_VM() || (CPL > BX_CPU_THIS_PTR get_IOPL())))
{
if (BX_CPU_THIS_PTR tr.cache.valid==0 ||
(BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_386_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_386_TSS))
{
BX_ERROR(("allow_io(): TR doesn't point to a valid 32bit TSS, TR.TYPE=%u", BX_CPU_THIS_PTR tr.cache.type));
return(0);
}
if (BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled < 103) {
BX_ERROR(("allow_io(): TR.limit < 103"));
return(0);
}
Bit32u io_base = system_read_word(BX_CPU_THIS_PTR tr.cache.u.segment.base + 102);
if ((io_base + port/8) >= BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled) {
BX_DEBUG(("allow_io(): IO port %x (len %d) outside TSS IO permission map (base=%x, limit=%x) #GP(0)",
port, len, io_base, BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled));
return(0);
}
Bit16u permission16 = system_read_word(BX_CPU_THIS_PTR tr.cache.u.segment.base + io_base + port/8);
unsigned bit_index = port & 0x7;
unsigned mask = (1 << len) - 1;
if ((permission16 >> bit_index) & mask)
return(0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_IO)) SvmInterceptIO(i, port, len);
}
#endif
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_IO(i, port, len);
#endif
#if BX_X86_DEBUGGER && BX_CPU_LEVEL >= 5
iobreakpoint_match(port, len);
#endif
return(1);
}