49664f7503
tries to fix it. The shortcuts to register names such as AX and DL are #defines in cpu/cpu.h, and they are defined in terms of BX_CPU_THIS_PTR. When BX_USE_CPU_SMF=1, this works fine. (This is what bochs used for a long time, and nobody used the SMF=0 mode at all.) To make SMP bochs work, I had to get SMF=0 mode working for the CPU so that there could be an array of cpus. When SMF=0 for the CPU, BX_CPU_THIS_PTR is defined to be "this->" which only works within methods of BX_CPU_C. Code outside of BX_CPU_C must reference BX_CPU(num) instead. - to try to enforce the correct use of AL/AX/DL/etc. shortcuts, they are now only #defined when "NEED_CPU_REG_SHORTCUTS" is #defined. This is only done in the cpu/*.cc code.
379 lines
8.3 KiB
C++
379 lines
8.3 KiB
C++
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_RXIw(BxInstruction_t *i)
|
|
{
|
|
BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].word.rx = i->Iw;
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::XCHG_RXAX(BxInstruction_t *i)
|
|
{
|
|
Bit16u temp16;
|
|
|
|
temp16 = AX;
|
|
AX = BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].word.rx;
|
|
BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].word.rx = temp16;
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_EwGw(BxInstruction_t *i)
|
|
{
|
|
Bit16u op2_16;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
/* now write op2 to op1 */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op2_16);
|
|
}
|
|
else {
|
|
write_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_GwEw(BxInstruction_t *i)
|
|
{
|
|
Bit16u op2_16;
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
BX_WRITE_16BIT_REG(i->nnn, op2_16);
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_EwSw(BxInstruction_t *i)
|
|
{
|
|
Bit16u seg_reg;
|
|
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_EwSw: incomplete for CPU < 3\n"));
|
|
#endif
|
|
|
|
seg_reg = BX_CPU_THIS_PTR sregs[i->nnn].selector.value;
|
|
|
|
if (i->mod == 0xc0) {
|
|
// ??? BX_WRITE_16BIT_REG(mem_addr, seg_reg);
|
|
if ( i->os_32 ) {
|
|
BX_WRITE_32BIT_REG(i->rm, seg_reg);
|
|
}
|
|
else {
|
|
BX_WRITE_16BIT_REG(i->rm, seg_reg);
|
|
}
|
|
}
|
|
else {
|
|
write_virtual_word(i->seg, i->rm_addr, &seg_reg);
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_SwEw(BxInstruction_t *i)
|
|
{
|
|
Bit16u op2_16;
|
|
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_SwEw: incomplete for CPU < 3\n"));
|
|
#endif
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->nnn], op2_16);
|
|
|
|
if (i->nnn == BX_SEG_REG_SS) {
|
|
// MOV SS inhibits interrupts, debug exceptions and single-step
|
|
// trap exceptions until the execution boundary following the
|
|
// next instruction is reached.
|
|
// Same code as POP_SS()
|
|
BX_CPU_THIS_PTR inhibit_mask |=
|
|
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
|
|
BX_CPU_THIS_PTR async_event = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::LEA_GwM(BxInstruction_t *i)
|
|
{
|
|
if (i->mod == 0xc0) {
|
|
BX_PANIC(("LEA_GvM: op2 is a register"));
|
|
UndefinedOpcode(i);
|
|
return;
|
|
}
|
|
|
|
BX_WRITE_16BIT_REG(i->nnn, (Bit16u) i->rm_addr);
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_AXOw(BxInstruction_t *i)
|
|
{
|
|
Bit16u temp_16;
|
|
Bit32u addr_32;
|
|
|
|
addr_32 = i->Id;
|
|
|
|
/* read from memory address */
|
|
|
|
if (!BX_NULL_SEG_REG(i->seg)) {
|
|
read_virtual_word(i->seg, addr_32, &temp_16);
|
|
}
|
|
else {
|
|
read_virtual_word(BX_SEG_REG_DS, addr_32, &temp_16);
|
|
}
|
|
|
|
/* write to register */
|
|
AX = temp_16;
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_OwAX(BxInstruction_t *i)
|
|
{
|
|
Bit16u temp_16;
|
|
Bit32u addr_32;
|
|
|
|
addr_32 = i->Id;
|
|
|
|
/* read from register */
|
|
temp_16 = AX;
|
|
|
|
/* write to memory address */
|
|
if (!BX_NULL_SEG_REG(i->seg)) {
|
|
write_virtual_word(i->seg, addr_32, &temp_16);
|
|
}
|
|
else {
|
|
write_virtual_word(BX_SEG_REG_DS, addr_32, &temp_16);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_EwIw(BxInstruction_t *i)
|
|
{
|
|
Bit16u op2_16;
|
|
|
|
op2_16 = i->Iw;
|
|
|
|
/* now write sum back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op2_16);
|
|
}
|
|
else {
|
|
write_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOVZX_GwEb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOVZX_GvEb: not supported on < 386\n"));
|
|
#else
|
|
Bit8u op2_8;
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_8 = BX_READ_8BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_byte(i->seg, i->rm_addr, &op2_8);
|
|
}
|
|
|
|
/* zero extend byte op2 into word op1 */
|
|
BX_WRITE_16BIT_REG(i->nnn, (Bit16u) op2_8);
|
|
#endif /* BX_CPU_LEVEL < 3 */
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOVZX_GwEw(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOVZX_GvEw: not supported on < 386\n"));
|
|
#else
|
|
Bit16u op2_16;
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
/* normal move */
|
|
BX_WRITE_16BIT_REG(i->nnn, op2_16);
|
|
#endif /* BX_CPU_LEVEL < 3 */
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOVSX_GwEb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOVSX_GvEb: not supported on < 386\n"));
|
|
#else
|
|
Bit8u op2_8;
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_8 = BX_READ_8BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_byte(i->seg, i->rm_addr, &op2_8);
|
|
}
|
|
|
|
/* sign extend byte op2 into word op1 */
|
|
BX_WRITE_16BIT_REG(i->nnn, (Bit8s) op2_8);
|
|
#endif /* BX_CPU_LEVEL < 3 */
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOVSX_GwEw(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOVSX_GvEw: not supported on < 386\n"));
|
|
#else
|
|
Bit16u op2_16;
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
/* normal move */
|
|
BX_WRITE_16BIT_REG(i->nnn, op2_16);
|
|
#endif /* BX_CPU_LEVEL < 3 */
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::XCHG_EwGw(BxInstruction_t *i)
|
|
{
|
|
Bit16u op2_16, op1_16;
|
|
|
|
#ifdef MAGIC_BREAKPOINT
|
|
#if BX_DEBUGGER
|
|
// (mch) Magic break point
|
|
if (i->nnn == 3 && i->mod == 0xc0 && i->rm == 3) {
|
|
BX_CPU_THIS_PTR magic_break = 1;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
BX_WRITE_16BIT_REG(i->rm, op2_16);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
write_RMW_virtual_word(op2_16);
|
|
}
|
|
|
|
BX_WRITE_16BIT_REG(i->nnn, op1_16);
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::CMOV_GwEw(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6)
|
|
// Note: CMOV accesses a memory source operand (read), regardless
|
|
// of whether condition is true or not. Thus, exceptions may
|
|
// occur even if the MOV does not take place.
|
|
|
|
Boolean condition;
|
|
Bit16u op2_16;
|
|
|
|
switch (i->b1) {
|
|
// CMOV opcodes:
|
|
case 0x140: condition = get_OF(); break;
|
|
case 0x141: condition = !get_OF(); break;
|
|
case 0x142: condition = get_CF(); break;
|
|
case 0x143: condition = !get_CF(); break;
|
|
case 0x144: condition = get_ZF(); break;
|
|
case 0x145: condition = !get_ZF(); break;
|
|
case 0x146: condition = get_CF() || get_ZF(); break;
|
|
case 0x147: condition = !get_CF() && !get_ZF(); break;
|
|
case 0x148: condition = get_SF(); break;
|
|
case 0x149: condition = !get_SF(); break;
|
|
case 0x14A: condition = get_PF(); break;
|
|
case 0x14B: condition = !get_PF(); break;
|
|
case 0x14C: condition = get_SF() != get_OF(); break;
|
|
case 0x14D: condition = get_SF() == get_OF(); break;
|
|
case 0x14E: condition = get_ZF() || (get_SF() != get_OF()); break;
|
|
case 0x14F: condition = !get_ZF() && (get_SF() == get_OF()); break;
|
|
default:
|
|
condition = 0;
|
|
BX_PANIC(("CMOV_GwEw: default case\n"));
|
|
}
|
|
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
if (condition) {
|
|
BX_WRITE_16BIT_REG(i->nnn, op2_16);
|
|
}
|
|
#else
|
|
BX_PANIC(("cmov_gwew called\n"));
|
|
#endif
|
|
}
|