Bochs/bochs/cpu/logical16.cc
Kevin Lawton 8e33d2eda1 Integrated patches/patch.extra_eflags_asms from Jas, for more asm()
coverage of the high-frequency eflags instructions.  That should
  complete the asm() eflags updates for now, as we should be stabilizing
  moving towards bochs 2.0.
2002-10-03 18:12:40 +00:00

572 lines
13 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: logical16.cc,v 1.14 2002-10-03 18:12:40 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XOR_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, result_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"xorw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 ^ op2_16;
#endif
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"xorw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 ^ op2_16;
#endif
Write_RMW_virtual_word(result_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_XOR16);
#endif
}
void
BX_CPU_C::XOR_GwEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
op1_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
result_16 = op1_16 ^ op2_16;
BX_WRITE_16BIT_REG(i->nnn(), result_16);
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_XOR16);
}
void
BX_CPU_C::XOR_AXIw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, sum_16;
op1_16 = AX;
op2_16 = i->Iw();
sum_16 = op1_16 ^ op2_16;
AX = sum_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_XOR16);
}
void
BX_CPU_C::XOR_EwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, result_16;
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
result_16 = op1_16 ^ op2_16;
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
result_16 = op1_16 ^ op2_16;
Write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_XOR16);
}
void
BX_CPU_C::OR_EwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, result_16;
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
result_16 = op1_16 | op2_16;
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
result_16 = op1_16 | op2_16;
Write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_OR16);
}
void
BX_CPU_C::NOT_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
result_16 = ~op1_16;
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
result_16 = ~op1_16;
Write_RMW_virtual_word(result_16);
}
}
void
BX_CPU_C::OR_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, result_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
result_16 = op1_16 | op2_16;
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
result_16 = op1_16 | op2_16;
Write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_OR16);
}
void
BX_CPU_C::OR_GwEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
op1_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"orw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 | op2_16;
#endif
BX_WRITE_16BIT_REG(i->nnn(), result_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_OR16);
#endif
}
void
BX_CPU_C::OR_AXIw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, sum_16;
op1_16 = AX;
op2_16 = i->Iw();
sum_16 = op1_16 | op2_16;
AX = sum_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_OR16);
}
void
BX_CPU_C::AND_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, result_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 & op2_16;
#endif
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 & op2_16;
#endif
Write_RMW_virtual_word(result_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_AND16);
#endif
}
void
BX_CPU_C::AND_GwEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
op1_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 & op2_16;
#endif
BX_WRITE_16BIT_REG(i->nnn(), result_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_AND16);
#endif
}
void
BX_CPU_C::AND_AXIw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
op1_16 = AX;
op2_16 = i->Iw();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 & op2_16;
#endif
AX = result_16;
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_AND16);
#endif
}
void
BX_CPU_C::AND_EwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, result_16;
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 & op2_16;
#endif
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_16 = op1_16 & op2_16;
#endif
Write_RMW_virtual_word(result_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_AND16);
#endif
}
void
BX_CPU_C::TEST_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testw %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit16u result_16;
result_16 = op1_16 & op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_TEST16);
#endif
}
void
BX_CPU_C::TEST_AXIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16;
op1_16 = AX;
op2_16 = i->Iw();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testw %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit16u result_16;
result_16 = op1_16 & op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_TEST16);
#endif
}
void
BX_CPU_C::TEST_EwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16;
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testw %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_16), "g" (op2_16)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit16u result_16;
result_16 = op1_16 & op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, result_16, BX_INSTR_TEST16);
#endif
}