Bochs/bochs/iodev/harddrv.cc

2547 lines
89 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define INDEX_PULSE_CYCLE 10
#define PACKET_SIZE 12
#if BX_USE_HD_SMF
bx_hard_drive_c bx_hard_drive;
#define this (&bx_hard_drive)
#endif
static unsigned char model_no[41] =
"Generic 1234 ";
static unsigned max_multiple_sectors = 0; // was 0x3f
static unsigned curr_multiple_sectors = 0; // was 0x3f
// some packet handling macros
#define EXTRACT_FIELD(arr,byte,start,num_bits) (((arr)[(byte)] >> (start)) & ((1 << (num_bits)) - 1))
#define get_packet_field(b,s,n) (EXTRACT_FIELD((BX_SELECTED_CONTROLLER.buffer),(b),(s),(n)))
#define get_packet_byte(b) (BX_SELECTED_CONTROLLER.buffer[(b)])
#define get_packet_word(b) (((uint16)BX_SELECTED_CONTROLLER.buffer[(b)] << 8) | BX_SELECTED_CONTROLLER.buffer[(b)+1])
#define BX_CONTROLLER(a) (BX_HD_THIS s[(a)]).controller
#define BX_SELECTED_CONTROLLER (BX_CONTROLLER(BX_HD_THIS drive_select))
#define WRITE_FEATURES(a) do { uint8 _a = a; BX_CONTROLLER(0).features = _a; BX_CONTROLLER(1).features = _a; } while(0)
#define WRITE_SECTOR_COUNT(a) do { uint8 _a = a; BX_CONTROLLER(0).sector_count = _a; BX_CONTROLLER(1).sector_count = _a; } while(0)
#define WRITE_SECTOR_NUMBER(a) do { uint8 _a = a; BX_CONTROLLER(0).sector_no = _a; BX_CONTROLLER(1).sector_no = _a; } while(0)
#define WRITE_CYLINDER_LOW(a) do { uint8 _a = a; BX_CONTROLLER(0).cylinder_no = (BX_CONTROLLER(0).cylinder_no & 0xff00) | _a; BX_CONTROLLER(1).cylinder_no = (BX_CONTROLLER(1).cylinder_no & 0xff00) | _a; } while(0)
#define WRITE_CYLINDER_HIGH(a) do { uint16 _a = a; BX_CONTROLLER(0).cylinder_no = (_a << 8) | (BX_CONTROLLER(0).cylinder_no & 0xff); BX_CONTROLLER(1).cylinder_no = (_a << 8) | (BX_CONTROLLER(1).cylinder_no & 0xff); } while(0)
#define WRITE_HEAD_NO(a) do { uint8 _a = a; BX_CONTROLLER(0).head_no = _a; BX_CONTROLLER(1).head_no = _a; } while(0)
#define WRITE_LBA_MODE(a) do { uint8 _a = a; BX_CONTROLLER(0).lba_mode = _a; BX_CONTROLLER(1).lba_mode = _a; } while(0)
//static unsigned im_here = 0;
bx_hard_drive_c::bx_hard_drive_c(void)
{
#if EXTERNAL_DISK_SIMULATOR
s[0].hard_drive = new EXTERNAL_DISK_SIMULATOR_CLASS();
s[1].hard_drive = new EXTERNAL_DISK_SIMULATOR_CLASS();
#else
#if BX_SPLIT_HD_SUPPORT
// use new concatenated image object
s[0].hard_drive = new concat_image_t();
s[1].hard_drive = new concat_image_t();
#else
s[0].hard_drive = new default_image_t();
s[1].hard_drive = new default_image_t();
#endif
#endif
}
bx_hard_drive_c::~bx_hard_drive_c(void)
{
// nothing for now
}
void
bx_hard_drive_c::init(bx_devices_c *d, bx_cmos_c *cmos)
{
BX_HD_THIS devices = d;
/* HARD DRIVE 0 */
BX_HD_THIS devices->register_irq(14, "Hard Drive 0");
for (unsigned addr=0x01F0; addr<=0x01F7; addr++) {
BX_HD_THIS devices->register_io_read_handler(this, read_handler,
addr, "Hard Drive 0");
BX_HD_THIS devices->register_io_write_handler(this, write_handler,
addr, "Hard Drive 0");
}
#if 0
// this would be necessary to make the second HD master on the
// second controller, using 0x170-0x177 and irq15. But it currently
// works as second disk on the first IDE controller, so this code
// is not needed.
BX_HD_THIS devices->register_irq(15, "Hard Drive 1");
for (unsigned addr=0x0170; addr<=0x0177; addr++) {
BX_HD_THIS devices->register_io_read_handler(this, read_handler,
addr, "Hard Drive 1");
BX_HD_THIS devices->register_io_write_handler(this, write_handler,
addr, "Hard Drive 1");
}
#endif
BX_HD_THIS drive_select = 0;
BX_HD_THIS s[0].hard_drive->cylinders = bx_options.diskc.cylinders;
BX_HD_THIS s[0].hard_drive->heads = bx_options.diskc.heads;
BX_HD_THIS s[0].hard_drive->sectors = bx_options.diskc.spt;
BX_HD_THIS s[0].device_type = IDE_DISK;
BX_HD_THIS s[1].hard_drive->cylinders = bx_options.diskd.cylinders;
BX_HD_THIS s[1].hard_drive->heads = bx_options.diskd.heads;
BX_HD_THIS s[1].hard_drive->sectors = bx_options.diskd.spt;
BX_HD_THIS s[1].device_type = IDE_DISK;
if (bx_options.cdromd.present) {
bx_options.diskd.present = 1;
fprintf(stderr, "disk: Experimental CDROM on target 1\n");
BX_HD_THIS s[1].device_type = IDE_CDROM;
BX_HD_THIS s[1].cdrom.locked = 0;
BX_HD_THIS s[1].sense.sense_key = SENSE_NONE;
BX_HD_THIS s[1].sense.asc = 0;
BX_HD_THIS s[1].sense.ascq = 0;
// Check bit fields
BX_CONTROLLER(1).sector_count = 0;
BX_CONTROLLER(1).interrupt_reason.c_d = 1;
if (BX_CONTROLLER(1).sector_count != 0x01)
bx_panic("disk: interrupt reason bit field error\n");
BX_CONTROLLER(1).sector_count = 0;
BX_CONTROLLER(1).interrupt_reason.i_o = 1;
if (BX_CONTROLLER(1).sector_count != 0x02)
bx_panic("disk: interrupt reason bit field error\n");
BX_CONTROLLER(1).sector_count = 0;
BX_CONTROLLER(1).interrupt_reason.rel = 1;
if (BX_CONTROLLER(1).sector_count != 0x04)
bx_panic("disk: interrupt reason bit field error\n");
BX_CONTROLLER(1).sector_count = 0;
BX_CONTROLLER(1).interrupt_reason.tag = 3;
if (BX_CONTROLLER(1).sector_count != 0x18)
bx_panic("disk: interrupt reason bit field error\n");
BX_CONTROLLER(1).sector_count = 0;
// allocate low level driver
#ifdef LOWLEVEL_CDROM
BX_HD_THIS s[1].cdrom.cd = new LOWLEVEL_CDROM(bx_options.cdromd.dev);
#endif
#ifdef LOWLEVEL_CDROM
if (bx_options.cdromd.inserted) {
if (BX_HD_THIS s[1].cdrom.cd->insert_cdrom()) {
fprintf(stderr, "disk: Media present in CD-ROM drive\n");
BX_HD_THIS s[1].cdrom.ready = 1;
BX_HD_THIS s[1].cdrom.capacity = BX_HD_THIS s[1].cdrom.cd->capacity();
} else {
fprintf(stderr, "disk: Could not locate CD-ROM, continuing with media not present\n");
BX_HD_THIS s[1].cdrom.ready = 0;
}
} else {
#endif
fprintf(stderr, "disk: Media not present in CD-ROM drive\n");
BX_HD_THIS s[1].cdrom.ready = 0;
#ifdef LOWLEVEL_CDROM
}
#endif
}
/* open hard drive image file */
if (bx_options.diskc.present) {
bx_printf("Opening image for device 0\n");
if ((BX_HD_THIS s[0].hard_drive->open(bx_options.diskc.path)) < 0) {
bx_panic("could not open hard drive image file '%s'\n",
bx_options.diskc.path);
}
}
if (bx_options.diskd.present && !bx_options.cdromd.present) {
bx_printf("Opening image for device 1\n");
if ((BX_HD_THIS s[1].hard_drive->open(bx_options.diskd.path)) < 0) {
bx_panic("could not open hard drive image file '%s'\n",
bx_options.diskd.path);
}
}
// generate CMOS values for hard drive if not using a CMOS image
if (!bx_options.cmos.cmosImage) {
cmos->s.reg[0x12] = 0x00; // start out with: no drive 0, no drive 1
if (bx_options.diskc.present) {
// Flag drive type as Fh, use extended CMOS location as real type
cmos->s.reg[0x12] = (cmos->s.reg[0x12] & 0x0f) | 0xf0;
cmos->s.reg[0x19] = 47; // user definable type
// AMI BIOS: 1st hard disk #cyl low byte
cmos->s.reg[0x1b] = (bx_options.diskc.cylinders & 0x00ff);
// AMI BIOS: 1st hard disk #cyl high byte
cmos->s.reg[0x1c] = (bx_options.diskc.cylinders & 0xff00) >> 8;
// AMI BIOS: 1st hard disk #heads
cmos->s.reg[0x1d] = (bx_options.diskc.heads);
// AMI BIOS: 1st hard disk write precompensation cylinder, low byte
cmos->s.reg[0x1e] = 0xff; // -1
// AMI BIOS: 1st hard disk write precompensation cylinder, high byte
cmos->s.reg[0x1f] = 0xff; // -1
// AMI BIOS: 1st hard disk control byte
cmos->s.reg[0x20] = 0xc0 | ((bx_options.diskc.heads > 8) << 3);
// AMI BIOS: 1st hard disk landing zone, low byte
cmos->s.reg[0x21] = cmos->s.reg[0x1b];
// AMI BIOS: 1st hard disk landing zone, high byte
cmos->s.reg[0x22] = cmos->s.reg[0x1c];
// AMI BIOS: 1st hard disk sectors/track
cmos->s.reg[0x23] = bx_options.diskc.spt;
}
//set up cmos for second hard drive
if (bx_options.diskd.present) {
bx_printf ("[diskd] I will put 0xf into the second hard disk field");
// fill in lower 4 bits of 0x12 for second HD
cmos->s.reg[0x12] = (cmos->s.reg[0x12] & 0xf0) | 0x0f;
cmos->s.reg[0x1a] = 47; // user definable type
// AMI BIOS: 2nd hard disk #cyl low byte
cmos->s.reg[0x24] = (bx_options.diskd.cylinders & 0x00ff);
// AMI BIOS: 2nd hard disk #cyl high byte
cmos->s.reg[0x25] = (bx_options.diskd.cylinders & 0xff00) >> 8;
// AMI BIOS: 2nd hard disk #heads
cmos->s.reg[0x26] = (bx_options.diskd.heads);
// AMI BIOS: 2nd hard disk write precompensation cylinder, low byte
cmos->s.reg[0x27] = 0xff; // -1
// AMI BIOS: 2nd hard disk write precompensation cylinder, high byte
cmos->s.reg[0x28] = 0xff; // -1
// AMI BIOS: 2nd hard disk, 0x80 if heads>8
cmos->s.reg[0x29] = (bx_options.diskd.heads > 8) ? 0x80 : 0x00;
// AMI BIOS: 2nd hard disk landing zone, low byte
cmos->s.reg[0x2a] = cmos->s.reg[0x1b];
// AMI BIOS: 2nd hard disk landing zone, high byte
cmos->s.reg[0x2b] = cmos->s.reg[0x1c];
// AMI BIOS: 2nd hard disk sectors/track
cmos->s.reg[0x2c] = bx_options.diskd.spt;
}
if ( bx_options.bootdrive[0] == 'c' ) {
// system boot sequence C:, A:
cmos->s.reg[0x2d] &= 0xdf;
}
else { // 'a'
// system boot sequence A:, C:
cmos->s.reg[0x2d] |= 0x20;
}
}
//switch (stat_buf.st_size) {
// }
for (int id = 0; id < 2; id++) {
BX_CONTROLLER(id).status.busy = 0;
BX_CONTROLLER(id).status.drive_ready = 1;
BX_CONTROLLER(id).status.write_fault = 0;
BX_CONTROLLER(id).status.seek_complete = 1;
BX_CONTROLLER(id).status.drq = 0;
BX_CONTROLLER(id).status.corrected_data = 0;
BX_CONTROLLER(id).status.index_pulse = 0;
BX_CONTROLLER(id).status.index_pulse_count = 0;
BX_CONTROLLER(id).status.err = 0;
BX_CONTROLLER(id).error_register = 0x01; // diagnostic code: no error
BX_CONTROLLER(id).head_no = 0;
BX_CONTROLLER(id).sector_count = 1;
BX_CONTROLLER(id).sector_no = 1;
BX_CONTROLLER(id).cylinder_no = 0;
BX_CONTROLLER(id).current_command = 0x00;
BX_CONTROLLER(id).buffer_index = 0;
BX_CONTROLLER(id).control.reset = 0;
BX_CONTROLLER(id).control.disable_irq = 0;
BX_CONTROLLER(id).reset_in_progress = 0;
BX_CONTROLLER(id).sectors_per_block = 0x80;
BX_CONTROLLER(id).lba_mode = 0;
BX_CONTROLLER(id).features = 0;
}
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_hard_drive_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_HD_SMF
bx_hard_drive_c *class_ptr = (bx_hard_drive_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_hard_drive_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_HD_SMF
Bit8u value8;
Bit16u value16;
Bit32u value32;
if (io_len==2 && address!=0x1f0) {
bx_panic("disk: non-byte IO read to %04x\n", (unsigned) address);
}
switch (address) {
case 0x1f0: // hard disk data (16bit)
if (BX_SELECTED_CONTROLLER.status.drq == 0) {
bx_panic("disk: IO read(1f0h) with drq == 0: last command was %02xh\n",
(unsigned) BX_SELECTED_CONTROLLER.current_command);
}
switch (BX_SELECTED_CONTROLLER.current_command) {
case 0x20: // read sectors, with retries
case 0x21: // read sectors, without retries
if (io_len != 2) {
bx_panic("disk: non-word IO read from %04x\n",
(unsigned) address);
}
if (BX_SELECTED_CONTROLLER.buffer_index >= 512)
bx_panic("disk: IO read(1f0): buffer_index >= 512\n");
value16 = BX_SELECTED_CONTROLLER.buffer[BX_SELECTED_CONTROLLER.buffer_index];
value16 |= (BX_SELECTED_CONTROLLER.buffer[BX_SELECTED_CONTROLLER.buffer_index+1] << 8);
BX_SELECTED_CONTROLLER.buffer_index += 2;
// if buffer completely read
if (BX_SELECTED_CONTROLLER.buffer_index >= 512) {
// update sector count, sector number, cylinder,
// drive, head, status
// if there are more sectors, read next one in...
//
BX_SELECTED_CONTROLLER.buffer_index = 0;
increment_address();
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
if (bx_options.newHardDriveSupport)
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
else
BX_SELECTED_CONTROLLER.status.seek_complete = 0;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
if (BX_SELECTED_CONTROLLER.sector_count==0) {
BX_SELECTED_CONTROLLER.status.drq = 0;
}
else { /* read next one into controller buffer */
unsigned long logical_sector;
int ret;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
logical_sector = calculate_logical_address();
ret = BX_SELECTED_HD.hard_drive->lseek(logical_sector * 512, SEEK_SET);
if (ret < 0)
bx_panic("disk: could lseek() hard drive image file\n");
ret = BX_SELECTED_HD.hard_drive->read((bx_ptr_t) BX_SELECTED_CONTROLLER.buffer, 512);
if (ret < 512) {
bx_printf("logical sector was %u\n", (unsigned) logical_sector);
bx_panic("disk: could not read() hard drive image file at byte %d\n", logical_sector*512);
}
BX_SELECTED_CONTROLLER.buffer_index = 0;
raise_interrupt();
}
}
goto return_value16;
break;
case 0xec: // Drive ID Command
case 0xa1:
if (bx_options.newHardDriveSupport) {
unsigned index;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
index = BX_SELECTED_CONTROLLER.buffer_index;
value32 = BX_SELECTED_CONTROLLER.buffer[index];
index++;
if (io_len >= 2) {
value32 |= (BX_SELECTED_CONTROLLER.buffer[index] << 8);
index++;
}
if (io_len == 4) {
value32 |= (BX_SELECTED_CONTROLLER.buffer[index] << 16);
value32 |= (BX_SELECTED_CONTROLLER.buffer[index+1] << 24);
index += 2;
}
BX_SELECTED_CONTROLLER.buffer_index = index;
if (BX_SELECTED_CONTROLLER.buffer_index >= 512) {
BX_SELECTED_CONTROLLER.status.drq = 0;
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf ("disk: Read all drive ID Bytes ...\n");
}
if (io_len == 1) {
value8 = (Bit8u)value32;
goto return_value8;
} else if (io_len == 2) {
value16 = (Bit16u)value32;
goto return_value16;
} else {
goto return_value32;
}
}
else
bx_panic("disk: IO read(1f0h): current command is %02xh\n",
(unsigned) BX_SELECTED_CONTROLLER.current_command);
case 0xa0: {
unsigned index = BX_SELECTED_CONTROLLER.buffer_index;
// Load block if necessary
if (index >= 2048) {
if (index > 2048)
bx_panic("disk: index > 2048\n");
switch (BX_SELECTED_HD.atapi.command) {
case 0x28: // read (10)
case 0xa8: // read (12)
#ifdef LOWLEVEL_CDROM
BX_SELECTED_HD.cdrom.cd->read_block(BX_SELECTED_CONTROLLER.buffer,
BX_SELECTED_HD.cdrom.next_lba);
BX_SELECTED_HD.cdrom.next_lba++;
BX_SELECTED_HD.cdrom.remaining_blocks--;
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
if (!BX_SELECTED_HD.cdrom.remaining_blocks)
bx_printf("disk: Last READ block loaded {CDROM}\n");
else
bx_printf("disk: READ block loaded (%d remaining) {CDROM}\n",
BX_SELECTED_HD.cdrom.remaining_blocks);
// one block transfered
BX_SELECTED_HD.atapi.drq_bytes -= 2048;
BX_SELECTED_HD.atapi.total_bytes_remaining -= 2048;
index = 0;
#else
bx_panic("Read with no LOWLEVEL_CDROM\n");
#endif
break;
default: // no need to load a new block
break;
}
}
value32 = BX_SELECTED_CONTROLLER.buffer[index];
index++;
if (io_len >= 2) {
value32 |= (BX_SELECTED_CONTROLLER.buffer[index] << 8);
index++;
}
if (io_len == 4) {
value32 |= (BX_SELECTED_CONTROLLER.buffer[index] << 16);
value32 |= (BX_SELECTED_CONTROLLER.buffer[index+1] << 24);
index += 2;
}
BX_SELECTED_CONTROLLER.buffer_index = index;
if (BX_SELECTED_CONTROLLER.buffer_index >= (unsigned)BX_SELECTED_HD.atapi.drq_bytes) {
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_HD.atapi.total_bytes_remaining -= BX_SELECTED_HD.atapi.drq_bytes;
if (BX_SELECTED_HD.atapi.total_bytes_remaining > 0) {
// one or more blocks remaining (works only for single block commands)
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: PACKET drq bytes read\n");
BX_SELECTED_CONTROLLER.interrupt_reason.i_o = 1;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.c_d = 0;
// set new byte count if last block
if (BX_SELECTED_HD.atapi.total_bytes_remaining < BX_SELECTED_CONTROLLER.byte_count) {
BX_SELECTED_CONTROLLER.byte_count = BX_SELECTED_HD.atapi.total_bytes_remaining;
}
BX_SELECTED_HD.atapi.drq_bytes += BX_SELECTED_CONTROLLER.byte_count;
raise_interrupt();
} else {
// all bytes read
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: PACKET all bytes read\n");
BX_SELECTED_CONTROLLER.interrupt_reason.i_o = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.c_d = 1;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.rel = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
raise_interrupt();
}
}
if (io_len == 1) {
value8 = (Bit8u)value32;
goto return_value8;
} else if (io_len == 2) {
value16 = (Bit16u)value32;
goto return_value16;
} else {
goto return_value32;
}
break;
}
default:
bx_panic("disk: IO read(1f0h): current command is %02xh\n",
(unsigned) BX_SELECTED_CONTROLLER.current_command);
}
break;
case 0x1f1: // hard disk error register
BX_SELECTED_CONTROLLER.status.err = 0;
value8 = BX_SELECTED_CONTROLLER.error_register;
goto return_value8;
break;
case 0x1f2: // hard disk sector count / interrupt reason
value8 = BX_SELECTED_CONTROLLER.sector_count;
goto return_value8;
break;
case 0x1f3: // sector number
value8 = BX_SELECTED_CONTROLLER.sector_no;
goto return_value8;
case 0x1f4: // cylinder low
value8 = (BX_SELECTED_CONTROLLER.cylinder_no & 0x00ff);
goto return_value8;
case 0x1f5: // cylinder high
value8 = BX_SELECTED_CONTROLLER.cylinder_no >> 8;
goto return_value8;
case 0x1f6: // hard disk drive and head register
value8 = (1 << 7) | // extended data field for ECC
(0 << 7) | // 1=LBA mode, 0=CHSmode
(1 << 5) | // 01b = 512 sector size
(BX_HD_THIS drive_select << 4) |
(BX_SELECTED_CONTROLLER.head_no << 0);
goto return_value8;
break;
case 0x1f7: // Hard Disk Status
case 0x3f6: // Hard Disk Alternate Status
if (BX_HD_THIS drive_select && !bx_options.diskd.present) {
// (mch) Just return zero for these registers
value8 = 0;
} else {
value8 = (
(BX_SELECTED_CONTROLLER.status.busy << 7) |
(BX_SELECTED_CONTROLLER.status.drive_ready << 6) |
(BX_SELECTED_CONTROLLER.status.write_fault << 5) |
(BX_SELECTED_CONTROLLER.status.seek_complete << 4) |
(BX_SELECTED_CONTROLLER.status.drq << 3) |
(BX_SELECTED_CONTROLLER.status.corrected_data << 2) |
(BX_SELECTED_CONTROLLER.status.index_pulse << 1) |
(BX_SELECTED_CONTROLLER.status.err) );
BX_SELECTED_CONTROLLER.status.index_pulse_count++;
BX_SELECTED_CONTROLLER.status.index_pulse = 0;
if (BX_SELECTED_CONTROLLER.status.index_pulse_count >= INDEX_PULSE_CYCLE) {
BX_SELECTED_CONTROLLER.status.index_pulse = 1;
BX_SELECTED_CONTROLLER.status.index_pulse_count = 0;
}
}
goto return_value8;
break;
case 0x3f7: // Hard Disk Address Register
// Obsolete and unsupported register. Not driven by hard
// disk controller. Report all 1's. If floppy controller
// is handling this address, it will call this function
// set/clear D7 (the only bit it handles), then return
// the combined value
value8 = 0xff;
goto return_value8;
break;
#if 0
// you'll need these to support second IDE controller, not needed yet.
case 0x170:
case 0x171:
case 0x172:
case 0x173:
case 0x174:
case 0x175:
case 0x176:
case 0x177:
bx_printf ("[disk] ignoring read from 0x%04x\n", address);
break;
#endif
default:
bx_panic("hard drive: io read to address %x unsupported\n",
(unsigned) address);
}
bx_panic("hard drive: shouldnt get here!\n");
return(0);
return_value32:
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: 32-bit read from %04x = %08x {%s}\n",
(unsigned) address, value32, DEVICE_TYPE_STRING);
return value32;
return_value16:
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: 16-bit read from %04x = %04x {%s}\n",
(unsigned) address, value16, DEVICE_TYPE_STRING);
return value16;
return_value8:
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: 8-bit read from %04x = %02x {%s}\n",
(unsigned) address, value8, DEVICE_TYPE_STRING);
return value8;
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_hard_drive_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_HD_SMF
bx_hard_drive_c *class_ptr = (bx_hard_drive_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void
bx_hard_drive_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_HD_SMF
unsigned long logical_sector;
int ret;
Boolean prev_control_reset;
if (io_len==2 && address!=0x1f0) {
bx_panic("disk: non-byte IO write to %04x\n", (unsigned) address);
}
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom)) {
switch (io_len) {
case 1:
bx_printf("disk: 8-bit write to %04x = %02x {%s}\n",
(unsigned) address, (unsigned) value, DEVICE_TYPE_STRING);
break;
case 2:
bx_printf("disk: 16-bit write to %04x = %04x {%s}\n",
(unsigned) address, (unsigned) value, DEVICE_TYPE_STRING);
break;
case 4:
bx_printf("disk: 32-bit write to %04x = %08x {%s}\n",
(unsigned) address, (unsigned) value, DEVICE_TYPE_STRING);
break;
default:
bx_printf("disk: unknown-size write to %04x = %08x {%s}\n",
(unsigned) address, (unsigned) value, DEVICE_TYPE_STRING);
break;
}
}
//bx_printf("disk: IO write to %04x = %02x\n",
// (unsigned) address, (unsigned) value);
switch (address) {
case 0x1f0:
if (io_len != 2) {
bx_panic("disk: non-word IO read from %04x\n", (unsigned) address);
}
switch (BX_SELECTED_CONTROLLER.current_command) {
case 0x30:
if (BX_SELECTED_CONTROLLER.buffer_index >= 512)
bx_panic("disk: IO write(1f0): buffer_index >= 512\n");
BX_SELECTED_CONTROLLER.buffer[BX_SELECTED_CONTROLLER.buffer_index] = value;
BX_SELECTED_CONTROLLER.buffer[BX_SELECTED_CONTROLLER.buffer_index+1] = (value >> 8);
BX_SELECTED_CONTROLLER.buffer_index += 2;
/* if buffer completely writtten */
if (BX_SELECTED_CONTROLLER.buffer_index >= 512) {
unsigned long logical_sector;
int ret;
logical_sector = calculate_logical_address();
ret = BX_SELECTED_HD.hard_drive->lseek(logical_sector * 512, SEEK_SET);
if (ret < 0)
bx_panic("disk: could lseek() hard drive image file\n");
ret = BX_SELECTED_HD.hard_drive->write((bx_ptr_t) BX_SELECTED_CONTROLLER.buffer, 512);
if (ret < 512)
bx_panic("disk: could not write() hard drive image file at byte %d\n", logical_sector*512);
BX_SELECTED_CONTROLLER.buffer_index = 0;
/* update sector count, sector number, cylinder,
* drive, head, status
* if there are more sectors, read next one in...
*/
increment_address();
/* When the write is complete, controller clears the DRQ bit and
* sets the BSY bit.
* If at least one more sector is to be written, controller sets DRQ bit,
* clears BSY bit, and issues IRQ 14
*/
if (BX_SELECTED_CONTROLLER.sector_count!=0) {
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
}
else { /* no more sectors to write */
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
}
raise_interrupt();
}
break;
case 0xa0: // PACKET
if (BX_SELECTED_CONTROLLER.buffer_index >= PACKET_SIZE)
bx_panic("disk: IO write(1f0): buffer_index >= PACKET_SIZE\n");
BX_SELECTED_CONTROLLER.buffer[BX_SELECTED_CONTROLLER.buffer_index] = value;
BX_SELECTED_CONTROLLER.buffer[BX_SELECTED_CONTROLLER.buffer_index+1] = (value >> 8);
BX_SELECTED_CONTROLLER.buffer_index += 2;
/* if packet completely writtten */
if (BX_SELECTED_CONTROLLER.buffer_index >= PACKET_SIZE) {
// complete command received
Bit8u atapi_command = BX_SELECTED_CONTROLLER.buffer[0];
int alloc_length;
if (bx_dbg.cdrom)
bx_printf("cdrom: ATAPI command 0x%x started\n", atapi_command);
switch (atapi_command) {
case 0x00: // test unit ready
if (BX_SELECTED_HD.cdrom.ready) {
atapi_cmd_nop();
} else {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
}
raise_interrupt();
break;
case 0x03: { // request sense
int alloc_length = BX_SELECTED_CONTROLLER.buffer[4];
init_send_atapi_command(atapi_command, 18, alloc_length);
// sense data
BX_SELECTED_CONTROLLER.buffer[0] = 0x70 | (1 << 7);
BX_SELECTED_CONTROLLER.buffer[1] = 0;
BX_SELECTED_CONTROLLER.buffer[2] = BX_SELECTED_HD.sense.sense_key;
BX_SELECTED_CONTROLLER.buffer[3] = BX_SELECTED_HD.sense.information.arr[0];
BX_SELECTED_CONTROLLER.buffer[4] = BX_SELECTED_HD.sense.information.arr[1];
BX_SELECTED_CONTROLLER.buffer[5] = BX_SELECTED_HD.sense.information.arr[2];
BX_SELECTED_CONTROLLER.buffer[6] = BX_SELECTED_HD.sense.information.arr[3];
BX_SELECTED_CONTROLLER.buffer[7] = 17-7;
BX_SELECTED_CONTROLLER.buffer[8] = BX_SELECTED_HD.sense.specific_inf.arr[0];
BX_SELECTED_CONTROLLER.buffer[9] = BX_SELECTED_HD.sense.specific_inf.arr[1];
BX_SELECTED_CONTROLLER.buffer[10] = BX_SELECTED_HD.sense.specific_inf.arr[2];
BX_SELECTED_CONTROLLER.buffer[11] = BX_SELECTED_HD.sense.specific_inf.arr[3];
BX_SELECTED_CONTROLLER.buffer[12] = BX_SELECTED_HD.sense.asc;
BX_SELECTED_CONTROLLER.buffer[13] = BX_SELECTED_HD.sense.ascq;
BX_SELECTED_CONTROLLER.buffer[14] = BX_SELECTED_HD.sense.fruc;
BX_SELECTED_CONTROLLER.buffer[15] = BX_SELECTED_HD.sense.key_spec.arr[0];
BX_SELECTED_CONTROLLER.buffer[16] = BX_SELECTED_HD.sense.key_spec.arr[1];
BX_SELECTED_CONTROLLER.buffer[17] = BX_SELECTED_HD.sense.key_spec.arr[2];
ready_to_send_atapi();
}
break;
case 0x1b: { // start stop unit
//Boolean Immed = (BX_SELECTED_CONTROLLER.buffer[1] >> 0) & 1;
Boolean LoEj = (BX_SELECTED_CONTROLLER.buffer[4] >> 1) & 1;
Boolean Start = (BX_SELECTED_CONTROLLER.buffer[4] >> 0) & 1;
if (!LoEj && !Start) { // stop the disc
bx_panic("disk: Stop disc not implemented\n");
} else if (!LoEj && Start) { // start the disc and read the TOC
bx_panic("disk: Start disc not implemented\n");
} else if (LoEj && !Start) { // Eject the disc
bx_panic("disk: Eject the disc not implemented\n");
} else { // Load the disc
// My guess is that this command only closes the tray, that's a no-op for us
atapi_cmd_nop();
raise_interrupt();
}
}
break;
case 0xbd: { // mechanism status
uint16 alloc_length = read_16bit(BX_SELECTED_CONTROLLER.buffer + 8);
if (alloc_length == 0)
bx_panic("disk: Zero allocation length to MECHANISM STATUS not impl.\n");
init_send_atapi_command(atapi_command, 8, alloc_length);
BX_SELECTED_CONTROLLER.buffer[0] = 0; // reserved for non changers
BX_SELECTED_CONTROLLER.buffer[1] = 0; // reserved for non changers
BX_SELECTED_CONTROLLER.buffer[2] = 0; // Current LBA (TODO!)
BX_SELECTED_CONTROLLER.buffer[3] = 0; // Current LBA (TODO!)
BX_SELECTED_CONTROLLER.buffer[4] = 0; // Current LBA (TODO!)
BX_SELECTED_CONTROLLER.buffer[5] = 1; // one slot
BX_SELECTED_CONTROLLER.buffer[6] = 0; // slot table length
BX_SELECTED_CONTROLLER.buffer[7] = 0; // slot table length
ready_to_send_atapi();
}
break;
case 0x5a: { // mode sense
uint16 alloc_length = read_16bit(BX_SELECTED_CONTROLLER.buffer + 7);
Bit8u PC = BX_SELECTED_CONTROLLER.buffer[2] >> 6;
Bit8u PageCode = BX_SELECTED_CONTROLLER.buffer[2] & 0x3f;
switch (PC) {
case 0x0: // current values
switch (PageCode) {
case 0x01: // error recovery
init_send_atapi_command(atapi_command, sizeof(error_recovery_t) + 8, alloc_length);
init_mode_sense_single(&BX_SELECTED_HD.cdrom.current.error_recovery,
sizeof(error_recovery_t));
ready_to_send_atapi();
break;
case 0x2a: // CD-ROM capabilities & mech. status
init_send_atapi_command(atapi_command, 28, alloc_length);
init_mode_sense_single(&BX_SELECTED_CONTROLLER.buffer[8], 28);
BX_SELECTED_CONTROLLER.buffer[8] = 0x2a;
BX_SELECTED_CONTROLLER.buffer[9] = 0x12;
BX_SELECTED_CONTROLLER.buffer[10] = 0x00;
BX_SELECTED_CONTROLLER.buffer[11] = 0x00;
BX_SELECTED_CONTROLLER.buffer[12] = 0x00;
BX_SELECTED_CONTROLLER.buffer[13] = (3 << 5);
BX_SELECTED_CONTROLLER.buffer[14] = (unsigned char)
(1 |
(BX_SELECTED_HD.cdrom.locked ? (1 << 1) : 0) |
(1 << 3) |
(1 << 5));
BX_SELECTED_CONTROLLER.buffer[15] = 0x00;
BX_SELECTED_CONTROLLER.buffer[16] = (706 >> 8) & 0xff;
BX_SELECTED_CONTROLLER.buffer[17] = 706 & 0xff;
BX_SELECTED_CONTROLLER.buffer[18] = 0;
BX_SELECTED_CONTROLLER.buffer[19] = 2;
BX_SELECTED_CONTROLLER.buffer[20] = (512 >> 8) & 0xff;
BX_SELECTED_CONTROLLER.buffer[21] = 512 & 0xff;
BX_SELECTED_CONTROLLER.buffer[22] = (706 >> 8) & 0xff;
BX_SELECTED_CONTROLLER.buffer[23] = 706 & 0xff;
BX_SELECTED_CONTROLLER.buffer[24] = 0;
BX_SELECTED_CONTROLLER.buffer[25] = 0;
BX_SELECTED_CONTROLLER.buffer[26] = 0;
BX_SELECTED_CONTROLLER.buffer[27] = 0;
ready_to_send_atapi();
break;
case 0x0d: // CD-ROM
case 0x0e: // CD-ROM audio control
case 0x3f: // all
bx_panic("cdrom: MODE SENSE (curr), code=%x\n",
PageCode);
break;
default:
// not implemeted by this device
bx_printf("cdrom: MODE SENSE PC=%x, PageCode=%x,"
" not implemented by device\n",
PC, PageCode);
atapi_cmd_error(SENSE_ILLEGAL_REQUEST,
ASC_INV_FIELD_IN_CMD_PACKET);
raise_interrupt();
break;
}
break;
case 0x1: // changeable values
switch (PageCode) {
case 0x01: // error recovery
case 0x0d: // CD-ROM
case 0x0e: // CD-ROM audio control
case 0x2a: // CD-ROM capabilities & mech. status
case 0x3f: // all
bx_panic("cdrom: MODE SENSE (chg), code=%x\n",
PageCode);
break;
default:
// not implemeted by this device
bx_printf("cdrom: MODE SENSE PC=%x, PageCode=%x,"
" not implemented by device\n",
PC, PageCode);
atapi_cmd_error(SENSE_ILLEGAL_REQUEST,
ASC_INV_FIELD_IN_CMD_PACKET);
raise_interrupt();
break;
}
break;
case 0x2: // default values
switch (PageCode) {
case 0x01: // error recovery
case 0x0d: // CD-ROM
case 0x0e: // CD-ROM audio control
case 0x2a: // CD-ROM capabilities & mech. status
case 0x3f: // all
bx_panic("cdrom: MODE SENSE (dflt), code=%x\n",
PageCode);
break;
default:
// not implemeted by this device
bx_printf("cdrom: MODE SENSE PC=%x, PageCode=%x,"
" not implemented by device\n",
PC, PageCode);
atapi_cmd_error(SENSE_ILLEGAL_REQUEST,
ASC_INV_FIELD_IN_CMD_PACKET);
raise_interrupt();
break;
}
break;
case 0x3: // saved values not implemented
atapi_cmd_error(SENSE_ILLEGAL_REQUEST, ASC_SAVING_PARAMETERS_NOT_SUPPORTED);
raise_interrupt();
break;
default:
bx_panic("disk: Should not get here!\n");
break;
}
}
break;
case 0x12: { // inquiry
uint8 alloc_length = BX_SELECTED_CONTROLLER.buffer[4];
init_send_atapi_command(atapi_command, 36, alloc_length);
BX_SELECTED_CONTROLLER.buffer[0] = 0x05; // CD-ROM
BX_SELECTED_CONTROLLER.buffer[1] = 0x80; // Removable
BX_SELECTED_CONTROLLER.buffer[2] = 0x00; // ISO, ECMA, ANSI version
BX_SELECTED_CONTROLLER.buffer[3] = 0x21; // ATAPI-2, as specified
BX_SELECTED_CONTROLLER.buffer[4] = 31; // additional length (total 36)
BX_SELECTED_CONTROLLER.buffer[5] = 0x00; // reserved
BX_SELECTED_CONTROLLER.buffer[6] = 0x00; // reserved
BX_SELECTED_CONTROLLER.buffer[7] = 0x00; // reserved
// Vendor ID
const char* vendor_id = "VTAB\0\0\0\0";
int i;
for (i = 0; i < 8; i++)
BX_SELECTED_CONTROLLER.buffer[8+i] = vendor_id[i];
// Product ID
const char* product_id = "Turbo CD-ROM\0\0\0\0";
for (i = 0; i < 16; i++)
BX_SELECTED_CONTROLLER.buffer[16+i] = product_id[i];
// Product Revision level
const char* rev_level = "R0\0\0";
for (i = 0; i < 4; i++)
BX_SELECTED_CONTROLLER.buffer[32+i] = rev_level[i];
ready_to_send_atapi();
}
break;
case 0x25: { // read cd-rom capacity
// no allocation length???
init_send_atapi_command(atapi_command, 8, 8);
if (BX_SELECTED_HD.cdrom.ready) {
uint32 capacity = BX_SELECTED_HD.cdrom.capacity;
bx_printf("disk: Capacity is %d sectors (%d bytes)\n", capacity, capacity * 2048);
BX_SELECTED_CONTROLLER.buffer[0] = (capacity >> 24) & 0xff;
BX_SELECTED_CONTROLLER.buffer[1] = (capacity >> 16) & 0xff;
BX_SELECTED_CONTROLLER.buffer[2] = (capacity >> 8) & 0xff;
BX_SELECTED_CONTROLLER.buffer[3] = (capacity >> 0) & 0xff;
BX_SELECTED_CONTROLLER.buffer[4] = (2048 >> 24) & 0xff;
BX_SELECTED_CONTROLLER.buffer[5] = (2048 >> 16) & 0xff;
BX_SELECTED_CONTROLLER.buffer[6] = (2048 >> 8) & 0xff;
BX_SELECTED_CONTROLLER.buffer[7] = (2048 >> 0) & 0xff;
ready_to_send_atapi();
} else {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
raise_interrupt();
}
}
break;
case 0xbe: { // read cd
if (BX_SELECTED_HD.cdrom.ready) {
bx_panic("Read CD with CD present not implemented\n");
} else {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
raise_interrupt();
}
}
break;
case 0x43: { // read toc
if (BX_SELECTED_HD.cdrom.ready) {
#ifdef LOWLEVEL_CDROM
bool msf = (BX_SELECTED_CONTROLLER.buffer[1] >> 1) & 1;
uint8 starting_track = BX_SELECTED_CONTROLLER.buffer[6];
#endif
uint16 alloc_length = read_16bit(BX_SELECTED_CONTROLLER.buffer + 7);
uint8 format = (BX_SELECTED_CONTROLLER.buffer[9] >> 6);
int i;
switch (format) {
case 0:
#ifdef LOWLEVEL_CDROM
int toc_length;
if (!BX_SELECTED_HD.cdrom.cd->read_toc(BX_SELECTED_CONTROLLER.buffer,
&toc_length, msf, starting_track)) {
atapi_cmd_error(SENSE_ILLEGAL_REQUEST,
ASC_INV_FIELD_IN_CMD_PACKET);
raise_interrupt();
} else {
init_send_atapi_command(atapi_command, toc_length, alloc_length);
ready_to_send_atapi();
}
#else
bx_panic("LOWLEVEL_CDROM not defined\n");
#endif
break;
case 1:
// multi session stuff. we ignore this and emulate a single session only
init_send_atapi_command(atapi_command, 12, alloc_length);
BX_SELECTED_CONTROLLER.buffer[0] = 0;
BX_SELECTED_CONTROLLER.buffer[1] = 0x0a;
BX_SELECTED_CONTROLLER.buffer[2] = 1;
BX_SELECTED_CONTROLLER.buffer[3] = 1;
for (i = 0; i < 8; i++)
BX_SELECTED_CONTROLLER.buffer[4+i] = 0;
ready_to_send_atapi();
break;
case 2:
default:
bx_panic("disk: (READ TOC) Format %d not supported\n", format);
break;
}
} else {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
raise_interrupt();
}
}
break;
case 0x28: { // read (10)
uint32 transfer_length = read_16bit(BX_SELECTED_CONTROLLER.buffer + 7);
uint32 lba = read_32bit(BX_SELECTED_CONTROLLER.buffer + 2);
if (!BX_SELECTED_HD.cdrom.ready) {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
raise_interrupt();
break;
}
if (transfer_length == 0) {
atapi_cmd_nop();
raise_interrupt();
bx_printf("disk: READ(10) with transfer length 0, ok\n");
break;
}
if (lba + transfer_length > BX_SELECTED_HD.cdrom.capacity) {
atapi_cmd_error(SENSE_ILLEGAL_REQUEST, ASC_LOGICAL_BLOCK_OOR);
raise_interrupt();
break;
}
//bx_printf("cdrom: READ LBA=%d LEN=%d\n", lba, transfer_length);
// handle command
init_send_atapi_command(atapi_command, transfer_length * 2048,
transfer_length * 2048, true);
BX_SELECTED_HD.cdrom.remaining_blocks = transfer_length;
BX_SELECTED_HD.cdrom.next_lba = lba;
ready_to_send_atapi();
}
break;
case 0x2b: { // seek
uint32 lba = read_32bit(BX_SELECTED_CONTROLLER.buffer + 2);
if (!BX_SELECTED_HD.cdrom.ready) {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
raise_interrupt();
break;
}
if (lba > BX_SELECTED_HD.cdrom.capacity) {
atapi_cmd_error(SENSE_ILLEGAL_REQUEST, ASC_LOGICAL_BLOCK_OOR);
raise_interrupt();
break;
}
bx_printf("cdrom: SEEK (ignored)\n");
atapi_cmd_nop();
raise_interrupt();
}
break;
case 0x1e: { // prevent/allow medium removal
if (BX_SELECTED_HD.cdrom.ready) {
BX_SELECTED_HD.cdrom.locked = BX_SELECTED_CONTROLLER.buffer[4] & 1;
atapi_cmd_nop();
} else {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
}
raise_interrupt();
}
break;
case 0x42: { // read sub-channel
bool msf = get_packet_field(1, 1, 1);
bool sub_q = get_packet_field(2, 6, 1);
uint8 data_format = get_packet_byte(3);
uint8 track_number = get_packet_byte(6);
uint16 alloc_length = get_packet_word(7);
UNUSED(msf);
UNUSED(data_format);
UNUSED(track_number);
if (BX_SELECTED_HD.cdrom.ready) {
atapi_cmd_error(SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
raise_interrupt();
} else {
BX_SELECTED_CONTROLLER.buffer[0] = 0;
BX_SELECTED_CONTROLLER.buffer[1] = 0; // audio not supported
BX_SELECTED_CONTROLLER.buffer[2] = 0;
BX_SELECTED_CONTROLLER.buffer[3] = 0;
int ret_len = 4; // header size
if (sub_q) { // !sub_q == header only
bx_panic("Read sub-channel with SubQ not implemented\n");
}
init_send_atapi_command(atapi_command, ret_len, alloc_length);
ready_to_send_atapi();
}
}
break;
case 0xa8: // read (12)
case 0x55: // mode select
case 0xa6: // load/unload cd
case 0x4b: // pause/resume
case 0x45: // play audio
case 0x47: // play audio msf
case 0xbc: // play cd
case 0xb9: // read cd msf
case 0x44: // read header
case 0xba: // scan
case 0xbb: // set cd speed
case 0x4e: // stop play/scan
default:
bx_panic("Unknown ATAPI command 0x%x (%d)\n",
atapi_command, atapi_command);
break;
}
}
break;
default:
bx_panic("disk: IO write(1f0h): current command is %02xh\n",
(unsigned) BX_SELECTED_CONTROLLER.current_command);
}
break;
case 0x1f1: /* hard disk write precompensation */
WRITE_FEATURES(value);
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom)) {
if (value == 0xff)
bx_printf("disk: no precompensation {%s}\n", DEVICE_TYPE_STRING);
else
bx_printf("disk: precompensation value %02x {%s}\n", (unsigned) value, DEVICE_TYPE_STRING);
}
break;
case 0x1f2: /* hard disk sector count */
WRITE_SECTOR_COUNT(value);
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: sector count = %u {%s}\n", (unsigned) value, DEVICE_TYPE_STRING);
break;
case 0x1f3: /* hard disk sector number */
WRITE_SECTOR_NUMBER(value);
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: sector number = %u {%s}\n", (unsigned) value, DEVICE_TYPE_STRING);
break;
case 0x1f4: /* hard disk cylinder low */
WRITE_CYLINDER_LOW(value);
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: cylinder low = %02xh {%s}\n", (unsigned) value, DEVICE_TYPE_STRING);
break;
case 0x1f5: /* hard disk cylinder high */
WRITE_CYLINDER_HIGH(value);
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: cylinder high = %02xh {%s}\n", (unsigned) value, DEVICE_TYPE_STRING);
break;
case 0x1f6: // hard disk drive and head register
// b7 1
// b6 1=LBA mode, 0=CHS mode (LBA not supported)
// b5 1
// b4: DRV
// b3..0 HD3..HD0
if ( (value & 0xe0) != 0xa0 ) // 101xxxxx
bx_printf("disk: IO write 1f6 (%02x): not 101xxxxxb\n", (unsigned) value);
BX_HD_THIS drive_select = (value >> 4) & 0x01;
WRITE_HEAD_NO(value & 0xf);
if (BX_SELECTED_CONTROLLER.lba_mode == 0 && ((value >> 6) & 1) == 1)
bx_printf("disk: enabling LBA mode\n");
WRITE_LBA_MODE((value >> 6) & 1);
break;
case 0x1f7: // hard disk command
// (mch) Writes to the command register with drive_select != 0
// are ignored if no secondary device is present
if (BX_HD_THIS drive_select != 0 && value != 0x90 && !bx_options.diskd.present)
break;
if (BX_SELECTED_CONTROLLER.status.busy)
bx_panic("hard disk: command sent, controller BUSY\n");
if ( (value & 0xf0) == 0x10 )
value = 0x10;
switch (value) {
case 0x10: // calibrate drive
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: calibrate drive issued to non-disk\n");
if (BX_HD_THIS drive_select != 0 && !bx_options.diskd.present) {
BX_SELECTED_CONTROLLER.error_register = 0x02; // Track 0 not found
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.seek_complete = 0;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 1;
raise_interrupt();
bx_printf("disk: calibrate drive != 0, with diskd not present\n");
break;
}
/* move head to cylinder 0, issue IRQ 14 */
BX_SELECTED_CONTROLLER.error_register = 0;
BX_SELECTED_CONTROLLER.cylinder_no = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
raise_interrupt();
break;
case 0x20: // read multiple sectors, with retries
case 0x21: // read multiple sectors, without retries
/* update sector_no, always points to current sector
* after each sector is read to buffer, DRQ bit set and issue IRQ 14
* if interrupt handler transfers all data words into main memory,
* and more sectors to read, then set BSY bit again, clear DRQ and
* read next sector into buffer
* sector count of 0 means 256 sectors
*/
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: read multiple issued to non-disk\n");
BX_SELECTED_CONTROLLER.current_command = value;
// Lose98 accesses 0/0/0 in CHS mode
if (!BX_SELECTED_CONTROLLER.lba_mode &&
!BX_SELECTED_CONTROLLER.head_no &&
!BX_SELECTED_CONTROLLER.cylinder_no &&
!BX_SELECTED_CONTROLLER.sector_no) {
bx_printf("disk: Read from 0/0/0, aborting command\n");
command_aborted(value);
break;
}
logical_sector = calculate_logical_address();
ret = BX_SELECTED_HD.hard_drive->lseek(logical_sector * 512, SEEK_SET);
if (ret < 0) {
bx_panic("disk: could not lseek() hard drive image file\n");
}
ret = BX_SELECTED_HD.hard_drive->read((bx_ptr_t) BX_SELECTED_CONTROLLER.buffer, 512);
if (ret < 512) {
bx_printf("logical sector was %u\n", (unsigned) logical_sector);
bx_panic("disk: could not read() hard drive image file at byte %d\n", logical_sector*512);
}
BX_SELECTED_CONTROLLER.error_register = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.buffer_index = 0;
raise_interrupt();
break;
case 0x30: /* write multiple sectors, with retries */
/* update sector_no, always points to current sector
* after each sector is read to buffer, DRQ bit set and issue IRQ 14
* if interrupt handler transfers all data words into main memory,
* and more sectors to read, then set BSY bit again, clear DRQ and
* read next sector into buffer
* sector count of 0 means 256 sectors
*/
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: write multiple issued to non-disk\n");
if (BX_SELECTED_CONTROLLER.status.busy) {
bx_panic("disk: write command: BSY bit set\n");
}
BX_SELECTED_CONTROLLER.current_command = value;
// implicit seek done :^)
BX_SELECTED_CONTROLLER.error_register = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
// BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.buffer_index = 0;
break;
case 0x90: // Drive Diagnostic
if (BX_SELECTED_CONTROLLER.status.busy) {
bx_panic("disk: diagnostic command: BSY bit set\n");
}
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: drive diagnostics issued to non-disk\n");
BX_SELECTED_CONTROLLER.error_register = 0x81; // Drive 1 failed, no error on drive 0
// BX_SELECTED_CONTROLLER.status.busy = 0; // not needed
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
break;
case 0x91: // initialize drive parameters
if (BX_SELECTED_CONTROLLER.status.busy) {
bx_panic("disk: init drive parameters command: BSY bit set\n");
}
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: initialize drive parameters issued to non-disk\n");
// sets logical geometry of specified drive
bx_printf("initialize drive params\n");
bx_printf(" sector count = %u\n",
(unsigned) BX_SELECTED_CONTROLLER.sector_count);
bx_printf(" drive select = %u\n",
(unsigned) BX_HD_THIS drive_select);
bx_printf(" head number = %u\n",
(unsigned) BX_SELECTED_CONTROLLER.head_no);
if (BX_HD_THIS drive_select != 0 && !bx_options.diskd.present) {
bx_panic("disk: init drive params: drive != 0\n");
//BX_SELECTED_CONTROLLER.error_register = 0x12;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
raise_interrupt();
break;
}
if (BX_SELECTED_CONTROLLER.sector_count != BX_SELECTED_HD.hard_drive->sectors)
bx_panic("disk: init drive params: sector count doesnt match\n");
if ( BX_SELECTED_CONTROLLER.head_no != (BX_SELECTED_HD.hard_drive->heads-1) )
bx_panic("disk: init drive params: head number doesn't match\n");
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
raise_interrupt();
break;
case 0xec: // Get Drive Info
if (bx_options.newHardDriveSupport) {
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf ("disk: Drive ID Command issued : 0xec \n");
if (BX_HD_THIS drive_select && !bx_options.diskd.present) {
bx_printf("disk: 2nd drive not present, aborting\n");
command_aborted(value);
break;
}
if (BX_SELECTED_HD.device_type == IDE_CDROM) {
BX_SELECTED_CONTROLLER.head_no = 0;
BX_SELECTED_CONTROLLER.sector_count = 1;
BX_SELECTED_CONTROLLER.sector_no = 1;
BX_SELECTED_CONTROLLER.cylinder_no = 0xeb14;
command_aborted(0xec);
} else {
BX_SELECTED_CONTROLLER.current_command = value;
BX_SELECTED_CONTROLLER.error_register = 0;
// See ATA/ATAPI-4, 8.12
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.buffer_index = 0;
raise_interrupt();
identify_drive(BX_HD_THIS drive_select);
}
}
else {
bx_printf("disk: old hard drive\n");
command_aborted(value);
}
break;
case 0xef: // set features
switch(BX_SELECTED_CONTROLLER.features) {
case 0x02: // Enable and
case 0x82: // Disable write cache.
case 0xAA: // Enable and
case 0x55: // Disable look-ahead cache.
bx_printf("disk: SET FEATURES subcommand not supported by disk.\n");
command_aborted(value);
break;
default:
bx_panic("disk: SET FEATURES with unknown subcommand: 0x%02x\n", (unsigned) BX_SELECTED_CONTROLLER.features );
}
break;
case 0x40: //
if (bx_options.newHardDriveSupport) {
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: read verify issued to non-disk\n");
bx_printf ("disk: Verify Command : 0x40 ! \n");
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
raise_interrupt();
}
else {
bx_printf("disk: old hard drive\n");
command_aborted(value);
}
break;
case 0xc6: // (mch) set multiple mode
if (BX_SELECTED_CONTROLLER.sector_count != 128 &&
BX_SELECTED_CONTROLLER.sector_count != 64 &&
BX_SELECTED_CONTROLLER.sector_count != 32 &&
BX_SELECTED_CONTROLLER.sector_count != 16 &&
BX_SELECTED_CONTROLLER.sector_count != 8 &&
BX_SELECTED_CONTROLLER.sector_count != 4 &&
BX_SELECTED_CONTROLLER.sector_count != 2)
command_aborted(value);
if (BX_SELECTED_HD.device_type != IDE_DISK)
bx_panic("disk: set multiple mode issued to non-disk\n");
BX_SELECTED_CONTROLLER.sectors_per_block = BX_SELECTED_CONTROLLER.sector_count;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
break;
// ATAPI commands
case 0xa1: // identify ATAPI device
if (BX_SELECTED_HD.device_type == IDE_CDROM) {
BX_SELECTED_CONTROLLER.current_command = value;
BX_SELECTED_CONTROLLER.error_register = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.status.seek_complete = 1;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.buffer_index = 0;
raise_interrupt();
identify_ATAPI_drive(BX_HD_THIS drive_select);
} else {
command_aborted(0xa1);
}
break;
case 0x08: // ATAPI soft reset command
if (BX_SELECTED_HD.device_type == IDE_CDROM) {
BX_SELECTED_CONTROLLER.status.busy = 1;
BX_SELECTED_CONTROLLER.error_register &= ~(1 << 7);
// device signature
BX_SELECTED_CONTROLLER.head_no = 0;
BX_SELECTED_CONTROLLER.sector_count = 1;
BX_SELECTED_CONTROLLER.sector_no = 1;
BX_SELECTED_CONTROLLER.cylinder_no = 0xeb14;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
break;
}
case 0xa0: // send a packet command
if (BX_SELECTED_HD.device_type == IDE_CDROM) {
// PACKET
if (BX_SELECTED_CONTROLLER.features & (1 << 0))
bx_panic("disk: PACKET-DMA not supported\n");
if (BX_SELECTED_CONTROLLER.features & (1 << 1))
bx_panic("disk: PACKET-overlapped not supported\n");
// We're already ready!
BX_SELECTED_CONTROLLER.sector_count = 1;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
// serv bit??
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.err = 0;
// NOTE: no interrupt here
BX_SELECTED_CONTROLLER.current_command = value;
BX_SELECTED_CONTROLLER.buffer_index = 0;
break;
}
case 0xa2: // ATAPI service (optional)
if (BX_SELECTED_HD.device_type == IDE_CDROM) {
bx_panic("disk: ATAPI SERVICE not implemented\n");
}
// non-standard commands
case 0xf0: // Exabyte enable nest command
bx_printf("disk: Not implemented command\n");
command_aborted(value);
break;
// power management
case 0xe5: // Check power mode
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
BX_SELECTED_CONTROLLER.sector_count = 0xff; // Active or Idle mode
raise_interrupt();
break;
default:
bx_panic("IO write(1f7h): command 0x%02x\n", (unsigned) value);
}
break;
case 0x3f6: // hard disk adapter control
// (mch) Even if device 1 was selected, a write to this register
// goes to device 0 (if device 1 is absent)
prev_control_reset = BX_SELECTED_CONTROLLER.control.reset;
BX_HD_THIS s[0].controller.control.reset = value & 0x04;
BX_HD_THIS s[1].controller.control.reset = value & 0x04;
BX_SELECTED_CONTROLLER.control.disable_irq = value & 0x02;
//fprintf(stderr, "# hard drive: adpater control reg: reset controller = %d\n",
// (unsigned) (BX_SELECTED_CONTROLLER.control.reset) ? 1 : 0);
//fprintf(stderr, "# hard drive: adpater control reg: disable_irq(14) = %d\n",
// (unsigned) (BX_SELECTED_CONTROLLER.control.disable_irq) ? 1 : 0);
if (!prev_control_reset && BX_SELECTED_CONTROLLER.control.reset) {
// transition from 0 to 1 causes all drives to reset
bx_printf("hard drive: RESET\n");
// (mch) Set BSY, drive not ready
for (int id = 0; id < 2; id++) {
BX_CONTROLLER(id).status.busy = 1;
BX_CONTROLLER(id).status.drive_ready = 0;
BX_CONTROLLER(id).reset_in_progress = 1;
BX_CONTROLLER(id).status.write_fault = 0;
BX_CONTROLLER(id).status.seek_complete = 1;
BX_CONTROLLER(id).status.drq = 0;
BX_CONTROLLER(id).status.corrected_data = 0;
BX_CONTROLLER(id).status.err = 0;
BX_CONTROLLER(id).error_register = 0x01; // diagnostic code: no error
BX_CONTROLLER(id).current_command = 0x00;
BX_CONTROLLER(id).buffer_index = 0;
BX_CONTROLLER(id).sectors_per_block = 0x80;
BX_CONTROLLER(id).lba_mode = 0;
BX_CONTROLLER(id).control.disable_irq = 0;
}
} else if (BX_SELECTED_CONTROLLER.reset_in_progress &&
!BX_SELECTED_CONTROLLER.control.reset) {
// Clear BSY and DRDY
bx_printf("disk: Reset complete {%s}\n", DEVICE_TYPE_STRING);
for (int id = 0; id < 2; id++) {
BX_CONTROLLER(id).status.busy = 0;
BX_CONTROLLER(id).status.drive_ready = 1;
BX_CONTROLLER(id).reset_in_progress = 0;
// Device signature
if (BX_HD_THIS s[id].device_type == IDE_DISK) {
BX_CONTROLLER(id).head_no = 0;
BX_CONTROLLER(id).sector_count = 1;
BX_CONTROLLER(id).sector_no = 1;
BX_CONTROLLER(id).cylinder_no = 0;
} else {
BX_CONTROLLER(id).head_no = 0;
BX_CONTROLLER(id).sector_count = 1;
BX_CONTROLLER(id).sector_no = 1;
BX_CONTROLLER(id).cylinder_no = 0xeb14;
}
}
}
break;
#if 0
// you'll need these to support second IDE controller, not needed yet.
case 0x170:
case 0x171:
case 0x172:
case 0x173:
case 0x174:
case 0x175:
case 0x176:
case 0x177:
bx_printf ("[disk] ignoring write to 0x%04x\n", address);
break;
#endif
default:
bx_panic("hard drive: io write to address %x = %02x\n",
(unsigned) address, (unsigned) value);
}
}
void
bx_hard_drive_c::close_harddrive(void)
{
BX_HD_THIS s[0].hard_drive->close();
BX_HD_THIS s[1].hard_drive->close();
}
#define assert(i) do { if (!((i))) bx_panic("assertion on line %d", __LINE__); } while (0)
Bit32u
bx_hard_drive_c::calculate_logical_address()
{
Bit32u logical_sector;
if (BX_SELECTED_CONTROLLER.lba_mode)
logical_sector = ((Bit32u)BX_SELECTED_CONTROLLER.head_no) << 24 |
((Bit32u)BX_SELECTED_CONTROLLER.cylinder_no) << 8 |
(Bit32u)BX_SELECTED_CONTROLLER.sector_no;
else
logical_sector = (BX_SELECTED_CONTROLLER.cylinder_no * BX_SELECTED_HD.hard_drive->heads *
BX_SELECTED_HD.hard_drive->sectors) +
(BX_SELECTED_CONTROLLER.head_no * BX_SELECTED_HD.hard_drive->sectors) +
(BX_SELECTED_CONTROLLER.sector_no - 1);
if (logical_sector >=
(BX_SELECTED_HD.hard_drive->cylinders * BX_SELECTED_HD.hard_drive->heads * BX_SELECTED_HD.hard_drive->sectors)) {
bx_panic("disk: read sectors: out of bounds\n");
}
return logical_sector;
}
void
bx_hard_drive_c::increment_address()
{
BX_SELECTED_CONTROLLER.sector_count--;
if (BX_SELECTED_CONTROLLER.lba_mode) {
Bit32u current_address = calculate_logical_address();
current_address++;
BX_SELECTED_CONTROLLER.head_no = (current_address >> 24) & 0xf;
BX_SELECTED_CONTROLLER.cylinder_no = (current_address >> 8) & 0xffff;
BX_SELECTED_CONTROLLER.sector_no = (current_address) & 0xff;
} else {
BX_SELECTED_CONTROLLER.sector_no++;
if (BX_SELECTED_CONTROLLER.sector_no > BX_SELECTED_HD.hard_drive->sectors) {
BX_SELECTED_CONTROLLER.sector_no = 1;
BX_SELECTED_CONTROLLER.head_no++;
if (BX_SELECTED_CONTROLLER.head_no >= BX_SELECTED_HD.hard_drive->heads) {
BX_SELECTED_CONTROLLER.head_no = 0;
BX_SELECTED_CONTROLLER.cylinder_no++;
if (BX_SELECTED_CONTROLLER.cylinder_no >= BX_SELECTED_HD.hard_drive->cylinders)
BX_SELECTED_CONTROLLER.cylinder_no = BX_SELECTED_HD.hard_drive->cylinders - 1;
}
}
}
}
void
bx_hard_drive_c::identify_ATAPI_drive(unsigned drive)
{
unsigned i;
if (drive != (unsigned)BX_HD_THIS drive_select) {
bx_panic("disk: identify_drive panic (drive != drive_select)\n");
}
BX_SELECTED_HD.id_drive[0] = (2 << 14) | (5 << 8) | (1 << 7) | (2 << 5) | (0 << 0); // Removable CDROM, 50us response, 12 byte packets
for (i = 1; i <= 9; i++)
BX_SELECTED_HD.id_drive[i] = 0;
char* serial_number = " VT00001\0\0\0\0\0\0\0\0\0\0\0\0";
for (i = 0; i < 10; i++) {
BX_SELECTED_HD.id_drive[10+i] = (serial_number[i*2] << 8) |
serial_number[i*2 + 1];
}
for (i = 20; i <= 22; i++)
BX_SELECTED_HD.id_drive[i] = 0;
char* firmware = "ALPHA1 ";
for (i = 0; i < strlen(firmware)/2; i++) {
BX_SELECTED_HD.id_drive[23+i] = (firmware[i*2] << 8) |
firmware[i*2 + 1];
}
assert((23+i) == 27);
for (i = 0; i < strlen((char *) model_no)/2; i++) {
BX_SELECTED_HD.id_drive[27+i] = (model_no[i*2] << 8) |
model_no[i*2 + 1];
}
assert((27+i) == 47);
BX_SELECTED_HD.id_drive[47] = 0;
BX_SELECTED_HD.id_drive[48] = 0;
BX_SELECTED_HD.id_drive[49] = (1 << 9); // LBA supported
BX_SELECTED_HD.id_drive[50] = 0;
BX_SELECTED_HD.id_drive[51] = 0;
BX_SELECTED_HD.id_drive[52] = 0;
BX_SELECTED_HD.id_drive[53] = 3; // words 64-70, 54-58 valid
for (i = 54; i <= 62; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// copied from CFA540A
BX_SELECTED_HD.id_drive[63] = 0x0103; // variable (DMA stuff)
BX_SELECTED_HD.id_drive[64] = 0x0001; // PIO
BX_SELECTED_HD.id_drive[65] = 0x00b4;
BX_SELECTED_HD.id_drive[66] = 0x00b4;
BX_SELECTED_HD.id_drive[67] = 0x012c;
BX_SELECTED_HD.id_drive[68] = 0x00b4;
BX_SELECTED_HD.id_drive[69] = 0;
BX_SELECTED_HD.id_drive[70] = 0;
BX_SELECTED_HD.id_drive[71] = 30; // faked
BX_SELECTED_HD.id_drive[72] = 30; // faked
BX_SELECTED_HD.id_drive[73] = 0;
BX_SELECTED_HD.id_drive[74] = 0;
BX_SELECTED_HD.id_drive[75] = 0;
for (i = 76; i <= 79; i++)
BX_SELECTED_HD.id_drive[i] = 0;
BX_SELECTED_HD.id_drive[80] = 0x1e; // supports up to ATA/ATAPI-4
BX_SELECTED_HD.id_drive[81] = 0;
BX_SELECTED_HD.id_drive[82] = 0;
BX_SELECTED_HD.id_drive[83] = 0;
BX_SELECTED_HD.id_drive[84] = 0;
BX_SELECTED_HD.id_drive[85] = 0;
BX_SELECTED_HD.id_drive[86] = 0;
BX_SELECTED_HD.id_drive[87] = 0;
BX_SELECTED_HD.id_drive[88] = 0;
for (i = 89; i <= 126; i++)
BX_SELECTED_HD.id_drive[i] = 0;
BX_SELECTED_HD.id_drive[127] = 0;
BX_SELECTED_HD.id_drive[128] = 0;
for (i = 129; i <= 159; i++)
BX_SELECTED_HD.id_drive[i] = 0;
for (i = 160; i <= 255; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// now convert the id_drive array (native 256 word format) to
// the controller buffer (512 bytes)
Bit16u temp16;
for (i = 0; i <= 255; i++) {
temp16 = BX_SELECTED_HD.id_drive[i];
BX_SELECTED_CONTROLLER.buffer[i*2] = temp16 & 0x00ff;
BX_SELECTED_CONTROLLER.buffer[i*2+1] = temp16 >> 8;
}
}
void
bx_hard_drive_c::identify_drive(unsigned drive)
{
unsigned i;
Bit32u temp32;
Bit16u temp16;
if (drive != BX_HD_THIS drive_select) {
bx_panic("disk: identify_drive panic (drive != drive_select)\n");
}
#if defined(CONNER_CFA540A)
BX_SELECTED_HD.id_drive[0] = 0x0c5a;
BX_SELECTED_HD.id_drive[1] = 0x0418;
BX_SELECTED_HD.id_drive[2] = 0;
BX_SELECTED_HD.id_drive[3] = BX_SELECTED_HD.hard_drive->heads;
BX_SELECTED_HD.id_drive[4] = 0x9fb7;
BX_SELECTED_HD.id_drive[5] = 0x0289;
BX_SELECTED_HD.id_drive[6] = BX_SELECTED_HD.hard_drive->sectors;
BX_SELECTED_HD.id_drive[7] = 0x0030;
BX_SELECTED_HD.id_drive[8] = 0x000a;
BX_SELECTED_HD.id_drive[9] = 0x0000;
char* serial_number = " CA00GSQ\0\0\0\0\0\0\0\0\0\0\0\0";
for (i = 0; i < 10; i++) {
BX_SELECTED_HD.id_drive[10+i] = (serial_number[i*2] << 8) |
serial_number[i*2 + 1];
}
BX_SELECTED_HD.id_drive[20] = 3;
BX_SELECTED_HD.id_drive[21] = 512; // 512 Sectors = 256kB cache
BX_SELECTED_HD.id_drive[22] = 4;
char* firmware = "8FT054 ";
for (i = 0; i < strlen(firmware)/2; i++) {
BX_SELECTED_HD.id_drive[23+i] = (firmware[i*2] << 8) |
firmware[i*2 + 1];
}
assert((23+i) == 27);
char* model = "Conner Peripherals 540MB - CFA540A ";
for (i = 0; i < strlen(model)/2; i++) {
BX_SELECTED_HD.id_drive[27+i] = (model[i*2] << 8) |
model[i*2 + 1];
}
assert((27+i) == 47);
BX_SELECTED_HD.id_drive[47] = 0x8080; // multiple mode identification
BX_SELECTED_HD.id_drive[48] = 0;
BX_SELECTED_HD.id_drive[49] = 0x0f01;
BX_SELECTED_HD.id_drive[50] = 0;
BX_SELECTED_HD.id_drive[51] = 0;
BX_SELECTED_HD.id_drive[52] = 0x0002;
BX_SELECTED_HD.id_drive[53] = 0x0003;
BX_SELECTED_HD.id_drive[54] = 0x0418;
BX_SELECTED_HD.id_drive[55] = BX_SELECTED_HD.hard_drive->heads;
BX_SELECTED_HD.id_drive[56] = BX_SELECTED_HD.hard_drive->sectors;
BX_SELECTED_HD.id_drive[57] = 0x1e80;
BX_SELECTED_HD.id_drive[58] = 0x0010;
BX_SELECTED_HD.id_drive[59] = 0x0100 | BX_SELECTED_CONTROLLER.sectors_per_block;
BX_SELECTED_HD.id_drive[60] = 0x20e0;
BX_SELECTED_HD.id_drive[61] = 0x0010;
BX_SELECTED_HD.id_drive[62] = 0;
BX_SELECTED_HD.id_drive[63] = 0x0103; // variable (DMA stuff)
BX_SELECTED_HD.id_drive[64] = 0x0001; // PIO
BX_SELECTED_HD.id_drive[65] = 0x00b4;
BX_SELECTED_HD.id_drive[66] = 0x00b4;
BX_SELECTED_HD.id_drive[67] = 0x012c;
BX_SELECTED_HD.id_drive[68] = 0x00b4;
for (i = 69; i <= 79; i++)
BX_SELECTED_HD.id_drive[i] = 0;
BX_SELECTED_HD.id_drive[80] = 0;
BX_SELECTED_HD.id_drive[81] = 0;
BX_SELECTED_HD.id_drive[82] = 0;
BX_SELECTED_HD.id_drive[83] = 0;
BX_SELECTED_HD.id_drive[84] = 0;
BX_SELECTED_HD.id_drive[85] = 0;
BX_SELECTED_HD.id_drive[86] = 0;
BX_SELECTED_HD.id_drive[87] = 0;
for (i = 88; i <= 127; i++)
BX_SELECTED_HD.id_drive[i] = 0;
BX_SELECTED_HD.id_drive[128] = 0x0418;
BX_SELECTED_HD.id_drive[129] = 0x103f;
BX_SELECTED_HD.id_drive[130] = 0x0418;
BX_SELECTED_HD.id_drive[131] = 0x103f;
BX_SELECTED_HD.id_drive[132] = 0x0004;
BX_SELECTED_HD.id_drive[133] = 0xffff;
BX_SELECTED_HD.id_drive[134] = 0;
BX_SELECTED_HD.id_drive[135] = 0x5050;
for (i = 136; i <= 144; i++)
BX_SELECTED_HD.id_drive[i] = 0;
BX_SELECTED_HD.id_drive[145] = 0x302e;
BX_SELECTED_HD.id_drive[146] = 0x3245;
BX_SELECTED_HD.id_drive[147] = 0x2020;
BX_SELECTED_HD.id_drive[148] = 0x2020;
for (i = 149; i <= 255; i++)
BX_SELECTED_HD.id_drive[i] = 0;
#else
// Identify Drive command return values definition
//
// This code is rehashed from some that was donated.
// I'm using ANSI X3.221-1994, AT Attachment Interface for Disk Drives
// and X3T10 2008D Working Draft for ATA-3
// Word 0: general config bit-significant info
// Note: bits 1-5 and 8-14 are now "Vendor specific (obsolete)"
// bit 15: 0=ATA device
// 1=ATAPI device
// bit 14: 1=format speed tolerance gap required
// bit 13: 1=track offset option available
// bit 12: 1=data strobe offset option available
// bit 11: 1=rotational speed tolerance is > 0,5% (typo?)
// bit 10: 1=disk transfer rate > 10Mbs
// bit 9: 1=disk transfer rate > 5Mbs but <= 10Mbs
// bit 8: 1=disk transfer rate <= 5Mbs
// bit 7: 1=removable cartridge drive
// bit 6: 1=fixed drive
// bit 5: 1=spindle motor control option implemented
// bit 4: 1=head switch time > 15 usec
// bit 3: 1=not MFM encoded
// bit 2: 1=soft sectored
// bit 1: 1=hard sectored
// bit 0: 0=reserved
BX_SELECTED_HD.id_drive[0] = 0x0040;
// Word 1: number of user-addressable cylinders in
// default translation mode. If the value in words 60-61
// exceed 16,515,072, this word shall contain 16,383.
BX_SELECTED_HD.id_drive[1] = BX_SELECTED_HD.hard_drive->cylinders;
// Word 2: reserved
BX_SELECTED_HD.id_drive[2] = 0;
// Word 3: number of user-addressable heads in default
// translation mode
BX_SELECTED_HD.id_drive[3] = BX_SELECTED_HD.hard_drive->heads;
// Word 4: # unformatted bytes per translated track in default xlate mode
// Word 5: # unformatted bytes per sector in default xlated mode
// Word 6: # user-addressable sectors per track in default xlate mode
// Note: words 4,5 are now "Vendor specific (obsolete)"
BX_SELECTED_HD.id_drive[4] = (512 * BX_SELECTED_HD.hard_drive->sectors);
BX_SELECTED_HD.id_drive[5] = 512;
BX_SELECTED_HD.id_drive[6] = BX_SELECTED_HD.hard_drive->sectors;
// Word 7-9: Vendor specific
for (i=7; i<=9; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// Word 10-19: Serial number (20 ASCII characters, 0000h=not specified)
// This field is right justified and padded with spaces (20h).
for (i=10; i<=19; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// Word 20: buffer type
// 0000h = not specified
// 0001h = single ported single sector buffer which is
// not capable of simulataneous data xfers to/from
// the host and the disk.
// 0002h = dual ported multi-sector buffer capable of
// simulatenous data xfers to/from the host and disk.
// 0003h = dual ported mutli-sector buffer capable of
// simulatenous data xfers with a read caching
// capability.
// 0004h-ffffh = reserved
BX_SELECTED_HD.id_drive[20] = 3;
// Word 21: buffer size in 512 byte increments, 0000h = not specified
BX_SELECTED_HD.id_drive[21] = 512; // 512 Sectors = 256kB cache
// Word 22: # of ECC bytes available on read/write long cmds
// 0000h = not specified
BX_SELECTED_HD.id_drive[22] = 4;
// Word 23..26: Firmware revision (8 ascii chars, 0000h=not specified)
// This field is left justified and padded with spaces (20h)
for (i=23; i<=26; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// Word 27..46: Model number (40 ascii chars, 0000h=not specified)
// This field is left justified and padded with spaces (20h)
// for (i=27; i<=46; i++)
// BX_SELECTED_HD.id_drive[i] = 0;
for (i=0; i<20; i++) {
BX_SELECTED_HD.id_drive[27+i] = (model_no[i*2] << 8) |
model_no[i*2 + 1];
}
// Word 47: 15-8 Vendor unique
// 7-0 00h= read/write multiple commands not implemented
// xxh= maximum # of sectors that can be transferred
// per interrupt on read and write multiple commands
BX_SELECTED_HD.id_drive[47] = max_multiple_sectors;
// Word 48: 0000h = cannot perform dword IO
// 0001h = can perform dword IO
BX_SELECTED_HD.id_drive[48] = 0;
// Word 49: Capabilities
// 15-10: 0 = reserved
// 9: 1 = LBA supported
// 8: 1 = DMA supported
// 7-0: Vendor unique
BX_SELECTED_HD.id_drive[49] = 0;
// Word 50: Reserved
BX_SELECTED_HD.id_drive[50] = 0;
// Word 51: 15-8 PIO data transfer cycle timing mode
// 7-0 Vendor unique
BX_SELECTED_HD.id_drive[51] = 0x200;
// Word 52: 15-8 DMA data transfer cycle timing mode
// 7-0 Vendor unique
BX_SELECTED_HD.id_drive[52] = 0x200;
// Word 53: 15-1 Reserved
// 0 1=the fields reported in words 54-58 are valid
// 0=the fields reported in words 54-58 may be valid
BX_SELECTED_HD.id_drive[53] = 0;
// Word 54: # of user-addressable cylinders in curr xlate mode
// Word 55: # of user-addressable heads in curr xlate mode
// Word 56: # of user-addressable sectors/track in curr xlate mode
BX_SELECTED_HD.id_drive[54] = BX_SELECTED_HD.hard_drive->cylinders;
BX_SELECTED_HD.id_drive[55] = BX_SELECTED_HD.hard_drive->heads;
BX_SELECTED_HD.id_drive[56] = BX_SELECTED_HD.hard_drive->sectors;
// Word 57-58: Current capacity in sectors
// Excludes all sectors used for device specific purposes.
temp32 =
BX_SELECTED_HD.hard_drive->cylinders *
BX_SELECTED_HD.hard_drive->heads *
BX_SELECTED_HD.hard_drive->sectors;
BX_SELECTED_HD.id_drive[57] = (temp32 & 0xffff); // LSW
BX_SELECTED_HD.id_drive[58] = (temp32 >> 16); // MSW
// Word 59: 15-9 Reserved
// 8 1=multiple sector setting is valid
// 7-0 current setting for number of sectors that can be
// transferred per interrupt on R/W multiple commands
BX_SELECTED_HD.id_drive[59] = 0x0000 | curr_multiple_sectors;
// Word 60-61:
// If drive supports LBA Mode, these words reflect total # of user
// addressable sectors. This value does not depend on the current
// drive geometry. If the drive does not support LBA mode, these
// words shall be set to 0.
Bit32u num_sects = BX_SELECTED_HD.hard_drive->cylinders * BX_SELECTED_HD.hard_drive->heads * BX_SELECTED_HD.hard_drive->sectors;
BX_SELECTED_HD.id_drive[60] = num_sects & 0xffff; // LSW
BX_SELECTED_HD.id_drive[61] = num_sects >> 16; // MSW
// Word 62: 15-8 single word DMA transfer mode active
// 7-0 single word DMA transfer modes supported
// The low order byte identifies by bit, all the Modes which are
// supported e.g., if Mode 0 is supported bit 0 is set.
// The high order byte contains a single bit set to indiciate
// which mode is active.
BX_SELECTED_HD.id_drive[62] = 0x0;
// Word 63: 15-8 multiword DMA transfer mode active
// 7-0 multiword DMA transfer modes supported
// The low order byte identifies by bit, all the Modes which are
// supported e.g., if Mode 0 is supported bit 0 is set.
// The high order byte contains a single bit set to indiciate
// which mode is active.
BX_SELECTED_HD.id_drive[63] = 0x0;
// Word 64-79 Reserved
for (i=64; i<=79; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// Word 80: 15-5 reserved
// 4 supports ATA/ATAPI-4
// 3 supports ATA-3
// 2 supports ATA-2
// 1 supports ATA-1
// 0 reserved
BX_SELECTED_HD.id_drive[80] = (1 << 2) | (1 << 1);
// Word 81: Minor version number
BX_SELECTED_HD.id_drive[81] = 0;
// Word 82: 15 obsolete
// 14 NOP command supported
// 13 READ BUFFER command supported
// 12 WRITE BUFFER command supported
// 11 obsolete
// 10 Host protected area feature set supported
// 9 DEVICE RESET command supported
// 8 SERVICE interrupt supported
// 7 release interrupt supported
// 6 look-ahead supported
// 5 write cache supported
// 4 supports PACKET command feature set
// 3 supports power management feature set
// 2 supports removable media feature set
// 1 supports securite mode feature set
// 0 support SMART feature set
BX_SELECTED_HD.id_drive[82] = 1 << 14;
BX_SELECTED_HD.id_drive[83] = 1 << 14;
BX_SELECTED_HD.id_drive[84] = 1 << 14;
BX_SELECTED_HD.id_drive[85] = 1 << 14;
BX_SELECTED_HD.id_drive[86] = 0;
BX_SELECTED_HD.id_drive[87] = 1 << 14;
for (i=88; i<=127; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// Word 128-159 Vendor unique
for (i=128; i<=159; i++)
BX_SELECTED_HD.id_drive[i] = 0;
// Word 160-255 Reserved
for (i=160; i<=255; i++)
BX_SELECTED_HD.id_drive[i] = 0;
#endif
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf ("disk: Drive ID Info. initialized : %04d {%s}\n", 512, DEVICE_TYPE_STRING);
// now convert the id_drive array (native 256 word format) to
// the controller buffer (512 bytes)
for (i=0; i<=255; i++) {
temp16 = BX_SELECTED_HD.id_drive[i];
BX_SELECTED_CONTROLLER.buffer[i*2] = temp16 & 0x00ff;
BX_SELECTED_CONTROLLER.buffer[i*2+1] = temp16 >> 8;
}
}
void
bx_hard_drive_c::init_send_atapi_command(Bit8u command, int req_length, int alloc_length, bool lazy)
{
if (BX_SELECTED_CONTROLLER.byte_count == 0)
bx_panic("disk: ATAPI command with zero byte count\n");
if (BX_SELECTED_CONTROLLER.byte_count & 1)
bx_panic("disk: Odd byte count to ATAPI command\n");
if (alloc_length <= 0)
bx_panic("disk: Allocation length <= 0\n");
BX_SELECTED_CONTROLLER.interrupt_reason.i_o = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.c_d = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drq = 1;
BX_SELECTED_CONTROLLER.status.err = 0;
// no bytes transfered yet
if (lazy)
BX_SELECTED_CONTROLLER.buffer_index = 2048;
else
BX_SELECTED_CONTROLLER.buffer_index = 0;
if (BX_SELECTED_CONTROLLER.byte_count > req_length)
BX_SELECTED_CONTROLLER.byte_count = req_length;
if (BX_SELECTED_CONTROLLER.byte_count > alloc_length)
BX_SELECTED_CONTROLLER.byte_count = alloc_length;
BX_SELECTED_HD.atapi.command = command;
BX_SELECTED_HD.atapi.drq_bytes = BX_SELECTED_CONTROLLER.byte_count;
BX_SELECTED_HD.atapi.total_bytes_remaining = (req_length < alloc_length) ? req_length : alloc_length;
if (lazy) {
// bias drq_bytes and total_bytes_remaining
BX_SELECTED_HD.atapi.drq_bytes += 2048;
BX_SELECTED_HD.atapi.total_bytes_remaining += 2048;
}
}
void
bx_hard_drive_c::atapi_cmd_error(sense_t sense_key, asc_t asc)
{
BX_SELECTED_CONTROLLER.error_register = sense_key << 4;
BX_SELECTED_CONTROLLER.interrupt_reason.i_o = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.c_d = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.rel = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.write_fault = 0;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 1;
BX_SELECTED_HD.sense.sense_key = sense_key;
BX_SELECTED_HD.sense.asc = asc;
BX_SELECTED_HD.sense.ascq = 0;
}
void
bx_hard_drive_c::atapi_cmd_nop()
{
BX_SELECTED_CONTROLLER.interrupt_reason.i_o = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.c_d = 1;
BX_SELECTED_CONTROLLER.interrupt_reason.rel = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.err = 0;
}
void
bx_hard_drive_c::init_mode_sense_single(const void* src, int size)
{
// Header
BX_SELECTED_CONTROLLER.buffer[0] = (size+6) >> 8;
BX_SELECTED_CONTROLLER.buffer[1] = (size+6) & 0xff;
BX_SELECTED_CONTROLLER.buffer[2] = 0x70; // no media present
BX_SELECTED_CONTROLLER.buffer[3] = 0; // reserved
BX_SELECTED_CONTROLLER.buffer[4] = 0; // reserved
BX_SELECTED_CONTROLLER.buffer[5] = 0; // reserved
BX_SELECTED_CONTROLLER.buffer[6] = 0; // reserved
BX_SELECTED_CONTROLLER.buffer[7] = 0; // reserved
// Data
memcpy(BX_SELECTED_CONTROLLER.buffer + 8, src, size);
}
void
bx_hard_drive_c::ready_to_send_atapi()
{
raise_interrupt();
}
void
bx_hard_drive_c::raise_interrupt()
{
if (!BX_SELECTED_CONTROLLER.control.disable_irq) {
Bit32u irq = 14; // always 1st IDE controller
// for second controller, you would want irq 15
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: Raising interrupt %d {%s}\n", irq, DEVICE_TYPE_STRING);
BX_HD_THIS devices->pic->trigger_irq(irq);
} else {
if (bx_dbg.disk || (CDROM_SELECTED && bx_dbg.cdrom))
bx_printf("disk: Interrupt masked {%s}\n", DEVICE_TYPE_STRING);
}
}
void
bx_hard_drive_c::command_aborted(unsigned value)
{
bx_printf("disk: aborting on command 0x%02x {%s}\n", value, DEVICE_TYPE_STRING);
BX_SELECTED_CONTROLLER.current_command = 0;
BX_SELECTED_CONTROLLER.status.busy = 0;
BX_SELECTED_CONTROLLER.status.drive_ready = 1;
BX_SELECTED_CONTROLLER.status.err = 1;
BX_SELECTED_CONTROLLER.error_register = 0x04; // command ABORTED
BX_SELECTED_CONTROLLER.status.drq = 0;
BX_SELECTED_CONTROLLER.status.seek_complete = 0;
BX_SELECTED_CONTROLLER.status.corrected_data = 0;
BX_SELECTED_CONTROLLER.buffer_index = 0;
raise_interrupt();
}
/*** default_image_t function definitions ***/
int default_image_t::open (const char* pathname)
{
fd = ::open(pathname, O_RDWR
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
return fd;
}
/* look at size of image file to calculate disk geometry */
struct stat stat_buf;
int ret = fstat(fd, &stat_buf);
if (ret) {
perror("fstat'ing hard drive image file");
bx_panic("fstat() returns error!\n");
}
return fd;
}
void default_image_t::close ()
{
if (fd > -1) {
::close(fd);
}
}
off_t default_image_t::lseek (off_t offset, int whence)
{
return ::lseek(fd, offset, whence);
}
ssize_t default_image_t::read (void* buf, size_t count)
{
return ::read(fd, buf, count);
}
ssize_t default_image_t::write (const void* buf, size_t count)
{
return ::write(fd, buf, count);
}
#if BX_SPLIT_HD_SUPPORT
/*** concat_image_t function definitions ***/
void concat_image_t::increment_string (char *str)
{
// find the last character of the string, and increment it.
char *p = str;
while (*p != 0) p++;
assert (p>str); // choke on zero length strings
p--; // point to last character of the string
++(*p); // increment to next ascii code.
if (bx_dbg.disk)
bx_printf ("concat_image.increment string returning '%s'\n", str);
}
int concat_image_t::open (const char* pathname0)
{
char *pathname = strdup (pathname0);
bx_printf ("concat_image_t.open\n");
ssize_t start_offset = 0;
for (int i=0; i<BX_CONCAT_MAX_IMAGES; i++) {
fd_table[i] = ::open(pathname, O_RDWR
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd_table[i] < 0) {
// open failed.
// if no FD was opened successfully, return -1 (fail).
if (i==0) return -1;
// otherwise, it only means that all images in the series have
// been opened. Record the number of fds opened successfully.
maxfd = i;
break;
}
if (bx_dbg.disk)
bx_printf ("concat_image: open image %s, fd[%d] = %d\n", pathname, i, fd_table[i]);
/* look at size of image file to calculate disk geometry */
struct stat stat_buf;
int ret = fstat(fd_table[i], &stat_buf);
if (ret) {
perror("fstat'ing hard drive image file");
bx_panic("fstat() returns error!\n");
}
if ((stat_buf.st_size % 512) != 0) {
bx_panic ("[HDD] size of disk image must be multiple of 512 bytes");
}
length_table[i] = stat_buf.st_size;
start_offset_table[i] = start_offset;
start_offset += stat_buf.st_size;
increment_string (pathname);
}
// start up with first image selected
index = 0;
fd = fd_table[0];
thismin = 0;
thismax = length_table[0]-1;
seek_was_last_op = 0;
return 0; // success.
}
void concat_image_t::close ()
{
bx_printf ("concat_image_t.close\n");
if (fd > -1) {
::close(fd);
}
}
off_t concat_image_t::lseek (off_t offset, int whence)
{
if ((offset % 512) != 0)
bx_panic ("lseek HD with offset not multiple of 512");
if (bx_dbg.disk)
bx_printf ("concat_image_t.lseek(%d)\n", whence);
// is this offset in this disk image?
if (offset < thismin) {
// no, look at previous images
for (int i=index-1; i>=0; i--) {
if (offset >= start_offset_table[i]) {
index = i;
fd = fd_table[i];
thismin = start_offset_table[i];
thismax = thismin + length_table[i] - 1;
if (bx_dbg.disk)
bx_printf ("concat_image_t.lseek to earlier image, index=%d\n", index);
break;
}
}
} else if (offset > thismax) {
// no, look at later images
for (int i=index+1; i<maxfd; i++) {
if (offset < start_offset_table[i] + length_table[i]) {
index = i;
fd = fd_table[i];
thismin = start_offset_table[i];
thismax = thismin + length_table[i] - 1;
if (bx_dbg.disk)
bx_printf ("concat_image_t.lseek to earlier image, index=%d\n", index);
break;
}
}
}
// now offset should be within the current image.
offset -= start_offset_table[index];
if (offset < 0 || offset >= length_table[index])
bx_panic ("concat_image_t.lseek to byte %ld failed\n", (long)offset);
seek_was_last_op = 1;
return ::lseek(fd, offset, whence);
}
ssize_t concat_image_t::read (void* buf, size_t count)
{
if (bx_dbg.disk)
bx_printf ("concat_image_t.read %ld bytes\n", (long)count);
// notice if anyone does sequential read or write without seek in between.
// This can be supported pretty easily, but needs additional checks for
// end of a partial image.
if (!seek_was_last_op)
bx_panic ("disk: no seek before read");
return ::read(fd, buf, count);
}
ssize_t concat_image_t::write (const void* buf, size_t count)
{
if (bx_dbg.disk)
bx_printf ("concat_image_t.write %ld bytes\n", (long)count);
// notice if anyone does sequential read or write without seek in between.
// This can be supported pretty easily, but needs additional checks for
// end of a partial image.
if (!seek_was_last_op)
bx_panic ("disk: no seek before write");
return ::write(fd, buf, count);
}
#endif /* BX_SPLIT_HD_SUPPORT */
error_recovery_t::error_recovery_t ()
{
if (sizeof(error_recovery_t) != 8) {
bx_panic("error_recovery_t has size != 8\n");
}
data[0] = 0x01;
data[1] = 0x06;
data[2] = 0x00;
data[3] = 0x05; // Try to recover 5 times
data[4] = 0x00;
data[5] = 0x00;
data[6] = 0x00;
data[7] = 0x00;
}
uint16 read_16bit(const uint8* buf)
{
return (buf[0] << 8) | buf[1];
}
uint32 read_32bit(const uint8* buf)
{
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
}