Bochs/bochs/cpu/stack32.cc

505 lines
11 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
void
BX_CPU_C::POP_Ed(BxInstruction_t *i)
{
Bit32u val32;
pop_32(&val32);
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, val32);
}
else {
// Note: there is one little weirdism here. When 32bit addressing
// is used, it is possible to use ESP in the modrm addressing.
// If used, the value of ESP after the pop is used to calculate
// the address.
if (i->as_32 && (i->mod!=0xc0) && (i->rm==4) && (i->base==4)) {
i->ResolveModrm(i);
}
write_virtual_dword(i->seg, i->rm_addr, &val32);
}
}
void
BX_CPU_C::PUSH_ERX(BxInstruction_t *i)
{
push_32(BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].erx);
}
void
BX_CPU_C::POP_ERX(BxInstruction_t *i)
{
Bit32u erx;
pop_32(&erx);
BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].erx = erx;
}
void
BX_CPU_C::PUSH_CS(BxInstruction_t *i)
{
if (i->os_32)
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
else
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
}
void
BX_CPU_C::PUSH_DS(BxInstruction_t *i)
{
if (i->os_32)
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
else
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
}
void
BX_CPU_C::PUSH_ES(BxInstruction_t *i)
{
if (i->os_32)
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
else
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
}
void
BX_CPU_C::PUSH_FS(BxInstruction_t *i)
{
if (i->os_32)
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
else
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
}
void
BX_CPU_C::PUSH_GS(BxInstruction_t *i)
{
if (i->os_32)
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
else
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
}
void
BX_CPU_C::PUSH_SS(BxInstruction_t *i)
{
if (i->os_32)
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
else
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
}
void
BX_CPU_C::POP_DS(BxInstruction_t *i)
{
if (i->os_32) {
Bit32u ds;
pop_32(&ds);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds);
}
else {
Bit16u ds;
pop_16(&ds);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds);
}
}
void
BX_CPU_C::POP_ES(BxInstruction_t *i)
{
if (i->os_32) {
Bit32u es;
pop_32(&es);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es);
}
else {
Bit16u es;
pop_16(&es);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], es);
}
}
void
BX_CPU_C::POP_FS(BxInstruction_t *i)
{
if (i->os_32) {
Bit32u fs;
pop_32(&fs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs);
}
else {
Bit16u fs;
pop_16(&fs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], fs);
}
}
void
BX_CPU_C::POP_GS(BxInstruction_t *i)
{
if (i->os_32) {
Bit32u gs;
pop_32(&gs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs);
}
else {
Bit16u gs;
pop_16(&gs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], gs);
}
}
void
BX_CPU_C::POP_SS(BxInstruction_t *i)
{
if (i->os_32) {
Bit32u ss;
pop_32(&ss);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss);
}
else {
Bit16u ss;
pop_16(&ss);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss);
}
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
BX_CPU_THIS_PTR inhibit_mask |=
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
BX_CPU_THIS_PTR async_event = 1;
}
void
BX_CPU_C::PUSHAD32(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
bx_panic("PUSHAD: not supported on an 8086\n");
#else
Bit32u temp_ESP;
Bit32u esp;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
if (protected_mode()) {
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 32) ) {
bx_panic("PUSHAD(): stack doesn't have enough room!\n");
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
}
else {
if (temp_ESP < 32)
bx_panic("pushad: eSP < 32\n");
}
esp = ESP;
/* ??? optimize this by using virtual write, all checks passed */
push_32(EAX);
push_32(ECX);
push_32(EDX);
push_32(EBX);
push_32(esp);
push_32(EBP);
push_32(ESI);
push_32(EDI);
#endif
}
void
BX_CPU_C::POPAD32(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
bx_panic("POPAD not supported on an 8086\n");
#else /* 286+ */
Bit32u edi, esi, ebp, etmp, ebx, edx, ecx, eax;
if (protected_mode()) {
if ( !can_pop(32) ) {
bx_panic("pop_ad: not enough bytes on stack\n");
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
}
/* ??? optimize this */
pop_32(&edi);
pop_32(&esi);
pop_32(&ebp);
pop_32(&etmp); /* value for ESP discarded */
pop_32(&ebx);
pop_32(&edx);
pop_32(&ecx);
pop_32(&eax);
EDI = edi;
ESI = esi;
EBP = ebp;
EBX = ebx;
EDX = edx;
ECX = ecx;
EAX = eax;
#endif
}
void
BX_CPU_C::PUSH_Id(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
bx_panic("PUSH_Iv: not supported on 8086!\n");
#else
Bit32u imm32;
imm32 = i->Id;
push_32(imm32);
#endif
}
void
BX_CPU_C::PUSH_Ed(BxInstruction_t *i)
{
Bit32u op1_32;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
push_32(op1_32);
}
void
BX_CPU_C::ENTER_IwIb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
bx_panic("ENTER_IwIb: not supported by 8086!\n");
#else
Bit32u frame_ptr32;
Bit16u frame_ptr16;
Bit8u level;
level = i->Ib2;
invalidate_prefetch_q();
level %= 32;
/* ??? */
if (level) bx_panic("enter(): level > 0\n");
//if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b && i->os_32==0) {
// bx_printf("enter(): stacksize!=opsize: I'm unsure of the code for this\n");
// bx_panic(" The Intel manuals are a mess on this one!\n");
// }
if ( protected_mode() ) {
Bit32u bytes_to_push, temp_ESP;
if (level == 0) {
if (i->os_32)
bytes_to_push = 4 + i->Iw;
else
bytes_to_push = 2 + i->Iw;
}
else { /* level > 0 */
if (i->os_32)
bytes_to_push = 4 + (level-1)*4 + 4 + i->Iw;
else
bytes_to_push = 2 + (level-1)*2 + 2 + i->Iw;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, bytes_to_push) ) {
bx_panic("ENTER: not enough room on stack!\n");
exception(BX_SS_EXCEPTION, 0, 0);
}
}
if (i->os_32)
push_32(EBP);
else
push_16(BP);
// can just do frame_ptr32 = ESP for either case ???
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
frame_ptr32 = ESP;
else
frame_ptr32 = SP;
if (level > 0) {
/* do level-1 times */
while (--level) {
if (i->os_32) {
Bit32u temp32;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
EBP -= 4;
read_virtual_dword(BX_SEG_REG_SS, EBP, &temp32);
ESP -= 4;
write_virtual_dword(BX_SEG_REG_SS, ESP, &temp32);
}
else { /* 16bit stacksize */
BP -= 4;
read_virtual_dword(BX_SEG_REG_SS, BP, &temp32);
SP -= 4;
write_virtual_dword(BX_SEG_REG_SS, SP, &temp32);
}
}
else { /* 16bit opsize */
Bit16u temp16;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
EBP -= 2;
read_virtual_word(BX_SEG_REG_SS, EBP, &temp16);
ESP -= 2;
write_virtual_word(BX_SEG_REG_SS, ESP, &temp16);
}
else { /* 16bit stacksize */
BP -= 2;
read_virtual_word(BX_SEG_REG_SS, BP, &temp16);
SP -= 2;
write_virtual_word(BX_SEG_REG_SS, SP, &temp16);
}
}
} /* while (--level) */
/* push(frame pointer) */
if (i->os_32) {
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
ESP -= 4;
write_virtual_dword(BX_SEG_REG_SS, ESP, &frame_ptr32);
}
else {
SP -= 4;
write_virtual_dword(BX_SEG_REG_SS, SP, &frame_ptr32);
}
}
else { /* 16bit opsize */
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
frame_ptr16 = frame_ptr32;
ESP -= 2;
write_virtual_word(BX_SEG_REG_SS, ESP, &frame_ptr16);
}
else {
frame_ptr16 = frame_ptr32;
SP -= 2;
write_virtual_word(BX_SEG_REG_SS, SP, &frame_ptr16);
}
}
} /* if (level > 0) ... */
if (i->os_32)
EBP = frame_ptr32;
else
BP = frame_ptr32;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
ESP = ESP - i->Iw;
}
else { /* 16bit stack */
SP = SP - i->Iw;
}
#endif
}
void
BX_CPU_C::LEAVE(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
bx_panic("LEAVE: not supported by 8086!\n");
#else
Bit32u temp_EBP;
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_EBP = EBP;
else
#endif
temp_EBP = BP;
if ( protected_mode() ) {
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed) { /* expand up */
if (temp_EBP <= BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
bx_panic("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit\n");
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
}
else { /* normal */
if (temp_EBP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
bx_panic("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit\n");
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
}
}
// delete frame
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP = EBP;
else
#endif
SP = BP;
// restore frame pointer
#if BX_CPU_LEVEL >= 3
if (i->os_32) {
Bit32u temp32;
pop_32(&temp32);
EBP = temp32;
}
else
#endif
{
Bit16u temp16;
pop_16(&temp16);
BP = temp16;
}
#endif
}