Bochs/bochs/cpu/ctrl_xfer16.cc

531 lines
12 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
void
BX_CPU_C::RETnear16_Iw(BxInstruction_t *i)
{
Bit16u imm16;
Bit32u temp_ESP;
Bit16u return_IP;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) /* 32bit stack */
temp_ESP = ESP;
else
temp_ESP = SP;
imm16 = i->Iw;
invalidate_prefetch_q();
if (protected_mode()) {
if ( !can_pop(2) ) {
bx_panic("retnear_iw: can't pop IP\n");
/* ??? #SS(0) -or #GP(0) */
}
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
2, CPL==3, BX_READ, &return_IP);
if ( return_IP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled ) {
bx_panic("retnear_iw: IP > limit\n");
}
if ( !can_pop(2 + imm16) ) {
bx_panic("retnear_iw: can't release bytes from stack\n");
/* #GP(0) -or #SS(0) ??? */
}
BX_CPU_THIS_PTR eip = return_IP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) /* 32bit stack */
ESP += 2 + imm16; /* ??? should it be 2*imm16 ? */
else
SP += 2 + imm16;
}
else {
pop_16(&return_IP);
BX_CPU_THIS_PTR eip = return_IP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) /* 32bit stack */
ESP += imm16; /* ??? should it be 2*imm16 ? */
else
SP += imm16;
}
BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_RET, BX_CPU_THIS_PTR eip);
}
void
BX_CPU_C::RETnear16(BxInstruction_t *i)
{
Bit32u temp_ESP;
Bit16u return_IP;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) /* 32bit stack */
temp_ESP = ESP;
else
temp_ESP = SP;
if (protected_mode()) {
if ( !can_pop(2) ) {
bx_panic("retnear: can't pop IP\n");
/* ??? #SS(0) -or #GP(0) */
}
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
2, CPL==3, BX_READ, &return_IP);
if ( return_IP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled ) {
bx_panic("retnear: IP > limit\n");
}
BX_CPU_THIS_PTR eip = return_IP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) /* 32bit stack */
ESP += 2;
else
SP += 2;
}
else {
pop_16(&return_IP);
BX_CPU_THIS_PTR eip = return_IP;
}
BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_RET, BX_CPU_THIS_PTR eip);
}
void
BX_CPU_C::RETfar16_Iw(BxInstruction_t *i)
{
Bit16s imm16;
Bit16u ip, cs_raw;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
/* ??? is imm16, number of bytes/words depending on operandsize ? */
imm16 = i->Iw;
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
BX_CPU_THIS_PTR return_protected(i, imm16);
goto done;
}
#endif
pop_16(&ip);
pop_16(&cs_raw);
BX_CPU_THIS_PTR eip = (Bit32u) ip;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += imm16;
else
SP += imm16;
done:
BX_INSTR_FAR_BRANCH(BX_INSTR_IS_RET,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
return;
}
void
BX_CPU_C::RETfar16(BxInstruction_t *i)
{
Bit16u ip, cs_raw;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 2
if ( protected_mode() ) {
BX_CPU_THIS_PTR return_protected(i, 0);
goto done;
}
#endif
pop_16(&ip);
pop_16(&cs_raw);
BX_CPU_THIS_PTR eip = (Bit32u) ip;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_INSTR_IS_RET,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
return;
}
void
BX_CPU_C::CALL_Aw(BxInstruction_t *i)
{
Bit32u new_EIP;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
invalidate_prefetch_q();
new_EIP = EIP + (Bit32s) i->Id;
new_EIP &= 0x0000ffff;
#if BX_CPU_LEVEL >= 2
if ( protected_mode() &&
(new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) ) {
bx_panic("call_av: new_IP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].limit\n");
exception(BX_GP_EXCEPTION, 0, 0);
}
#endif
/* push 16 bit EA of next instruction */
push_16(IP);
BX_CPU_THIS_PTR eip = new_EIP;
BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_CALL, BX_CPU_THIS_PTR eip);
}
void
BX_CPU_C::CALL16_Ap(BxInstruction_t *i)
{
Bit16u cs_raw;
Bit16u disp16;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
disp16 = i->Iw;
cs_raw = i->Iw2;
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
BX_CPU_THIS_PTR call_protected(i, cs_raw, disp16);
goto done;
}
#endif
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_16((Bit16u) BX_CPU_THIS_PTR eip);
BX_CPU_THIS_PTR eip = (Bit32u) disp16;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_INSTR_IS_CALL,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
return;
}
void
BX_CPU_C::CALL_Ew(BxInstruction_t *i)
{
Bit32u temp_ESP;
Bit16u op1_16;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op1_16);
}
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
if (op1_16 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
bx_panic("call_ev: IP out of CS limits!\n");
exception(BX_GP_EXCEPTION, 0, 0);
}
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 2) ) {
bx_panic("call_ev: can't push IP\n");
}
}
#endif
push_16(IP);
BX_CPU_THIS_PTR eip = op1_16;
BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_CALL, BX_CPU_THIS_PTR eip);
}
void
BX_CPU_C::CALL16_Ep(BxInstruction_t *i)
{
Bit16u cs_raw;
Bit16u op1_16;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
bx_panic("CALL_Ep: op1 is a register");
}
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op1_16);
read_virtual_word(i->seg, i->rm_addr+2, &cs_raw);
invalidate_prefetch_q();
if ( protected_mode() ) {
BX_CPU_THIS_PTR call_protected(i, cs_raw, op1_16);
goto done;
}
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_16(IP);
BX_CPU_THIS_PTR eip = op1_16;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_INSTR_IS_CALL,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
return;
}
void
BX_CPU_C::JMP_Jw(BxInstruction_t *i)
{
Bit32u new_EIP;
invalidate_prefetch_q();
new_EIP = EIP + (Bit32s) i->Id;
new_EIP &= 0x0000ffff;
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
if ( new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled ) {
bx_panic("jmp_jv: offset outside of CS limits\n");
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#endif
BX_CPU_THIS_PTR eip = new_EIP;
BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_JMP, new_EIP);
}
void
BX_CPU_C::JCC_Jw(BxInstruction_t *i)
{
Boolean condition = 0;
switch (i->b1 & 0x0f) {
case 0x00: /* JO */ condition = get_OF(); break;
case 0x01: /* JNO */ condition = !get_OF(); break;
case 0x02: /* JB */ condition = get_CF(); break;
case 0x03: /* JNB */ condition = !get_CF(); break;
case 0x04: /* JZ */ condition = get_ZF(); break;
case 0x05: /* JNZ */ condition = !get_ZF(); break;
case 0x06: /* JBE */ condition = get_CF() || get_ZF(); break;
case 0x07: /* JNBE */ condition = !get_CF() && !get_ZF(); break;
case 0x08: /* JS */ condition = get_SF(); break;
case 0x09: /* JNS */ condition = !get_SF(); break;
case 0x0A: /* JP */ condition = get_PF(); break;
case 0x0B: /* JNP */ condition = !get_PF(); break;
case 0x0C: /* JL */ condition = get_SF() != get_OF(); break;
case 0x0D: /* JNL */ condition = get_SF() == get_OF(); break;
case 0x0E: /* JLE */ condition = get_ZF() || (get_SF() != get_OF());
break;
case 0x0F: /* JNLE */ condition = (get_SF() == get_OF()) &&
!get_ZF();
break;
}
if (condition) {
Bit32u new_EIP;
new_EIP = EIP + (Bit32s) i->Id;
new_EIP &= 0x0000ffff;
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
if ( new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled ) {
bx_panic("jo_routine: offset outside of CS limits\n");
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#endif
EIP = new_EIP;
BX_INSTR_CNEAR_BRANCH_TAKEN(new_EIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN();
}
#endif
}
void
BX_CPU_C::JMP_Ew(BxInstruction_t *i)
{
Bit32u new_EIP;
Bit16u op1_16;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op1_16);
}
invalidate_prefetch_q();
new_EIP = op1_16;
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
if (new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
bx_panic("jmp_ev: IP out of CS limits!\n");
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#endif
BX_CPU_THIS_PTR eip = new_EIP;
BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_JMP, new_EIP);
}
/* Far indirect jump */
void
BX_CPU_C::JMP16_Ep(BxInstruction_t *i)
{
Bit16u cs_raw;
Bit16u op1_16;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
/* far indirect must specify a memory address */
bx_panic("JMP_Ep(): op1 is a register\n");
}
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op1_16);
read_virtual_word(i->seg, i->rm_addr+2, &cs_raw);
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 2
if ( protected_mode() ) {
BX_CPU_THIS_PTR jump_protected(i, cs_raw, op1_16);
goto done;
}
#endif
BX_CPU_THIS_PTR eip = op1_16;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_INSTR_IS_JMP,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
return;
}
void
BX_CPU_C::IRET16(BxInstruction_t *i)
{
Bit16u ip, cs_raw, flags;
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_iret;
BX_CPU_THIS_PTR show_eip = BX_CPU_THIS_PTR eip;
#endif
invalidate_prefetch_q();
if (v8086_mode()) {
// IOPL check in stack_return_from_v86()
stack_return_from_v86(i);
goto done;
}
#if BX_CPU_LEVEL >= 2
if (BX_CPU_THIS_PTR cr0.pe) {
iret_protected(i);
goto done;
}
#endif
pop_16(&ip);
pop_16(&cs_raw);
pop_16(&flags);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
BX_CPU_THIS_PTR eip = (Bit32u) ip;
write_flags(flags, /* change IOPL? */ 1, /* change IF? */ 1);
done:
BX_INSTR_FAR_BRANCH(BX_INSTR_IS_IRET,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
return;
}