Bochs/bochs/fpu/errors.c
Stanislav Shwartsman 1f77d0c844 clean fpu code
2004-03-06 13:33:49 +00:00

554 lines
13 KiB
C

/*---------------------------------------------------------------------------+
| errors.c |
| $Id: errors.c,v 1.18 2004-03-06 13:33:11 sshwarts Exp $
| |
| The error handling functions for wm-FPU-emu |
| |
| Copyright (C) 1992,1993,1994,1996 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
| E-mail billm@jacobi.maths.monash.edu.au |
| |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| Note: |
| The file contains code which accesses user memory. |
| Emulator static data may change when user memory is accessed, due to |
| other processes using the emulator while swapping is in progress. |
+---------------------------------------------------------------------------*/
#include <linux/signal.h>
#include <stdio.h>
#include "fpu_emu.h"
#include "fpu_system.h"
#include "exception.h"
#include "status_w.h"
#include "control_w.h"
#include "reg_constant.h"
#ifdef __cplusplus
extern "C"
#endif
int printk(const char * fmt, ...);
/*
Called for opcodes which are illegal and which are known to result in a
SIGILL with a real 80486.
*/
void FPU_illegal(void)
{
math_abort(NULL, SIGILL);
}
static struct {
int type;
const char *name;
} exception_names[] = {
{ EX_StackOver, "stack overflow" },
{ EX_StackUnder, "stack underflow" },
{ EX_Precision, "loss of precision" },
{ EX_Underflow, "underflow" },
{ EX_Overflow, "overflow" },
{ EX_ZeroDiv, "divide by zero" },
{ EX_Denormal, "denormalized operand" },
{ EX_Invalid, "invalid operation" },
{ 0, NULL }
};
/*
EX_INTERNAL is always given with a code which indicates where the
error was detected.
Internal error types:
0x14 in fpu_etc.c
0x1nn in a *.c file:
0x101 in reg_add_sub.c
0x102 in reg_mul.c
0x104 in poly_atan.c
0x105 in reg_mul.c
0x107 in fpu_trig.c
0x108 in reg_compare.c
0x109 in reg_compare.c
0x110 in reg_add_sub.c
0x111 in fpe_entry.c
0x112 in fpu_trig.c
0x113 in errors.c
0x115 in fpu_trig.c
0x116 in fpu_trig.c
0x117 in fpu_trig.c
0x118 in fpu_trig.c
0x119 in fpu_trig.c
0x120 in poly_atan.c
0x121 in reg_compare.c
0x122 in reg_compare.c
0x123 in reg_compare.c
0x125 in fpu_trig.c
0x126 in fpu_entry.c
0x127 in poly_2xm1.c
0x128 in fpu_entry.c
0x129 in fpu_entry.c
0x130 in get_address.c
0x131 in get_address.c
0x132 in get_address.c
0x133 in get_address.c
0x140 in load_store.c
0x141 in load_store.c
0x150 in poly_sin.c
0x151 in poly_sin.c
0x160 in reg_ld_str.c
0x161 in reg_ld_str.c
0x162 in reg_ld_str.c
0x163 in reg_ld_str.c
0x164 in reg_ld_str.c
0x170 in fpu_tags.c
0x171 in fpu_tags.c
0x172 in fpu_tags.c
0x180 in reg_convert.c
*/
void FPU_internal(int type)
{
printk("FPU emulator: Internal error type 0x%04x\n", type);
}
void FPU_exception(int exception)
{
/* Extract only the bits which we use to set the status word */
exception &= (SW_Exc_Mask);
/* Set the corresponding exception bit */
FPU_partial_status |= exception;
/* Set summary bits iff exception isn't masked */
if (FPU_partial_status & ~FPU_control_word & CW_Exceptions)
FPU_partial_status |= (SW_Summary | SW_Backward);
if (exception & (SW_Stack_Fault | EX_Precision))
{
if (!(exception & SW_C1))
/* This bit distinguishes over- from underflow for a stack fault,
and roundup from round-down for precision loss. */
FPU_partial_status &= ~SW_C1;
}
}
/* Real operation attempted on a NaN. */
/* Returns < 0 if the exception is unmasked */
int real_1op_NaN(FPU_REG *a)
{
int signalling, isNaN;
isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000);
/* The default result for the case of two "equal" NaNs (signs may
differ) is chosen to reproduce 80486 behaviour */
signalling = isNaN && !(a->sigh & 0x40000000);
if (!signalling)
{
if (!isNaN) /* pseudo-NaN, or other unsupported? */
{
if (FPU_control_word & CW_Invalid)
{
/* Masked response */
reg_copy(&CONST_QNaN, a);
}
EXCEPTION(EX_Invalid);
return (!(FPU_control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
}
return TAG_Special;
}
if (FPU_control_word & CW_Invalid)
{
/* The masked response */
if (!(a->sigh & 0x80000000)) /* pseudo-NaN ? */
{
reg_copy(&CONST_QNaN, a);
}
/* ensure a Quiet NaN */
a->sigh |= 0x40000000;
}
EXCEPTION(EX_Invalid);
return (!(FPU_control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
}
/* Real operation attempted on two operands, one a NaN. */
/* Returns < 0 if the exception is unmasked */
int real_2op_NaN(FPU_REG const *b, u_char tagb,
int deststnr,
FPU_REG const *defaultNaN)
{
FPU_REG *dest = &st(deststnr);
FPU_REG const *a = dest;
u_char taga = FPU_gettagi(deststnr);
FPU_REG const *x;
int signalling, unsupported;
if (taga == TAG_Special)
taga = FPU_Special(a);
if (tagb == TAG_Special)
tagb = FPU_Special(b);
/* TW_NaN is also used for unsupported data types. */
unsupported = ((taga == TW_NaN)
&& !((exponent(a) == EXP_OVER) && (a->sigh & 0x80000000)))
|| ((tagb == TW_NaN)
&& !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000)));
if (unsupported)
{
if (FPU_control_word & CW_Invalid)
{
/* Masked response */
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
}
EXCEPTION(EX_Invalid);
return (!(FPU_control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
}
if (taga == TW_NaN)
{
x = a;
if (tagb == TW_NaN)
{
signalling = !(a->sigh & b->sigh & 0x40000000);
if (significand(b) > significand(a))
x = b;
else if (significand(b) == significand(a))
{
/* The default result for the case of two "equal" NaNs (signs may
differ) is chosen to reproduce 80486 behaviour */
x = defaultNaN;
}
}
else
{
/* return the quiet version of the NaN in a */
signalling = !(a->sigh & 0x40000000);
}
}
else
#ifdef PARANOID
if (tagb == TW_NaN)
#endif /* PARANOID */
{
signalling = !(b->sigh & 0x40000000);
x = b;
}
#ifdef PARANOID
else
{
signalling = 0;
INTERNAL(0x113);
x = &CONST_QNaN;
}
#endif /* PARANOID */
if ((!signalling) || (FPU_control_word & CW_Invalid))
{
if (! x)
x = b;
if (!(x->sigh & 0x80000000)) /* pseudo-NaN ? */
x = &CONST_QNaN;
FPU_copy_to_regi(x, TAG_Special, deststnr);
if (!signalling)
return TAG_Special;
/* ensure a Quiet NaN */
dest->sigh |= 0x40000000;
}
EXCEPTION(EX_Invalid);
return (!(FPU_control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
}
/* Invalid arith operation on Valid registers */
/* Returns < 0 if the exception is unmasked */
asmlinkage int arith_invalid(int deststnr)
{
EXCEPTION(EX_Invalid);
if (FPU_control_word & CW_Invalid)
{
/* The masked response */
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
}
return (!(FPU_control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid;
}
/* Divide a finite number by zero */
asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign)
{
FPU_REG *dest = &st(deststnr);
int tag = TAG_Valid;
if (FPU_control_word & CW_ZeroDiv)
{
/* The masked response */
FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr);
setsign(dest, sign);
tag = TAG_Special;
}
EXCEPTION(EX_ZeroDiv);
return (!(FPU_control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag;
}
/* This may be called often, so keep it lean */
int set_precision_flag(int flags)
{
if (FPU_control_word & CW_Precision)
{
FPU_partial_status &= ~(SW_C1 & flags);
FPU_partial_status |= flags; /* The masked response */
return 0;
}
else
{
EXCEPTION(flags);
return 1;
}
}
/* This may be called often, so keep it lean */
asmlinkage void set_precision_flag_up(void)
{
if (FPU_control_word & CW_Precision)
FPU_partial_status |= (SW_Precision | SW_C1); /* The masked response */
else
EXCEPTION(EX_Precision | SW_C1);
}
/* This may be called often, so keep it lean */
asmlinkage void set_precision_flag_down(void)
{
if (FPU_control_word & CW_Precision)
{ /* The masked response */
FPU_partial_status &= ~SW_C1;
FPU_partial_status |= SW_Precision;
}
else
EXCEPTION(EX_Precision);
}
asmlinkage int denormal_operand(void)
{
if (FPU_control_word & CW_Denormal)
{ /* The masked response */
FPU_partial_status |= SW_Denorm_Op;
return TAG_Special;
}
else
{
EXCEPTION(EX_Denormal);
return TAG_Special | FPU_Exception;
}
}
asmlinkage int arith_overflow(FPU_REG *dest)
{
int tag = TAG_Valid;
if (FPU_control_word & CW_Overflow)
{
/* The masked response */
reg_copy(&CONST_INF, dest);
tag = TAG_Special;
}
else
{
/* Subtract the magic number from the exponent */
addexponent(dest, (-3 * (1 << 13)));
}
EXCEPTION(EX_Overflow);
if (FPU_control_word & CW_Overflow)
{
/* The overflow exception is masked. */
/* By definition, precision is lost.
The roundup bit (C1) is also set because we have
"rounded" upwards to Infinity. */
EXCEPTION(EX_Precision | SW_C1);
return tag;
}
return tag;
}
asmlinkage int arith_round_overflow(FPU_REG *dest, u8 sign)
{
int tag = TAG_Valid;
int largest;
if (FPU_control_word & CW_Overflow)
{
/* The masked response */
/* The response here depends upon the rounding mode */
switch (FPU_control_word & CW_RC)
{
case RC_CHOP: /* Truncate */
largest = 1;
break;
case RC_UP: /* Towards +infinity */
largest = (sign == SIGN_NEG);
break;
case RC_DOWN: /* Towards -infinity */
largest = (sign == SIGN_POS);
break;
default:
largest = 0;
break;
}
if (! largest)
{
reg_copy(&CONST_INF, dest);
tag = TAG_Special;
}
else
{
dest->exp = EXTENDED_Ebias+EXP_OVER-1;
switch (FPU_control_word & CW_PC)
{
case 01:
case PR_64_BITS:
significand(dest) = BX_CONST64(0xffffffffffffffff);
break;
case PR_53_BITS:
significand(dest) = BX_CONST64(0xfffffffffffff800);
break;
case PR_24_BITS:
significand(dest) = BX_CONST64(0xffffff0000000000);
break;
}
}
}
else
{
/* Subtract the magic number from the exponent */
addexponent(dest, (-3 * (1 << 13)));
largest = 0;
}
EXCEPTION(EX_Overflow);
if (FPU_control_word & CW_Overflow)
{
/* The overflow exception is masked. */
if (largest)
{
EXCEPTION(EX_Precision);
}
else
{
/* By definition, precision is lost.
The roundup bit (C1) is also set because we have
"rounded" upwards to Infinity. */
EXCEPTION(EX_Precision | SW_C1);
}
return tag;
}
return tag;
}
asmlinkage int arith_underflow(FPU_REG *dest)
{
int tag = TAG_Valid;
if (FPU_control_word & CW_Underflow)
{
/* The masked response */
if (exponent16(dest) <= EXP_UNDER - 63)
{
reg_copy(&CONST_Z, dest);
FPU_partial_status &= ~SW_C1; /* Round down. */
tag = TAG_Zero;
}
else
{
stdexp(dest);
}
}
else
{
/* Add the magic number to the exponent. */
addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias);
}
EXCEPTION(EX_Underflow);
if (FPU_control_word & CW_Underflow)
{
/* The underflow exception is masked. */
EXCEPTION(EX_Precision);
return tag;
}
return tag;
}
void FPU_stack_overflow(void)
{
if (FPU_control_word & CW_Invalid)
{
/* The masked response */
FPU_tos--;
FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
}
EXCEPTION(EX_StackOver);
}
void FPU_stack_underflow(void)
{
if (FPU_control_word & CW_Invalid)
{
/* The masked response */
FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
}
EXCEPTION(EX_StackUnder);
}
void FPU_stack_underflow_i(int i)
{
if (FPU_control_word & CW_Invalid)
{
/* The masked response */
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
}
EXCEPTION(EX_StackUnder);
}
void FPU_stack_underflow_pop(int i)
{
if (FPU_control_word & CW_Invalid)
{
/* The masked response */
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
FPU_pop();
}
EXCEPTION(EX_StackUnder);
}