393 lines
13 KiB
C++
393 lines
13 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: access.cc,v 1.113 2008-07-13 14:22:43 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
// Mark cache as being OK type for succeeding reads/writes
|
|
seg->cache.valid |= SegAccessROK | SegAccessWOK | SegAccessROK4G | SegAccessWOK4G;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
if (seg->cache.valid==0) {
|
|
BX_DEBUG(("write_virtual_checks(): segment descriptor not valid"));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_ERROR(("write_virtual_checks(): segment not present"));
|
|
return 0;
|
|
}
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: // read only
|
|
case 4: case 5: // read only, expand down
|
|
case 8: case 9: // execute only
|
|
case 10: case 11: // execute/read
|
|
case 12: case 13: // execute only, conforming
|
|
case 14: case 15: // execute/read-only, conforming
|
|
BX_ERROR(("write_virtual_checks(): no write access to seg"));
|
|
return 0;
|
|
|
|
case 2: case 3: /* read/write */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled))
|
|
{
|
|
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w"));
|
|
return 0;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding read/writes. The limit
|
|
// checks still needs to be done though, but is more simple. We
|
|
// could probably also optimize that out with a flag for the case
|
|
// when limit is the maximum 32bit value. Limit should accomodate
|
|
// at least a dword, since we subtract from it in the simple
|
|
// limit check in other functions, and we don't want the value to roll.
|
|
// Only normal segments (not expand down) are handled this way.
|
|
seg->cache.valid |= SegAccessROK | SegAccessWOK;
|
|
|
|
if (seg->cache.u.segment.limit_scaled == 0xffffffff)
|
|
seg->cache.valid |= SegAccessROK4G | SegAccessWOK4G;
|
|
}
|
|
break;
|
|
|
|
case 6: case 7: /* read/write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if ((offset <= seg->cache.u.segment.limit_scaled) ||
|
|
(offset > upper_limit) || ((upper_limit - offset) < (length - 1)))
|
|
{
|
|
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w ED"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("write_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
// Mark cache as being OK type for succeeding reads/writes
|
|
seg->cache.valid |= SegAccessROK | SegAccessWOK | SegAccessROK4G | SegAccessWOK4G;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
if (seg->cache.valid==0) {
|
|
BX_DEBUG(("read_virtual_checks(): segment descriptor not valid"));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_ERROR(("read_virtual_checks(): segment not present"));
|
|
return 0;
|
|
}
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: /* read only */
|
|
case 2: case 3: /* read/write */
|
|
case 10: case 11: /* execute/read */
|
|
case 14: case 15: /* execute/read-only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled))
|
|
{
|
|
BX_ERROR(("read_virtual_checks(): read beyond limit"));
|
|
return 0;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding reads. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
if (seg->cache.u.segment.limit_scaled == 0xffffffff)
|
|
seg->cache.valid |= SegAccessROK4G;
|
|
}
|
|
break;
|
|
|
|
case 4: case 5: /* read only, expand down */
|
|
case 6: case 7: /* read/write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if ((offset <= seg->cache.u.segment.limit_scaled) ||
|
|
(offset > upper_limit) || ((upper_limit - offset) < (length - 1)))
|
|
{
|
|
BX_ERROR(("read_virtual_checks(): read beyond limit ED"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case 8: case 9: /* execute only */
|
|
case 12: case 13: /* execute only, conforming */
|
|
/* can't read or write an execute-only segment */
|
|
BX_ERROR(("read_virtual_checks(): execute only"));
|
|
return 0;
|
|
|
|
default:
|
|
BX_PANIC(("read_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::execute_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
// Mark cache as being OK type for succeeding reads/writes
|
|
seg->cache.valid |= SegAccessROK | SegAccessWOK | SegAccessROK4G | SegAccessWOK4G;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
if (seg->cache.valid==0) {
|
|
BX_DEBUG(("execute_virtual_checks(): segment descriptor not valid"));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_ERROR(("execute_virtual_checks(): segment not present"));
|
|
return 0;
|
|
}
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: /* read only */
|
|
case 2: case 3: /* read/write */
|
|
case 10: case 11: /* execute/read */
|
|
case 14: case 15: /* execute/read-only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled))
|
|
{
|
|
BX_ERROR(("execute_virtual_checks(): read beyond limit"));
|
|
return 0;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding reads. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
if (seg->cache.u.segment.limit_scaled == 0xffffffff)
|
|
seg->cache.valid |= SegAccessROK4G;
|
|
}
|
|
break;
|
|
|
|
case 8: case 9: /* execute only */
|
|
case 12: case 13: /* execute only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled))
|
|
{
|
|
BX_ERROR(("execute_virtual_checks(): read beyond limit execute only"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case 4: case 5: /* read only, expand down */
|
|
case 6: case 7: /* read/write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if ((offset <= seg->cache.u.segment.limit_scaled) ||
|
|
(offset > upper_limit) || ((upper_limit - offset) < (length - 1)))
|
|
{
|
|
BX_ERROR(("execute_virtual_checks(): read beyond limit ED"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("execute_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
const char *BX_CPU_C::strseg(bx_segment_reg_t *seg)
|
|
{
|
|
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]) return("ES");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) return("CS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) return("SS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) return("DS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) return("FS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]) return("GS");
|
|
else {
|
|
BX_PANIC(("undefined segment passed to strseg()!"));
|
|
return("??");
|
|
}
|
|
}
|
|
|
|
int BX_CPU_C::int_number(unsigned s)
|
|
{
|
|
if (s == BX_SEG_REG_SS)
|
|
return BX_SS_EXCEPTION;
|
|
else
|
|
return BX_GP_EXCEPTION;
|
|
}
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit8u* BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::v2h_read_byte(bx_address laddr, unsigned curr_pl)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & (1<<curr_pl)) { // Read this pl OK.
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
return hostAddr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit8u* BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::v2h_write_byte(bx_address laddr, unsigned curr_pl)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf)
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & (0x10 << curr_pl)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
#if BX_SUPPORT_ICACHE
|
|
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
|
|
#endif
|
|
return hostAddr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
//
|
|
// Some macro defs to make things cleaner for endian-ness issues.
|
|
// The following routines access a double qword, ie 16-bytes.
|
|
// For the moment, I redirect these to use the single qword routines
|
|
// by splitting one access into two.
|
|
//
|
|
// Endian Host byte order Guest (x86) byte order
|
|
// ======================================================
|
|
// Little 0..7 8..15 0..7 8..15
|
|
// Big 15..8 7...0 0..7 8..15
|
|
//
|
|
// Below are the host memory offsets to each of 2 single quadwords, which
|
|
// are different across big an little endian machines. The memory
|
|
// accessing routines take care of the access endian issues when accessing
|
|
// the physical memory image.
|
|
//
|
|
|
|
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
# define Host1stDWordOffset 0
|
|
# define Host2ndDWordOffset 8
|
|
#else
|
|
# define Host1stDWordOffset 8
|
|
# define Host2ndDWordOffset 0
|
|
#endif
|
|
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_dqword(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// Read Double Quadword.
|
|
Bit64u *qwords = (Bit64u*) data;
|
|
|
|
qwords[0] = read_virtual_qword(s, offset+Host1stDWordOffset);
|
|
qwords[1] = read_virtual_qword(s, offset+Host2ndDWordOffset);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// If double quadword access is unaligned, #GP(0).
|
|
bx_address laddr = BX_CPU_THIS_PTR get_laddr(s, offset);
|
|
if (laddr & 0xf) {
|
|
BX_DEBUG(("read_virtual_dqword_aligned(): access not aligned to 16-byte"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
read_virtual_dqword(s, offset, data);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_dqword(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// Write Double Quadword.
|
|
Bit64u *qwords = (Bit64u*) data;
|
|
|
|
write_virtual_qword(s, offset+Host1stDWordOffset, qwords[0]);
|
|
write_virtual_qword(s, offset+Host2ndDWordOffset, qwords[1]);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// If double quadword access is unaligned, #GP(0).
|
|
bx_address laddr = BX_CPU_THIS_PTR get_laddr(s, offset);
|
|
if (laddr & 0xf) {
|
|
BX_DEBUG(("write_virtual_dqword_aligned(): access not aligned to 16-byte"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
write_virtual_dqword(s, offset, data);
|
|
}
|