Bochs/bochs/cpu/ctrl_xfer64.cc
2003-12-29 21:47:36 +00:00

537 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: ctrl_xfer64.cc,v 1.23 2003-12-29 21:47:36 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
void
BX_CPU_C::RETnear64_Iw(bxInstruction_c *i)
{
Bit16u imm16;
Bit64u temp_RSP;
Bit64u return_RIP;
//invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
temp_RSP = RSP;
imm16 = i->Iw();
//if ( !can_pop(8) ) {
// BX_PANIC(("retnear_iw: can't pop RIP"));
// /* ??? #SS(0) -or #GP(0) */
// }
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_RSP + 0,
8, CPL==3, BX_READ, &return_RIP);
/* Pentium book says imm16 is number of words ??? */
//if ( !can_pop(8 + imm16) ) {
// BX_PANIC(("retnear_iw: can't release bytes from stack"));
// /* #GP(0) -or #SS(0) ??? */
// }
RIP = return_RIP;
RSP += 8 + imm16; /* ??? should it be 2*imm16 ? */
BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::RETnear64(bxInstruction_c *i)
{
Bit64u temp_RSP;
Bit64u return_RIP;
//invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
temp_RSP = RSP;
//if ( !can_pop(8) ) {
// BX_PANIC(("retnear: can't pop RIP"));
// /* ??? #SS(0) -or #GP(0) */
// }
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_RSP + 0,
8, CPL==3, BX_READ, &return_RIP);
RIP = return_RIP;
RSP += 8;
BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::RETfar64_Iw(bxInstruction_c *i)
{
Bit64u rip, rcs_raw;
Bit16s imm16;
invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
/* ??? is imm16, number of bytes/words depending on operandsize ? */
imm16 = i->Iw();
if (protected_mode()) {
BX_CPU_THIS_PTR return_protected(i, imm16);
goto done;
}
pop_64(&rip);
pop_64(&rcs_raw);
RIP = rip;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) rcs_raw);
RSP += imm16;
done:
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::RETfar64(bxInstruction_c *i)
{
Bit64u rip, rcs_raw;
invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_ret;
#endif
if ( protected_mode() ) {
BX_CPU_THIS_PTR return_protected(i, 0);
goto done;
}
pop_64(&rip);
pop_64(&rcs_raw); /* 64bit pop, upper 48 bits discarded */
RIP = rip;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) rcs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::CALL_Aq(bxInstruction_c *i)
{
Bit64u new_RIP;
Bit32s disp32;
//invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
disp32 = i->Id();
new_RIP = RIP + disp32;
/* push 64 bit EA of next instruction */
push_64(BX_CPU_THIS_PTR rip);
RIP = new_RIP;
BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::CALL64_Ap(bxInstruction_c *i)
{
Bit16u cs_raw;
Bit32u disp32;
invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
disp32 = i->Id();
cs_raw = i->Iw2();
if (protected_mode()) {
BX_CPU_THIS_PTR call_protected(i, cs_raw, disp32);
goto done;
}
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_64(BX_CPU_THIS_PTR rip);
RIP = disp32;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::CALL_Eq(bxInstruction_c *i)
{
Bit64u temp_RSP;
Bit64u op1_64;
//invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
temp_RSP = RSP;
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
read_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
push_64(BX_CPU_THIS_PTR rip);
RIP = op1_64;
BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::CALL64_Ep(bxInstruction_c *i)
{
Bit16u cs_raw;
Bit64u op1_64;
invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_call;
#endif
/* op1_64 is a register or memory reference */
if (i->modC0()) {
BX_PANIC(("CALL_Ep: op1 is a register"));
}
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op1_64);
read_virtual_word(i->seg(), RMAddr(i)+8, &cs_raw);
if ( protected_mode() ) {
BX_CPU_THIS_PTR call_protected(i, cs_raw, op1_64);
goto done;
}
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_64(BX_CPU_THIS_PTR rip);
RIP = op1_64;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::JMP_Jq(bxInstruction_c *i)
{
//invalidate_prefetch_q();
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, RIP);
}
void
BX_CPU_C::JCC_Jq(bxInstruction_c *i)
{
bx_bool condition;
switch (i->b1() & 0x0f) {
case 0x00: /* JO */ condition = get_OF(); break;
case 0x01: /* JNO */ condition = !get_OF(); break;
case 0x02: /* JB */ condition = get_CF(); break;
case 0x03: /* JNB */ condition = !get_CF(); break;
case 0x04: /* JZ */ condition = get_ZF(); break;
case 0x05: /* JNZ */ condition = !get_ZF(); break;
case 0x06: /* JBE */ condition = get_CF() || get_ZF(); break;
case 0x07: /* JNBE */ condition = !get_CF() && !get_ZF(); break;
case 0x08: /* JS */ condition = get_SF(); break;
case 0x09: /* JNS */ condition = !get_SF(); break;
case 0x0A: /* JP */ condition = get_PF(); break;
case 0x0B: /* JNP */ condition = !get_PF(); break;
case 0x0C: /* JL */ condition = getB_SF() != getB_OF(); break;
case 0x0D: /* JNL */ condition = getB_SF() == getB_OF(); break;
case 0x0E: /* JLE */ condition = get_ZF() || (getB_SF() != getB_OF());
break;
case 0x0F: /* JNLE */ condition = (getB_SF() == getB_OF()) &&
!get_ZF();
break;
default:
condition = 0; // For compiler...all targets should set condition.
break;
}
if (condition) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
void
BX_CPU_C::JMP_Eq(bxInstruction_c *i)
{
Bit64u op1_64;
//invalidate_prefetch_q();
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
read_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
RIP = op1_64;
BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, RIP);
}
/* Far indirect jump */
void
BX_CPU_C::JMP64_Ep(bxInstruction_c *i)
{
Bit16u cs_raw;
Bit32u op1_32;
invalidate_prefetch_q();
if (i->modC0()) {
BX_PANIC(("JMP_Ep(): op1 is a register"));
}
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
read_virtual_word(i->seg(), RMAddr(i)+4, &cs_raw);
if ( protected_mode() ) {
BX_CPU_THIS_PTR jump_protected(i, cs_raw, op1_32);
goto done;
}
RIP = op1_32;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
done:
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
}
void
BX_CPU_C::IRET64(bxInstruction_c *i)
{
Bit32u rip, ecs_raw, eflags;
invalidate_prefetch_q();
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_iret;
BX_CPU_THIS_PTR show_eip = BX_CPU_THIS_PTR rip;
#endif
if (BX_CPU_THIS_PTR cr0.pe) {
iret_protected(i);
goto done;
}
done:
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_IRET,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR rip);
}
void
BX_CPU_C::JCXZ64_Jb(bxInstruction_c *i)
{
if (i->as64L()) {
if ( RCX == 0 ) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
else {
if ( ECX == 0 ) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
}
void
BX_CPU_C::LOOPNE64_Jb(bxInstruction_c *i)
{
if (i->as64L()) {
if ( ((--RCX)!=0) && (get_ZF()==0) ) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
else {
if ( ((--ECX)!=0) && (get_ZF()==0) ) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
}
void
BX_CPU_C::LOOPE64_Jb(bxInstruction_c *i)
{
if (i->as64L()) {
if ( ((--RCX)!=0) && (get_ZF()) ) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
else {
if ( ((--ECX)!=0) && get_ZF()) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
}
void
BX_CPU_C::LOOP64_Jb(bxInstruction_c *i)
{
if (i->as64L()) {
if ((--RCX) != 0) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
else {
if ((--ECX) != 0) {
RIP += (Bit32s) i->Id();
if (i->os32L()==0)
RIP &= 0xffff; // For 16-bit opSize, upper 48 bits of RIP are cleared.
BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, RIP);
revalidate_prefetch_q();
}
#if BX_INSTRUMENTATION
else {
BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID);
}
#endif
}
}
#endif /* if BX_SUPPORT_X86_64 */