Bochs/bochs/instrument/example0/instrument.cc
Stanislav Shwartsman c7c431f88e bx_instr_mem_data_access became completely obsolete with new stack optimization merged into SVN.
It already had limited usability before. With stack direct access optimization the callback won't be called for stack accesses as well.
See note by Brian Slechta:

=== Cut Hete ===
While using Bochs as a reference model for simulations, the simulator needs
information about what loads/stores are taking place with each instruction.
Presumably,  that  is  what  the BX_INSTR_MEM_DATA() instrumentation macros
cover (which is the place where our simulator hooks up).

The RETnear_xxx() functions call access_linear() directly, rather than call
read_virtual_xxx()  functions. This is a problem for code making use of the
BX_INSTR_MEM_DATA()   hook  because  it  does  not  get  called  for  these
instructions.  Should  this  be  changed along with some other instructions
that exhibit this?
=== Cut Hete ===

For Bryan's usage bx_instr_lin_access and bx_instr_phy_read/bx_instr_phy_write callbacks should be used.
2012-04-11 19:01:25 +00:00

220 lines
6.2 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2006-2009 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#include <assert.h>
#include "bochs.h"
#include "cpu/cpu.h"
#include "disasm/disasm.h"
// maximum size of an instruction
#define MAX_OPCODE_LENGTH 16
// maximum physical addresses an instruction can generate
#define MAX_DATA_ACCESSES 1024
// Use this variable to turn on/off collection of instrumentation data
// If you are not using the debugger to turn this on/off, then possibly
// start this at 1 instead of 0.
static bx_bool active = 1;
static disassembler bx_disassembler;
static struct instruction_t {
bx_bool ready; // is current instruction ready to be printed
unsigned opcode_length;
Bit8u opcode[MAX_OPCODE_LENGTH];
bx_bool is32, is64;
unsigned num_data_accesses;
struct {
bx_address laddr; // linear address
bx_phy_address paddr; // physical address
unsigned rw; // BX_READ, BX_WRITE or BX_RW
unsigned size; // 1 .. 32
} data_access[MAX_DATA_ACCESSES];
bx_bool is_branch;
bx_bool is_taken;
bx_address target_linear;
} *instruction;
static logfunctions *instrument_log = new logfunctions ();
#define LOG_THIS instrument_log->
void bx_instr_init_env(void) {}
void bx_instr_exit_env(void) {}
void bx_instr_initialize(unsigned cpu)
{
assert(cpu < BX_SMP_PROCESSORS);
if (instruction == NULL)
instruction = new struct instruction_t[BX_SMP_PROCESSORS];
fprintf(stderr, "Initialize cpu %d\n", cpu);
}
void bx_instr_reset(unsigned cpu, unsigned type)
{
instruction[cpu].ready = 0;
instruction[cpu].num_data_accesses = 0;
instruction[cpu].is_branch = 0;
}
void bx_print_instruction(unsigned cpu, const instruction_t *i)
{
char disasm_tbuf[512]; // buffer for instruction disassembly
unsigned length = i->opcode_length, n;
bx_disassembler.disasm(i->is32, i->is64, 0, 0, i->opcode, disasm_tbuf);
if(length != 0)
{
fprintf(stderr, "----------------------------------------------------------\n");
fprintf(stderr, "CPU: %d: %s\n", cpu, disasm_tbuf);
fprintf(stderr, "LEN: %d\tBYTES: ", length);
for(n=0;n < length;n++) fprintf(stderr, "%02x", i->opcode[n]);
if(i->is_branch)
{
fprintf(stderr, "\tBRANCH ");
if(i->is_taken)
fprintf(stderr, "TARGET " FMT_ADDRX " (TAKEN)", i->target_linear);
else
fprintf(stderr, "(NOT TAKEN)");
}
fprintf(stderr, "\n");
for(n=0;n < i->num_data_accesses;n++)
{
fprintf(stderr, "MEM ACCESS[%u]: 0x" FMT_ADDRX " (linear) 0x" FMT_PHY_ADDRX " (physical) %s SIZE: %d\n", n,
i->data_access[n].laddr,
i->data_access[n].paddr,
i->data_access[n].rw == BX_READ ? "RD":"WR",
i->data_access[n].size);
}
fprintf(stderr, "\n");
}
}
void bx_instr_before_execution(unsigned cpu, bxInstruction_c *bx_instr)
{
if (!active) return;
instruction_t *i = &instruction[cpu];
if (i->ready) bx_print_instruction(cpu, i);
// prepare instruction_t structure for new instruction
i->ready = 1;
i->num_data_accesses = 0;
i->is_branch = 0;
i->is32 = BX_CPU(cpu)->sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
i->is64 = BX_CPU(cpu)->long64_mode();
i->opcode_length = bx_instr->ilen();
memcpy(i->opcode, bx_instr->get_opcode_bytes(), i->opcode_length);
}
void bx_instr_after_execution(unsigned cpu, bxInstruction_c *bx_instr)
{
if (!active) return;
instruction_t *i = &instruction[cpu];
if (i->ready) {
bx_print_instruction(cpu, i);
i->ready = 0;
}
}
static void branch_taken(unsigned cpu, bx_address new_eip)
{
if (!active || !instruction[cpu].ready) return;
// find linear address
bx_address laddr = BX_CPU(cpu)->get_laddr(BX_SEG_REG_CS, new_eip);
instruction[cpu].is_branch = 1;
instruction[cpu].is_taken = 1;
instruction[cpu].target_linear = laddr;
}
void bx_instr_cnear_branch_taken(unsigned cpu, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_cnear_branch_not_taken(unsigned cpu)
{
if (!active || !instruction[cpu].ready) return;
instruction[cpu].is_branch = 1;
instruction[cpu].is_taken = 0;
}
void bx_instr_ucnear_branch(unsigned cpu, unsigned what, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_far_branch(unsigned cpu, unsigned what, Bit16u new_cs, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_interrupt(unsigned cpu, unsigned vector)
{
if(active)
{
fprintf(stderr, "CPU %u: interrupt %02xh\n", cpu, vector);
}
}
void bx_instr_exception(unsigned cpu, unsigned vector, unsigned error_code)
{
if(active)
{
fprintf(stderr, "CPU %u: exception %02xh, error_code = %x\n", cpu, vector, error_code);
}
}
void bx_instr_hwinterrupt(unsigned cpu, unsigned vector, Bit16u cs, bx_address eip)
{
if(active)
{
fprintf(stderr, "CPU %u: hardware interrupt %02xh\n", cpu, vector);
}
}
void bx_instr_lin_access(unsigned cpu, bx_address lin, bx_phy_address phy, unsigned len, unsigned rw)
{
if(!active || !instruction[cpu].ready) return;
unsigned index = instruction[cpu].num_data_accesses;
if (index < MAX_DATA_ACCESSES) {
instruction[cpu].data_access[index].laddr = lin;
instruction[cpu].data_access[index].paddr = phy;
instruction[cpu].data_access[index].rw = rw;
instruction[cpu].data_access[index].size = len;
instruction[cpu].num_data_accesses++;
index++;
}
}