Bochs/bochs/cpu/load.cc

409 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008-2019 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eb(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
TMP8L = read_virtual_byte(i->seg(), eaddr);
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ew(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
TMP16 = read_virtual_word(i->seg(), eaddr);
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ed(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
TMP32 = read_virtual_dword(i->seg(), eaddr);
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eq(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
TMP64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit8u val_8 = read_virtual_byte(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_BYTE(BX_VECTOR_TMP_REGISTER, val_8);
BX_CPU_CALL_METHOD(i->execute2(), (i));
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ww(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16);
BX_CPU_CALL_METHOD(i->execute2(), (i));
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wss(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
BX_CPU_CALL_METHOD(i->execute2(), (i));
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wsd(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
BX_CPU_CALL_METHOD(i->execute2(), (i));
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wdq(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
if (BX_CPU_THIS_PTR mxcsr.get_MM())
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_TMP_REGISTER));
else
read_virtual_xmmword_aligned(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
BX_CPU_CALL_METHOD(i->execute2(), (i));
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOADU_Wdq(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
BX_CPU_CALL_METHOD(i->execute2(), (i));
#endif
}
#if BX_SUPPORT_AVX
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Vector(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
#if BX_SUPPORT_EVEX
if (len == BX_VL512) {
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
}
else
#endif
{
if (len == BX_VL256)
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
else
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Half_Vector(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
#if BX_SUPPORT_EVEX
if (len == BX_VL512) {
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
}
else
#endif
{
if (len == BX_VL256) {
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
}
else {
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
}
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Quarter_Vector(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
#if BX_SUPPORT_EVEX
if (len == BX_VL512) {
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
}
else
#endif
{
if (len == BX_VL256) {
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
}
else {
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
}
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Oct_Vector(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
#if BX_SUPPORT_EVEX
if (len == BX_VL512) {
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
}
else
#endif
{
if (len == BX_VL256) {
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
}
else {
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16);
}
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
#endif
#if BX_SUPPORT_EVEX
#include "simd_int.h"
// load vector of bytes, support masked fault suppression, no broadcast
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorB(bxInstruction_c *i)
{
Bit32u opmask = (i->opmask() != 0) ? BX_READ_OPMASK(i->opmask()) : BX_CONST64(0xffffffffffffffff);
if (opmask == 0) {
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
return;
}
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
avx_masked_load8(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load vector of words, support masked fault suppression, no broadcast
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorW(bxInstruction_c *i)
{
Bit32u opmask = (i->opmask() != 0) ? BX_READ_32BIT_OPMASK(i->opmask()) : 0xffffffff;
if (opmask == 0) {
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
return;
}
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load vector of dwords, support broadcast, no fault suppression
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorD(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
if (i->getEvexb()) {
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 4);
}
else {
if (len == BX_VL512)
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
if (len == BX_VL256)
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
else
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load vector of dwords, support broadcast and masked fault suppression
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorD(bxInstruction_c *i)
{
unsigned len = i->getVL();
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
opmask &= (1 << DWORD_ELEMENTS(len)) - 1;
if (opmask == 0) {
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
return;
}
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
if (i->getEvexb()) {
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 4);
}
else {
avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load vector of qwords, support broadcast, no fault suppression
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorQ(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
if (i->getEvexb()) {
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
simd_pbroadcastq(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_64, len * 2);
}
else {
if (len == BX_VL512)
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
if (len == BX_VL256)
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
else
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load vector of qwords, support broadcast and masked fault suppression
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorQ(bxInstruction_c *i)
{
unsigned len = i->getVL();
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
opmask &= (1 << QWORD_ELEMENTS(len)) - 1;
if (opmask == 0) {
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
return;
}
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
if (i->getEvexb()) {
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
simd_pbroadcastq(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_64, len * 2);
}
else {
avx_masked_load64(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load half vector of dwords, support broadcast, no fault suppression
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_Half_VectorD(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
unsigned len = i->getVL();
if (i->getEvexb()) {
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 2);
}
else {
if (len == BX_VL512) {
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
}
if (len == BX_VL256) {
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
}
else {
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
}
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
// load half vector of dwords, support broadcast and masked fault suppression
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_Half_VectorD(bxInstruction_c *i)
{
unsigned len = i->getVL();
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
opmask &= (1 << (DWORD_ELEMENTS(len) - 1)) - 1;
if (opmask == 0) {
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
return;
}
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
if (i->getEvexb()) {
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 2);
}
else {
avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
}
BX_CPU_CALL_METHOD(i->execute2(), (i));
}
#endif