Bochs/bochs/gdbstub.cc

927 lines
23 KiB
C++
Raw Blame History

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2017 The Bochs Project Team
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#if defined(__MINGW32__) || defined(_MSC_VER)
#include <winsock2.h>
#define SIGTRAP 5
#else
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <signal.h>
#include <netdb.h>
#define closesocket(s) close(s)
#endif
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "param_names.h"
#include "cpu/cpu.h"
#define LOG_THIS gdbstublog->
#define IFDBG(x) x
static int last_stop_reason = GDBSTUB_STOP_NO_REASON;
#define GDBSTUB_EXECUTION_BREAKPOINT (0xac1)
#define GDBSTUB_TRACE (0xac2)
#define GDBSTUB_USER_BREAK (0xac3)
static bx_list_c *gdbstub_list;
static int listen_socket_fd;
static int socket_fd;
static logfunctions *gdbstublog;
static int hex(char ch)
{
if ((ch >= 'a') && (ch <= 'f')) return(ch - 'a' + 10);
if ((ch >= '0') && (ch <= '9')) return(ch - '0');
if ((ch >= 'A') && (ch <= 'F')) return(ch - 'A' + 10);
return(-1);
}
static char buf[4096], *bufptr = buf;
static void flush_debug_buffer()
{
char *p = buf;
while (p != bufptr) {
int n = send(socket_fd, p, bufptr-p, 0);
if (n == -1) {
BX_ERROR(("error on debug socket: %m"));
break;
}
p += n;
}
bufptr = buf;
}
static void put_debug_char(char ch)
{
if (bufptr == buf + sizeof buf)
flush_debug_buffer();
*bufptr++ = ch;
}
static char get_debug_char(void)
{
char ch;
recv(socket_fd, &ch, 1, 0);
return(ch);
}
static const char hexchars[]="0123456789abcdef";
static void put_reply(const char* buffer)
{
unsigned char csum;
int i;
BX_DEBUG(("put_buffer '%s'", buffer));
do {
put_debug_char('$');
csum = 0;
i = 0;
while (buffer[i] != 0)
{
put_debug_char(buffer[i]);
csum = csum + buffer[i];
i++;
}
put_debug_char('#');
put_debug_char(hexchars[csum >> 4]);
put_debug_char(hexchars[csum % 16]);
flush_debug_buffer();
} while (get_debug_char() != '+');
}
static void get_command(char* buffer)
{
unsigned char checksum;
unsigned char xmitcsum;
char ch;
unsigned int count;
unsigned int i;
do {
while ((ch = get_debug_char()) != '$');
checksum = 0;
xmitcsum = 0;
count = 0;
while (1)
{
ch = get_debug_char();
if (ch == '#') break;
checksum = checksum + ch;
buffer[count] = ch;
count++;
}
buffer[count] = 0;
if (ch == '#')
{
xmitcsum = hex(get_debug_char()) << 4;
xmitcsum += hex(get_debug_char());
if (checksum != xmitcsum)
{
BX_INFO(("Bad checksum"));
}
}
if (checksum != xmitcsum)
{
put_debug_char('-');
flush_debug_buffer();
}
else
{
put_debug_char('+');
if (buffer[2] == ':')
{
put_debug_char(buffer[0]);
put_debug_char(buffer[1]);
count = strlen(buffer);
for (i = 3; i <= count; i++)
{
buffer[i - 3] = buffer[i];
}
}
flush_debug_buffer();
}
} while (checksum != xmitcsum);
}
void hex2mem(char* buf, unsigned char* mem, int count)
{
unsigned char ch;
for (int i = 0; i<count; i++)
{
ch = hex(*buf++) << 4;
ch = ch + hex(*buf++);
*mem++ = ch;
}
}
char* mem2hex(const Bit8u* mem, char* buf, int count)
{
for (int i = 0; i<count; i++)
{
Bit8u ch = *mem++;
*buf++ = hexchars[ch >> 4];
*buf++ = hexchars[ch % 16];
}
*buf = 0;
return(buf);
}
int hexdigit(char c)
{
if (isdigit(c))
return c - '0';
else if (isupper(c))
return c - 'A' + 10;
else
return c - 'a' + 10;
}
Bit64u read_little_endian_hex(char *&buf)
{
int byte;
Bit64u ret = 0;
int n = 0;
while (isxdigit(*buf)) {
byte = hexdigit(*buf++);
if (isxdigit(*buf))
byte = (byte << 4) | hexdigit(*buf++);
ret |= (Bit64u)byte << (n*8);
++n;
}
return ret;
}
static int continue_thread = -1;
static int other_thread = 0;
#if !BX_SUPPORT_X86_64
#define NUMREGS (16)
#define NUMREGSBYTES (NUMREGS * 4)
static Bit32u registers[NUMREGS];
#endif
#define MAX_BREAKPOINTS (255)
static Bit64u breakpoints[MAX_BREAKPOINTS] = {0,};
static unsigned nr_breakpoints = 0;
static int stub_trace_flag = 0;
static int instr_count = 0;
static int saved_eip = 0;
static int bx_enter_gdbstub = 0;
void bx_gdbstub_break(void)
{
bx_enter_gdbstub = 1;
}
int bx_gdbstub_check(unsigned int eip)
{
unsigned int i;
unsigned char ch;
int r;
#if defined(__CYGWIN__) || defined(__MINGW32__) || defined(_MSC_VER)
fd_set fds;
struct timeval tv = {0, 0};
#else
long arg;
#endif
if (bx_enter_gdbstub)
{
bx_enter_gdbstub = 0;
last_stop_reason = GDBSTUB_EXECUTION_BREAKPOINT;
return GDBSTUB_EXECUTION_BREAKPOINT;
}
instr_count++;
if ((instr_count % 500) == 0)
{
#if defined(__CYGWIN__) || defined(__MINGW32__) || defined(_MSC_VER)
FD_ZERO(&fds);
FD_SET(socket_fd, &fds);
r = select(socket_fd + 1, &fds, NULL, NULL, &tv);
if (r == 1)
{
r = recv(socket_fd, (char *)&ch, 1, 0);
}
#else
arg = fcntl(socket_fd, F_GETFL);
fcntl(socket_fd, F_SETFL, arg | O_NONBLOCK);
r = recv(socket_fd, &ch, 1, 0);
fcntl(socket_fd, F_SETFL, arg);
#endif
if (r == 1)
{
BX_INFO(("Got byte %x", (unsigned int)ch));
last_stop_reason = GDBSTUB_USER_BREAK;
return GDBSTUB_USER_BREAK;
}
}
for (i = 0; i < nr_breakpoints; i++)
{
if (eip == breakpoints[i])
{
BX_INFO(("found breakpoint at %x", eip));
last_stop_reason = GDBSTUB_EXECUTION_BREAKPOINT;
return GDBSTUB_EXECUTION_BREAKPOINT;
}
}
if (stub_trace_flag == 1)
{
last_stop_reason = GDBSTUB_TRACE;
return GDBSTUB_TRACE;
}
last_stop_reason = GDBSTUB_STOP_NO_REASON;
return GDBSTUB_STOP_NO_REASON;
}
static int remove_breakpoint(Bit64u addr, int len)
{
if (len != 1)
{
return(0);
}
for (unsigned i = 0; i < MAX_BREAKPOINTS; i++)
{
if (breakpoints[i] == addr)
{
BX_INFO(("Removing breakpoint at " FMT_ADDRX64, addr));
breakpoints[i] = 0;
return(1);
}
}
return(0);
}
static void insert_breakpoint(Bit64u addr)
{
unsigned int i;
BX_INFO(("Setting breakpoint at " FMT_ADDRX64, addr));
for (i = 0; i < (unsigned)MAX_BREAKPOINTS; i++)
{
if (breakpoints[i] == 0)
{
breakpoints[i] = addr;
if (i >= nr_breakpoints)
{
nr_breakpoints = i + 1;
}
return;
}
}
BX_INFO(("No slot for breakpoint"));
}
static void do_pc_breakpoint(int insert, Bit64u addr, int len)
{
for (int i = 0; i < len; ++i)
if (insert)
insert_breakpoint(addr+i);
else
remove_breakpoint(addr+i, 1);
}
static void do_breakpoint(int insert, char* buffer)
{
char* ebuf;
unsigned long type = strtoul(buffer, &ebuf, 16);
Bit64u addr = strtoull(ebuf+1, &ebuf, 16);
unsigned long len = strtoul(ebuf+1, &ebuf, 16);
switch (type) {
case 0:
case 1:
do_pc_breakpoint(insert, addr, len);
put_reply("OK");
break;
default:
put_reply("");
break;
}
}
static void write_signal(char* buf, int signal)
{
buf[0] = hexchars[signal >> 4];
buf[1] = hexchars[signal % 16];
buf[2] = 0;
}
static int access_linear(Bit64u laddress,
unsigned len,
unsigned int rw,
Bit8u* data)
{
bx_phy_address phys;
bx_bool valid;
if (((laddress & 0xfff) + len) > 4096)
{
valid = access_linear(laddress,
4096 - (laddress & 0xfff),
rw,
data);
if (!valid) return(0);
valid = access_linear(laddress,
len + (laddress & 0xfff) - 4096,
rw,
(Bit8u *)(data + (4096 - (laddress & 0xfff))));
return(valid);
}
valid = BX_CPU(0)->dbg_xlate_linear2phy(laddress, (bx_phy_address*)&phys);
if (!valid) return(0);
if (rw & 1) {
valid = BX_MEM(0)->dbg_set_mem(phys, len, data);
} else {
valid = BX_MEM(0)->dbg_fetch_mem(BX_CPU(0), phys, len, data);
}
return(valid);
}
static void debug_loop(void)
{
char buffer[255];
char obuf[1024];
int ne = 0;
Bit8u mem[255];
while (ne == 0)
{
SIM->get_param_bool(BXPN_MOUSE_ENABLED)->set(0);
get_command(buffer);
BX_DEBUG(("get_buffer '%s'", buffer));
// At a minimum, a stub is required to support the <20>g<EFBFBD> and <20>G<EFBFBD> commands for register access,
// and the <20>m<EFBFBD> and <20>M<EFBFBD> commands for memory access. Stubs that only control single-threaded
// targets can implement run control with the <20>c<EFBFBD> (continue), and <20>s<EFBFBD> (step) commands. Stubs
// that support multi-threading targets should support the <20>vCont<6E> command. All other commands
// are optional.
switch (buffer[0])
{
// 'c [addr]' Continue. addr is address to resume.
// If addr is omitted, resume at current address.
// This packet is deprecated for multi-threading support. See [vCont packet]
case 'c':
{
char buf[255];
Bit32u new_eip;
if (buffer[1] != 0)
{
new_eip = (Bit32u) atoi(buffer + 1);
BX_INFO(("continuing at %x", new_eip));
for (int i=0; i<BX_SMP_PROCESSORS; i++) {
BX_CPU(i)->invalidate_prefetch_q();
}
saved_eip = EIP;
BX_CPU_THIS_PTR gen_reg[BX_32BIT_REG_EIP].dword.erx = new_eip;
}
stub_trace_flag = 0;
bx_cpu.cpu_loop();
SIM->refresh_vga();
if (buffer[1] != 0)
{
bx_cpu.invalidate_prefetch_q();
BX_CPU_THIS_PTR gen_reg[BX_32BIT_REG_EIP].dword.erx = saved_eip;
}
BX_INFO(("stopped with %x", last_stop_reason));
buf[0] = 'S';
if (last_stop_reason == GDBSTUB_EXECUTION_BREAKPOINT ||
last_stop_reason == GDBSTUB_TRACE)
{
write_signal(&buf[1], SIGTRAP);
}
else
{
write_signal(&buf[1], 0);
}
put_reply(buf);
break;
}
// 's [addr]' Single step. addr is the address at which to resume.
// If addr is omitted, resume at same address.
// This packet is deprecated for multi-threading support. See [vCont packet]
case 's':
{
char buf[255];
BX_INFO(("stepping"));
stub_trace_flag = 1;
bx_cpu.cpu_loop();
SIM->refresh_vga();
stub_trace_flag = 0;
BX_INFO(("stopped with %x", last_stop_reason));
buf[0] = 'S';
if (last_stop_reason == GDBSTUB_EXECUTION_BREAKPOINT ||
last_stop_reason == GDBSTUB_TRACE)
{
write_signal(&buf[1], SIGTRAP);
}
else
{
write_signal(&buf[1], SIGTRAP);
}
put_reply(buf);
break;
}
// <20>M addr,length:XX...<2E>
// Write length bytes of memory starting at address addr. XX... is the data;
// each byte is transmitted as a two-digit hexadecimal number.
case 'M':
{
unsigned char mem[255];
char* ebuf;
Bit64u addr = strtoull(&buffer[1], &ebuf, 16);
int len = strtoul(ebuf + 1, &ebuf, 16);
hex2mem(ebuf + 1, mem, len);
if (len == 1 && mem[0] == 0xcc)
{
insert_breakpoint(addr);
put_reply("OK");
}
else if (remove_breakpoint(addr, len))
{
put_reply("OK");
}
else
{
if (access_linear(addr, len, BX_WRITE, mem))
{
put_reply("OK");
}
else
{
put_reply("Eff");
}
}
break;
}
// <20>m addr,length<74>
// Read length bytes of memory starting at address addr. Note that addr may
// not be aligned to any particular boundary.
// The stub need not use any particular size or alignment when gathering data
// from memory for the response; even if addr is word-aligned and length is a
// multiple of the word size, the stub is free to use byte accesses, or not. For
// this reason, this packet may not be suitable for accessing memory-mapped I/O
// devices.
case 'm':
{
Bit64u addr;
int len;
char* ebuf;
addr = strtoull(&buffer[1], &ebuf, 16);
len = strtoul(ebuf + 1, NULL, 16);
BX_INFO(("addr " FMT_ADDRX64 " len %x", addr, len));
access_linear(addr, len, BX_READ, mem);
mem2hex(mem, obuf, len);
put_reply(obuf);
break;
}
// <20>P n...=r...<2E>
// Write register n... with value r... The register number n is in hexadecimal,
// and r... contains two hex digits for each byte in the register (target byte order).
case 'P':
{
int reg;
Bit64u value;
char* ebuf;
reg = strtoul(&buffer[1], &ebuf, 16);
++ebuf;
value = read_little_endian_hex(ebuf);
BX_INFO(("reg %d set to " FMT_ADDRX64, reg, value));
#if BX_SUPPORT_X86_64 == 0
switch (reg)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
BX_CPU_THIS_PTR set_reg32(reg, value);
break;
case 8:
EIP = value;
BX_CPU_THIS_PTR invalidate_prefetch_q();
break;
default:
break;
}
#else
switch (reg)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
BX_CPU_THIS_PTR set_reg64(reg, value);
break;
case 16:
RIP = value;
BX_CPU_THIS_PTR invalidate_prefetch_q();
break;
default:
break;
}
#endif
put_reply("OK");
break;
}
// <20>g<EFBFBD> Read general registers.
case 'g':
{
#if BX_SUPPORT_X86_64 == 0
WriteHostDWordToLittleEndian(registers + 0, EAX);
WriteHostDWordToLittleEndian(registers + 1, ECX);
WriteHostDWordToLittleEndian(registers + 2, EDX);
WriteHostDWordToLittleEndian(registers + 3, EBX);
WriteHostDWordToLittleEndian(registers + 4, ESP);
WriteHostDWordToLittleEndian(registers + 5, EBP);
WriteHostDWordToLittleEndian(registers + 6, ESI);
WriteHostDWordToLittleEndian(registers + 7, EDI);
if (last_stop_reason == GDBSTUB_EXECUTION_BREAKPOINT)
{
WriteHostDWordToLittleEndian(registers + 8, EIP + 1);
}
else
{
WriteHostDWordToLittleEndian(registers + 8, EIP);
}
WriteHostDWordToLittleEndian(registers + 9,
BX_CPU_THIS_PTR read_eflags());
WriteHostDWordToLittleEndian(registers + 10,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
WriteHostDWordToLittleEndian(registers + 11,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
WriteHostDWordToLittleEndian(registers + 12,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
WriteHostDWordToLittleEndian(registers + 13,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
WriteHostDWordToLittleEndian(registers + 14,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
WriteHostDWordToLittleEndian(registers + 15,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
mem2hex((const Bit8u*) registers, obuf, NUMREGSBYTES);
#else
#define PUTREG(buf, val, len) do { \
Bit64u u = (val); \
(buf) = mem2hex((const Bit8u*)&u, (buf), (len)); \
} while (0)
char* buf = obuf;
PUTREG(buf, RAX, 8);
PUTREG(buf, RBX, 8);
PUTREG(buf, RCX, 8);
PUTREG(buf, RDX, 8);
PUTREG(buf, RSI, 8);
PUTREG(buf, RDI, 8);
PUTREG(buf, RBP, 8);
PUTREG(buf, RSP, 8);
PUTREG(buf, R8, 8);
PUTREG(buf, R9, 8);
PUTREG(buf, R10, 8);
PUTREG(buf, R11, 8);
PUTREG(buf, R12, 8);
PUTREG(buf, R13, 8);
PUTREG(buf, R14, 8);
PUTREG(buf, R15, 8);
Bit64u rip;
rip = RIP;
if (last_stop_reason == GDBSTUB_EXECUTION_BREAKPOINT)
{
++rip;
}
PUTREG(buf, rip, 8);
PUTREG(buf, BX_CPU_THIS_PTR read_eflags(), 4);
PUTREG(buf, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, 4);
PUTREG(buf, BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value, 4);
PUTREG(buf, BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value, 4);
PUTREG(buf, BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value, 4);
PUTREG(buf, BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value, 4);
PUTREG(buf, BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value, 4);
#endif
put_reply(obuf);
break;
}
case '?':
sprintf(obuf, "S%02x", SIGTRAP);
put_reply(obuf);
break;
// <20>H op thread-id<69>
// Set thread for subsequent operations (<28>m<EFBFBD>, <20>M<EFBFBD>, <20>g<EFBFBD>, <20>G<EFBFBD>, et.al.). op depends on the
// operation to be performed: it should be <20>c<EFBFBD> for step and continue operations
// (note that this is deprecated, supporting the <20>vCont<6E> command is a better option),
// <20>g<EFBFBD> for other operations. The thread designator thread-id has the format
// and interpretation described in [thread-id syntax]
case 'H':
if (buffer[1] == 'c')
{
continue_thread = strtol(&buffer[2], NULL, 16);
put_reply("OK");
}
else if (buffer[1] == 'g')
{
other_thread = strtol(&buffer[2], NULL, 16);
put_reply("OK");
}
else
{
put_reply("Eff");
}
break;
// <20>q name params...<2E>
// <20>Q name params...<2E>
// General query (<28>q<EFBFBD>) and set (<28>Q<EFBFBD>). These packets are described fully in
// Section E.4 [General Query Packets]
case 'q':
if (buffer[1] == 'C')
{
sprintf(obuf, FMT_ADDRX64, (Bit64u)1);
put_reply(obuf);
}
else if (strncmp(&buffer[1], "Offsets", strlen("Offsets")) == 0)
{
sprintf(obuf, "Text=%x;Data=%x;Bss=%x",
SIM->get_param_num("text_base", gdbstub_list)->get(),
SIM->get_param_num("data_base", gdbstub_list)->get(),
SIM->get_param_num("bss_base", gdbstub_list)->get());
put_reply(obuf);
}
else if (strncmp(&buffer[1], "Supported", strlen("Supported")) == 0)
{
put_reply("");
}
else
{
put_reply(""); /* not supported */
}
break;
// <20>z type,addr,kind<6E>
// <20>Z type,addr,kind<6E>
// Insert (<28>Z<EFBFBD>) or remove (<28>z<EFBFBD>) a type breakpoint or watchpoint starting at address
// address of kind kind.
case 'Z':
do_breakpoint(1, buffer+1);
break;
case 'z':
do_breakpoint(0, buffer+1);
break;
// <20>k<EFBFBD> Kill request.
case 'k':
BX_PANIC(("Debugger asked us to quit"));
break;
case 'D':
BX_INFO(("Debugger detached"));
put_reply("OK");
return;
break;
default:
put_reply("");
break;
}
}
}
static void wait_for_connect(int portn)
{
struct sockaddr_in sockaddr;
socklen_t sockaddr_len;
struct protoent *protoent;
int r;
int opt;
listen_socket_fd = socket(PF_INET, SOCK_STREAM, 0);
if (listen_socket_fd == -1)
{
BX_PANIC(("Failed to create socket"));
exit(1);
}
/* Allow rapid reuse of this port */
opt = 1;
#if defined(__MINGW32__) || defined(_MSC_VER)
r = setsockopt(listen_socket_fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&opt, sizeof(opt));
#else
r = setsockopt(listen_socket_fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
#endif
if (r == -1)
{
BX_INFO(("setsockopt(SO_REUSEADDR) failed"));
}
memset (&sockaddr, '\000', sizeof sockaddr);
#if BX_HAVE_SOCKADDR_IN_SIN_LEN
// if you don't have sin_len change that to #if 0. This is the subject of
// bug [ 626840 ] no 'sin_len' in 'struct sockaddr_in'.
sockaddr.sin_len = sizeof sockaddr;
#endif
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(portn);
sockaddr.sin_addr.s_addr = htonl(INADDR_ANY);
r = bind(listen_socket_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (r == -1)
{
BX_PANIC(("Failed to bind socket"));
}
r = listen(listen_socket_fd, 0);
if (r == -1)
{
BX_PANIC(("Failed to listen on socket"));
}
sockaddr_len = sizeof sockaddr;
socket_fd = accept(listen_socket_fd, (struct sockaddr *)&sockaddr, &sockaddr_len);
if (socket_fd == -1)
{
BX_PANIC(("Failed to accept on socket"));
}
closesocket(listen_socket_fd);
protoent = getprotobyname ("tcp");
if (!protoent)
{
BX_INFO(("getprotobyname (\"tcp\") failed"));
return;
}
/* Disable Nagle - allow small packets to be sent without delay. */
opt = 1;
#if defined(__MINGW32__) || defined(_MSC_VER)
r = setsockopt (socket_fd, protoent->p_proto, TCP_NODELAY, (const char *)&opt, sizeof(opt));
#else
r = setsockopt (socket_fd, protoent->p_proto, TCP_NODELAY, &opt, sizeof(opt));
#endif
if (r == -1)
{
BX_INFO(("setsockopt(TCP_NODELAY) failed"));
}
Bit32u ip = sockaddr.sin_addr.s_addr;
printf("Connected to %d.%d.%d.%d\n", ip & 0xff, (ip >> 8) & 0xff, (ip >> 16) & 0xff, (ip >> 24) & 0xff);
}
void bx_gdbstub_init(void)
{
gdbstublog = new logfunctions();
gdbstublog->put("GDBST");
gdbstublog->setonoff(LOGLEV_PANIC, ACT_FATAL);
gdbstub_list = (bx_list_c*) SIM->get_param(BXPN_GDBSTUB);
int portn = SIM->get_param_num("port", gdbstub_list)->get();
#if defined(__MINGW32__) || defined(_MSC_VER)
WSADATA wsaData;
WSAStartup(2, &wsaData);
#endif
/* Wait for connect */
printf("Waiting for gdb connection on port %d\n", portn);
wait_for_connect(portn);
/* Do debugger command loop */
debug_loop();
/* CPU loop */
bx_cpu.cpu_loop();
#ifdef WIN32
WSACleanup();
#endif
}