Bochs/bochs/cpu/icache.cc
2011-01-12 19:53:47 +00:00

255 lines
8.1 KiB
C++
Executable File

/////////////////////////////////////////////////////////////////////////
// $Id: icache.cc,v 1.39 2011-01-12 19:53:47 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2007-2011 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// Make code more tidy with a few macros.
#if BX_SUPPORT_X86_64==0
#define RIP EIP
#endif
bxPageWriteStampTable pageWriteStampTable;
void flushICaches(void)
{
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++) {
BX_CPU(i)->iCache.flushICacheEntries();
BX_CPU(i)->invalidate_prefetch_q();
#if BX_SUPPORT_TRACE_CACHE
BX_CPU(i)->async_event |= BX_ASYNC_EVENT_STOP_TRACE;
#endif
}
pageWriteStampTable.resetWriteStamps();
}
#if BX_SUPPORT_TRACE_CACHE
void handleSMC(bx_phy_address pAddr)
{
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++) {
BX_CPU(i)->async_event |= BX_ASYNC_EVENT_STOP_TRACE;
BX_CPU(i)->iCache.handleSMC(pAddr);
}
}
void BX_CPU_C::serveICacheMiss(bxICacheEntry_c *entry, Bit32u eipBiased, bx_phy_address pAddr)
{
BX_CPU_THIS_PTR iCache.alloc_trace(entry);
// Cache miss. We weren't so lucky, but let's be optimistic - try to build
// trace from incoming instruction bytes stream !
entry->pAddr = pAddr;
unsigned remainingInPage = BX_CPU_THIS_PTR eipPageWindowSize - eipBiased;
const Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
int ret;
bxInstruction_c *i = entry->i;
for (unsigned n=0;n<BX_MAX_TRACE_LENGTH;n++)
{
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
ret = fetchDecode64(fetchPtr, i, remainingInPage);
else
#endif
ret = fetchDecode32(fetchPtr, i, remainingInPage);
if (ret < 0) {
// Fetching instruction on segment/page boundary
if (n > 0) {
// The trace is already valid, it has several instructions inside,
// in this case just drop the boundary instruction and stop
// tracing.
break;
}
// First instruction is boundary fetch, leave the trace cache entry
// invalid for now because boundaryFetch() can fault
entry->pAddr = ~entry->pAddr;
entry->tlen = 1;
boundaryFetch(fetchPtr, remainingInPage, i);
// Add the instruction to trace cache
entry->pAddr = ~entry->pAddr;
pageWriteStampTable.markICache(pAddr);
BX_CPU_THIS_PTR iCache.commit_page_split_trace(BX_CPU_THIS_PTR pAddrPage, entry);
return;
}
// add instruction to the trace
unsigned iLen = i->ilen();
entry->tlen++;
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, iLen,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, long64_mode());
pageWriteStampTable.markICache(pAddr, iLen);
// continue to the next instruction
remainingInPage -= iLen;
if (ret != 0 /* stop trace indication */ || remainingInPage == 0) break;
pAddr += iLen;
fetchPtr += iLen;
i++;
// try to find a trace starting from current pAddr and merge
if (remainingInPage >= 15) // avoid merging with page split trace
if (mergeTraces(entry, i, pAddr)) break;
}
//BX_INFO(("commit trace %08x len=%d mask %08x", (Bit32u) entry->pAddr, entry->tlen, pageWriteStampTable.getFineGranularityMapping(entry->pAddr)));
BX_CPU_THIS_PTR iCache.commit_trace(entry->tlen);
}
bx_bool BX_CPU_C::mergeTraces(bxICacheEntry_c *entry, bxInstruction_c *i, bx_phy_address pAddr)
{
bxICacheEntry_c *e = BX_CPU_THIS_PTR iCache.get_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask);
if (e->pAddr == pAddr)
{
// determine max amount of instruction to take from another entry
unsigned max_length = e->tlen;
if (max_length + entry->tlen > BX_MAX_TRACE_LENGTH)
max_length = BX_MAX_TRACE_LENGTH - entry->tlen;
if(max_length == 0) return 0;
memcpy(i, e->i, sizeof(bxInstruction_c)*max_length);
entry->tlen += max_length;
BX_ASSERT(entry->tlen <= BX_MAX_TRACE_LENGTH);
return 1;
}
return 0;
}
#else // BX_SUPPORT_TRACE_CACHE == 0
bx_bool BX_CPU_C::fetchInstruction(bxInstruction_c *iStorage, Bit32u eipBiased)
{
unsigned remainingInPage = BX_CPU_THIS_PTR eipPageWindowSize - eipBiased;
const Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
int ret;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
ret = fetchDecode64(fetchPtr, iStorage, remainingInPage);
else
#endif
ret = fetchDecode32(fetchPtr, iStorage, remainingInPage);
if (ret < 0) {
// handle instrumentation callback inside boundaryFetch
boundaryFetch(fetchPtr, remainingInPage, iStorage);
return 0;
}
#if BX_INSTRUMENTATION
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, iStorage->ilen(),
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, long64_mode());
#endif
return 1;
}
void BX_CPU_C::serveICacheMiss(bxICacheEntry_c *entry, Bit32u eipBiased, bx_phy_address pAddr)
{
// The entry will be marked valid if fetchdecode will succeed
if (fetchInstruction(entry->i, eipBiased)) {
entry->pAddr = pAddr;
pageWriteStampTable.markICache(pAddr, entry->i->ilen());
}
else {
entry->pAddr = BX_ICACHE_INVALID_PHY_ADDRESS;
}
}
#endif
void BX_CPU_C::boundaryFetch(const Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i)
{
unsigned j, k;
Bit8u fetchBuffer[32];
int ret;
if (remainingInPage >= 15) {
BX_ERROR(("boundaryFetch #GP(0): too many instruction prefixes"));
exception(BX_GP_EXCEPTION, 0);
}
// Read all leftover bytes in current page up to boundary.
for (j=0; j<remainingInPage; j++) {
fetchBuffer[j] = *fetchPtr++;
}
// The 2nd chunk of the instruction is on the next page.
// Set RIP to the 0th byte of the 2nd page, and force a
// prefetch so direct access of that physical page is possible, and
// all the associated info is updated.
RIP += remainingInPage;
prefetch();
unsigned fetchBufferLimit = 15;
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
BX_DEBUG(("boundaryFetch: small window size after prefetch=%d bytes, remainingInPage=%d bytes", BX_CPU_THIS_PTR eipPageWindowSize, remainingInPage));
fetchBufferLimit = BX_CPU_THIS_PTR eipPageWindowSize;
}
// We can fetch straight from the 0th byte, which is eipFetchPtr;
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
// read leftover bytes in next page
for (k=0; k<fetchBufferLimit; k++, j++) {
fetchBuffer[j] = *fetchPtr++;
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
ret = fetchDecode64(fetchBuffer, i, remainingInPage+fetchBufferLimit);
else
#endif
ret = fetchDecode32(fetchBuffer, i, remainingInPage+fetchBufferLimit);
if (ret < 0) {
BX_INFO(("boundaryFetch #GP(0): failed to complete instruction decoding"));
exception(BX_GP_EXCEPTION, 0);
}
// Restore EIP since we fudged it to start at the 2nd page boundary.
RIP = BX_CPU_THIS_PTR prev_rip;
// Since we cross an instruction boundary, note that we need a prefetch()
// again on the next instruction. Perhaps we can optimize this to
// eliminate the extra prefetch() since we do it above, but have to
// think about repeated instructions, etc.
// invalidate_prefetch_q();
BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(),
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, long64_mode());
}