Bochs/bochs/iodev/dma.cc
Stanislav Shwartsman 5873b26a82 Speed up compilation process.
bochs.h already not include iodev.h which reduces compilation dependences for almost all cpu and fpu files, now cpu files will not be recompiled if iodev includes was changed
2004-06-19 15:20:15 +00:00

817 lines
26 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: dma.cc,v 1.31 2004-06-19 15:20:11 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#define LOG_THIS theDmaDevice->
#define DMA_MODE_DEMAND 0
#define DMA_MODE_SINGLE 1
#define DMA_MODE_BLOCK 2
#define DMA_MODE_CASCADE 3
bx_dma_c *theDmaDevice = NULL;
int
libdma_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
theDmaDevice = new bx_dma_c ();
bx_devices.pluginDmaDevice = theDmaDevice;
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theDmaDevice, BX_PLUGIN_DMA);
return(0); // Success
}
void
libdma_LTX_plugin_fini(void)
{
}
bx_dma_c::bx_dma_c(void)
{
put("DMA");
settype(DMALOG);
}
bx_dma_c::~bx_dma_c(void)
{
BX_DEBUG(("Exit."));
}
unsigned
bx_dma_c::registerDMA8Channel(
unsigned channel,
void (* dmaRead)(Bit8u *data_byte),
void (* dmaWrite)(Bit8u *data_byte),
const char *name
)
{
if (channel > 3) {
BX_PANIC(("registerDMA8Channel: invalid channel number(%u).", channel));
return 0; // Fail.
}
if (BX_DMA_THIS s[0].chan[channel].used) {
BX_PANIC(("registerDMA8Channel: channel(%u) already in use.", channel));
return 0; // Fail.
}
BX_INFO(("channel %u used by %s", channel, name));
BX_DMA_THIS h[channel].dmaRead8 = dmaRead;
BX_DMA_THIS h[channel].dmaWrite8 = dmaWrite;
BX_DMA_THIS s[0].chan[channel].used = 1;
return 1; // OK.
}
unsigned
bx_dma_c::registerDMA16Channel(
unsigned channel,
void (* dmaRead)(Bit16u *data_word),
void (* dmaWrite)(Bit16u *data_word),
const char *name
)
{
if ((channel < 4) || (channel > 7)) {
BX_PANIC(("registerDMA16Channel: invalid channel number(%u).", channel));
return 0; // Fail.
}
if (BX_DMA_THIS s[1].chan[channel & 0x03].used) {
BX_PANIC(("registerDMA16Channel: channel(%u) already in use.", channel));
return 0; // Fail.
}
BX_INFO(("channel %u used by %s", channel, name));
channel &= 0x03;
BX_DMA_THIS h[channel].dmaRead16 = dmaRead;
BX_DMA_THIS h[channel].dmaWrite16 = dmaWrite;
BX_DMA_THIS s[1].chan[channel].used = 1;
return 1; // OK.
}
unsigned
bx_dma_c::unregisterDMAChannel(unsigned channel)
{
bx_bool ma_sl = (channel > 3);
BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used = 0;
BX_INFO(("channel %u no longer used", channel));
return 1;
}
unsigned
bx_dma_c::get_TC(void)
{
return BX_DMA_THIS TC;
}
void
bx_dma_c::init(void)
{
unsigned c, i, j;
BX_DEBUG(("Init $Id: dma.cc,v 1.31 2004-06-19 15:20:11 sshwarts Exp $"));
/* 8237 DMA controller */
for (i=0; i < 2; i++) {
for (j=0; j < 4; j++) {
BX_DMA_THIS s[i].DRQ[j] = 0;
BX_DMA_THIS s[i].DACK[j] = 0;
}
}
BX_DMA_THIS HLDA = 0;
BX_DMA_THIS TC = 0;
// 0000..000F
for (i=0x0000; i<=0x000F; i++) {
DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
}
// 00081..008F
for (i=0x0081; i<=0x008F; i++) {
DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
}
// 000C0..00DE
for (i=0x00C0; i<=0x00DE; i+=2) {
DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
}
for (i=0; i<2; i++) {
for (c=0; c<4; c++) {
BX_DMA_THIS s[i].chan[c].mode.mode_type = 0; // demand mode
BX_DMA_THIS s[i].chan[c].mode.address_decrement = 0; // address increment
BX_DMA_THIS s[i].chan[c].mode.autoinit_enable = 0; // autoinit disable
BX_DMA_THIS s[i].chan[c].mode.transfer_type = 0; // verify
BX_DMA_THIS s[i].chan[c].base_address = 0;
BX_DMA_THIS s[i].chan[c].current_address = 0;
BX_DMA_THIS s[i].chan[c].base_count = 0;
BX_DMA_THIS s[i].chan[c].current_count = 0;
BX_DMA_THIS s[i].chan[c].page_reg = 0;
BX_DMA_THIS s[i].chan[c].used = 0;
}
}
BX_DMA_THIS s[1].chan[0].used = 1; // cascade channel in use
BX_INFO(("channel 4 used by cascade"));
}
void
bx_dma_c::reset(unsigned type)
{
reset_controller(0);
reset_controller(1);
}
void
bx_dma_c::reset_controller(unsigned num)
{
BX_DMA_THIS s[num].mask[0] = 1;
BX_DMA_THIS s[num].mask[1] = 1;
BX_DMA_THIS s[num].mask[2] = 1;
BX_DMA_THIS s[num].mask[3] = 1;
BX_DMA_THIS s[num].command_reg = 0;
BX_DMA_THIS s[num].status_reg = 0;
BX_DMA_THIS s[num].request_reg = 0;
BX_DMA_THIS s[num].temporary_reg = 0;
BX_DMA_THIS s[num].flip_flop = 0;
}
// index to find channel from register number (only [0],[1],[2],[6] used)
Bit8u channelindex[7] = {2, 3, 1, 0, 0, 0, 0};
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_dma_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_DMA_SMF
bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
/* 8237 DMA controller */
Bit32u BX_CPP_AttrRegparmN(2)
bx_dma_c::read( Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_DMA_SMF
Bit8u retval;
Bit8u channel;
bx_bool ma_sl;
BX_DEBUG(("read addr=%04x", (unsigned) address));
#if BX_DMA_FLOPPY_IO < 1
/* if we're not supporting DMA/floppy IO just return a bogus value */
return(0xff);
#endif
switch (address) {
case 0x00: /* DMA-1 current address, channel 0 */
case 0x02: /* DMA-1 current address, channel 1 */
case 0x04: /* DMA-1 current address, channel 2 */
case 0x06: /* DMA-1 current address, channel 3 */
case 0xc0: /* DMA-2 current address, channel 0 */
case 0xc4: /* DMA-2 current address, channel 1 */
case 0xc8: /* DMA-2 current address, channel 2 */
case 0xcc: /* DMA-2 current address, channel 3 */
ma_sl = (address >= 0xc0);
channel = (address >> (1 + ma_sl)) & 0x03;
if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return(BX_DMA_THIS s[ma_sl].chan[channel].current_address & 0xff);
}
else {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return(BX_DMA_THIS s[ma_sl].chan[channel].current_address >> 8);
}
case 0x01: /* DMA-1 current count, channel 0 */
case 0x03: /* DMA-1 current count, channel 1 */
case 0x05: /* DMA-1 current count, channel 2 */
case 0x07: /* DMA-1 current count, channel 3 */
case 0xc2: /* DMA-2 current count, channel 0 */
case 0xc6: /* DMA-2 current count, channel 1 */
case 0xca: /* DMA-2 current count, channel 2 */
case 0xce: /* DMA-2 current count, channel 3 */
ma_sl = (address >= 0xc2);
channel = (address >> (1 + ma_sl)) & 0x03;
if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return(BX_DMA_THIS s[ma_sl].chan[channel].current_count & 0xff);
}
else {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return(BX_DMA_THIS s[ma_sl].chan[channel].current_count >> 8);
}
case 0x08: // DMA-1 Status Register
case 0xd0: // DMA-2 Status Register
// bit 7: 1 = channel 3 request
// bit 6: 1 = channel 2 request
// bit 5: 1 = channel 1 request
// bit 4: 1 = channel 0 request
// bit 3: 1 = channel 3 has reached terminal count
// bit 2: 1 = channel 2 has reached terminal count
// bit 1: 1 = channel 1 has reached terminal count
// bit 0: 1 = channel 0 has reached terminal count
// reading this register clears lower 4 bits (hold flags)
ma_sl = (address == 0xd0);
retval = BX_DMA_THIS s[ma_sl].status_reg;
BX_DMA_THIS s[ma_sl].status_reg &= 0xf0;
return(retval);
break;
case 0x0d: // DMA-1: temporary register
case 0xda: // DMA-2: temporary register
ma_sl = (address == 0xda);
BX_ERROR(("DMA-%d: read of temporary register", ma_sl+1));
// Note: write to 0x0D clears temporary register
return(0);
break;
case 0x0081: // DMA-1 page register, channel 2
case 0x0082: // DMA-1 page register, channel 3
case 0x0083: // DMA-1 page register, channel 1
case 0x0087: // DMA-1 page register, channel 0
channel = channelindex[address - 0x81];
return( BX_DMA_THIS s[0].chan[channel].page_reg );
case 0x0089: // DMA-2 page register, channel 2
case 0x008a: // DMA-2 page register, channel 3
case 0x008b: // DMA-2 page register, channel 1
case 0x008f: // DMA-2 page register, channel 0
channel = channelindex[address - 0x89];
return( BX_DMA_THIS s[1].chan[channel].page_reg );
case 0x0084:
case 0x0085:
case 0x0086:
case 0x0088:
case 0x008c:
case 0x008d:
case 0x008e:
BX_DEBUG(("read: extra page register 0x%04x unsupported", (unsigned) address));
return(0);
default:
BX_ERROR(("read: unsupported address=%04x", (unsigned) address));
return(0);
}
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_dma_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_DMA_SMF
bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
/* 8237 DMA controller */
void BX_CPP_AttrRegparmN(3)
bx_dma_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_DMA_SMF
Bit8u set_mask_bit;
Bit8u channel;
bx_bool ma_sl;
if (io_len > 1) {
if ( (io_len == 2) && (address == 0x0b) ) {
#if BX_USE_DMA_SMF
BX_DMA_THIS write_handler(NULL, address, value & 0xff, 1);
BX_DMA_THIS write_handler(NULL, address+1, value >> 8, 1);
#else
BX_DMA_THIS write(address, value & 0xff, 1);
BX_DMA_THIS write(address+1, value >> 8, 1);
#endif
return;
}
BX_ERROR(("io write to address %08x, len=%u",
(unsigned) address, (unsigned) io_len));
return;
}
BX_DEBUG(("write: address=%04x value=%02x",
(unsigned) address, (unsigned) value));
#if BX_DMA_FLOPPY_IO < 1
/* if we're not supporting DMA/floppy IO just return */
return;
#endif
switch (address) {
case 0x00:
case 0x02:
case 0x04:
case 0x06:
case 0xc0:
case 0xc4:
case 0xc8:
case 0xcc:
ma_sl = (address >= 0xc0);
channel = (address >> (1 + ma_sl)) & 0x03;
BX_DEBUG((" DMA-%d base and current address, channel %d", ma_sl+1, channel));
if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_address = value;
BX_DMA_THIS s[ma_sl].chan[channel].current_address = value;
}
else { /* 2nd byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_address |= (value << 8);
BX_DMA_THIS s[ma_sl].chan[channel].current_address |= (value << 8);
BX_DEBUG((" base = %04x",
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_address));
BX_DEBUG((" curr = %04x",
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].current_address));
}
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return;
break;
case 0x01:
case 0x03:
case 0x05:
case 0x07:
case 0xc2:
case 0xc6:
case 0xca:
case 0xce:
ma_sl = (address >= 0xc2);
channel = (address >> (1 + ma_sl)) & 0x03;
BX_DEBUG((" DMA-%d base and current count, channel %d", ma_sl+1, channel));
if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_count = value;
BX_DMA_THIS s[ma_sl].chan[channel].current_count = value;
}
else { /* 2nd byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_count |= (value << 8);
BX_DMA_THIS s[ma_sl].chan[channel].current_count |= (value << 8);
BX_DEBUG((" base = %04x",
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_count));
BX_DEBUG((" curr = %04x",
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].current_count));
}
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return;
break;
case 0x08: /* DMA-1: command register */
case 0xd0: /* DMA-2: command register */
ma_sl = (address == 0xd0);
if (value != 0x00)
BX_ERROR(("write to command register: value(%02xh) not 0x00",
(unsigned) value));
BX_DMA_THIS s[ma_sl].command_reg = value;
return;
break;
case 0x09: // DMA-1: request register
case 0xd2: // DMA-2: request register
ma_sl = (address == 0xd2);
channel = value & 0x03;
BX_ERROR(("DMA-%d: write to request register (%02x)", ma_sl+1, (unsigned) value));
// note: write to 0x0d clears this register
if (value & 0x04) {
// set request bit
BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
BX_DEBUG(("DMA-%d: set request bit for channel %u", ma_sl+1, (unsigned) channel));
}
else {
// clear request bit
BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
BX_DEBUG(("DMA-%d: cleared request bit for channel %u", ma_sl+1, (unsigned) channel));
}
control_HRQ(ma_sl);
return;
break;
case 0x0a:
case 0xd4:
ma_sl = (address == 0xd4);
set_mask_bit = value & 0x04;
channel = value & 0x03;
BX_DMA_THIS s[ma_sl].mask[channel] = (set_mask_bit > 0);
BX_DEBUG(("DMA-%d: set_mask_bit=%u, channel=%u, mask now=%02xh", ma_sl+1,
(unsigned) set_mask_bit, (unsigned) channel, (unsigned) BX_DMA_THIS s[ma_sl].mask[channel]));
control_HRQ(ma_sl);
return;
break;
case 0x0b: /* DMA-1 mode register */
case 0xd6: /* DMA-2 mode register */
ma_sl = (address == 0xd6);
channel = value & 0x03;
BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type = (value >> 6) & 0x03;
BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement = (value >> 5) & 0x01;
BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable = (value >> 4) & 0x01;
BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type = (value >> 2) & 0x03;
BX_DEBUG(("DMA-%d: mode register[%u] = %02x", ma_sl+1,
(unsigned) channel, (unsigned) value));
return;
break;
case 0x0c: /* DMA-1 clear byte flip/flop */
case 0xd8: /* DMA-2 clear byte flip/flop */
ma_sl = (address == 0xd8);
BX_DEBUG(("DMA-%d: clear flip/flop", ma_sl+1));
BX_DMA_THIS s[ma_sl].flip_flop = 0;
return;
break;
case 0x0d: // DMA-1: master clear
case 0xda: // DMA-2: master clear
ma_sl = (address == 0xda);
BX_DEBUG(("DMA-%d: master clear", ma_sl+1));
// writing any value to this port resets DMA controller 1 / 2
// same action as a hardware reset
// mask register is set (chan 0..3 disabled)
// command, status, request, temporary, and byte flip-flop are all cleared
reset_controller(ma_sl);
return;
break;
case 0x0e: // DMA-1: clear mask register
case 0xdc: // DMA-2: clear mask register
ma_sl = (address == 0xdc);
BX_DEBUG(("DMA-%d: clear mask register", ma_sl+1));
BX_DMA_THIS s[ma_sl].mask[0] = 0;
BX_DMA_THIS s[ma_sl].mask[1] = 0;
BX_DMA_THIS s[ma_sl].mask[2] = 0;
BX_DMA_THIS s[ma_sl].mask[3] = 0;
control_HRQ(ma_sl);
return;
break;
case 0x0f: // DMA-1: write all mask bits
case 0xde: // DMA-2: write all mask bits
ma_sl = (address == 0xde);
BX_DEBUG(("DMA-%d: write all mask bits", ma_sl+1));
BX_DMA_THIS s[ma_sl].mask[0] = value & 0x01; value >>= 1;
BX_DMA_THIS s[ma_sl].mask[1] = value & 0x01; value >>= 1;
BX_DMA_THIS s[ma_sl].mask[2] = value & 0x01; value >>= 1;
BX_DMA_THIS s[ma_sl].mask[3] = value & 0x01;
control_HRQ(ma_sl);
return;
break;
case 0x81: /* DMA-1 page register, channel 2 */
case 0x82: /* DMA-1 page register, channel 3 */
case 0x83: /* DMA-1 page register, channel 1 */
case 0x87: /* DMA-1 page register, channel 0 */
/* address bits A16-A23 for DMA channel */
channel = channelindex[address - 0x81];
BX_DMA_THIS s[0].chan[channel].page_reg = value;
BX_DEBUG(("DMA-1: page register %d = %02x", channel, (unsigned) value));
return;
break;
case 0x89: /* DMA-2 page register, channel 2 */
case 0x8a: /* DMA-2 page register, channel 3 */
case 0x8b: /* DMA-2 page register, channel 1 */
case 0x8f: /* DMA-2 page register, channel 0 */
/* address bits A16-A23 for DMA channel */
channel = channelindex[address - 0x89];
BX_DMA_THIS s[1].chan[channel].page_reg = value;
BX_DEBUG(("DMA-2: page register %d = %02x", channel + 4, (unsigned) value));
return;
break;
case 0x0084:
case 0x0085:
case 0x0086:
case 0x0088:
case 0x008c:
case 0x008d:
case 0x008e:
BX_DEBUG(("write: extra page register 0x%04x unsupported", (unsigned) address));
return;
break;
default:
BX_ERROR(("write ignored: %04xh = %02xh",
(unsigned) address, (unsigned) value));
}
}
void
bx_dma_c::set_DRQ(unsigned channel, bx_bool val)
{
Bit32u dma_base, dma_roof;
bx_bool ma_sl;
if (channel > 7) {
BX_PANIC(("set_DRQ() channel > 7"));
return;
}
ma_sl = (channel > 3);
BX_DMA_THIS s[ma_sl].DRQ[channel & 0x03] = val;
if (!BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used) {
BX_PANIC(("set_DRQ(): channel %d not connected to device", channel));
return;
}
channel &= 0x03;
if (!val) {
//BX_DEBUG(("bx_dma_c::DRQ(): val == 0"));
// clear bit in status reg
BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
control_HRQ(ma_sl);
return;
}
#if 0
BX_INFO(("mask[%d]: %02x", channel, (unsigned) BX_DMA_THIS s[0].mask[channel]));
BX_INFO(("flip_flop: %u", (unsigned) BX_DMA_THIS s[0].flip_flop));
BX_INFO(("status_reg: %02x", (unsigned) BX_DMA_THIS s[0].status_reg));
BX_INFO(("mode_type: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.mode_type));
BX_INFO(("address_decrement: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.address_decrement));
BX_INFO(("autoinit_enable: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.autoinit_enable));
BX_INFO(("transfer_type: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.transfer_type));
BX_INFO(("base_address: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].base_address));
BX_INFO(("current_address: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].current_address));
BX_INFO(("base_count: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].base_count));
BX_INFO(("current_count: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].current_count));
BX_INFO(("page_reg: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].page_reg));
#endif
BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
if ( (BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_SINGLE) &&
(BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_DEMAND) &&
(BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_CASCADE) )
BX_PANIC(("set_DRQ: mode_type(%02x) not handled",
(unsigned) BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type));
dma_base = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
(BX_DMA_THIS s[ma_sl].chan[channel].base_address << ma_sl);
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0) {
dma_roof = dma_base + (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
} else {
dma_roof = dma_base - (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
}
if ( (dma_base & (0x7fff0000 << ma_sl)) != (dma_roof & (0x7fff0000 << ma_sl)) ) {
BX_INFO(("dma_base = %08x", (unsigned) dma_base));
BX_INFO(("dma_base_count = %08x", (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_count));
BX_INFO(("dma_roof = %08x", (unsigned) dma_roof));
BX_PANIC(("request outside %dk boundary", 64 << ma_sl));
}
control_HRQ(ma_sl);
}
void
bx_dma_c::control_HRQ(bx_bool ma_sl)
{
unsigned channel;
// deassert HRQ if no DRQ is pending
if ((BX_DMA_THIS s[ma_sl].status_reg & 0xf0) == 0) {
if (ma_sl) {
bx_pc_system.set_HRQ(0);
} else {
BX_DMA_THIS set_DRQ(4, 0);
}
return;
}
// find highest priority channel
for (channel=0; channel<4; channel++) {
if ( (BX_DMA_THIS s[ma_sl].status_reg & (1 << (channel+4))) &&
(BX_DMA_THIS s[ma_sl].mask[channel]==0) ) {
if (ma_sl) {
// assert Hold ReQuest line to CPU
bx_pc_system.set_HRQ(1);
} else {
// send DRQ to cascade channel of the master
BX_DMA_THIS set_DRQ(4, 1);
}
break;
}
}
}
void
bx_dma_c::raise_HLDA(void)
{
unsigned channel;
Bit32u phy_addr;
bx_bool count_expired = 0;
bx_bool ma_sl = 0;
BX_DMA_THIS HLDA = 1;
// find highest priority channel
for (channel=0; channel<4; channel++) {
if ( (BX_DMA_THIS s[1].status_reg & (1 << (channel+4))) &&
(BX_DMA_THIS s[1].mask[channel]==0) ) {
ma_sl = 1;
break;
}
}
if (channel == 0) { // master cascade channel
BX_DMA_THIS s[1].DACK[0] = 1;
for (channel=0; channel<4; channel++) {
if ( (BX_DMA_THIS s[0].status_reg & (1 << (channel+4))) &&
(BX_DMA_THIS s[0].mask[channel]==0) ) {
ma_sl = 0;
break;
}
}
}
if (channel >= 4) {
// wait till they're unmasked
return;
}
//BX_DEBUG(("hlda: OK in response to DRQ(%u)", (unsigned) channel));
phy_addr = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
(BX_DMA_THIS s[ma_sl].chan[channel].current_address << ma_sl);
BX_DMA_THIS s[ma_sl].DACK[channel] = 1;
// check for expiration of count, so we can signal TC and DACK(n)
// at the same time.
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0)
BX_DMA_THIS s[ma_sl].chan[channel].current_address++;
else
BX_DMA_THIS s[ma_sl].chan[channel].current_address--;
BX_DMA_THIS s[ma_sl].chan[channel].current_count--;
if (BX_DMA_THIS s[ma_sl].chan[channel].current_count == 0xffff) {
// count expired, done with transfer
// assert TC, deassert HRQ & DACK(n) lines
BX_DMA_THIS s[ma_sl].status_reg |= (1 << channel); // hold TC in status reg
BX_DMA_THIS TC = 1;
count_expired = 1;
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable == 0) {
// set mask bit if not in autoinit mode
BX_DMA_THIS s[ma_sl].mask[channel] = 1;
}
else {
// count expired, but in autoinit mode
// reload count and base address
BX_DMA_THIS s[ma_sl].chan[channel].current_address =
BX_DMA_THIS s[ma_sl].chan[channel].base_address;
BX_DMA_THIS s[ma_sl].chan[channel].current_count =
BX_DMA_THIS s[ma_sl].chan[channel].base_count;
}
}
Bit8u data_byte;
Bit16u data_word;
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 1) { // write
// DMA controlled xfer of byte from I/O to Memory
if (!ma_sl) {
if (BX_DMA_THIS h[channel].dmaWrite8)
BX_DMA_THIS h[channel].dmaWrite8(&data_byte);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
BX_MEM_WRITE_PHYSICAL(phy_addr, 1, &data_byte);
BX_DBG_DMA_REPORT(phy_addr, 1, BX_WRITE, data_byte);
}
else {
if (BX_DMA_THIS h[channel].dmaWrite16)
BX_DMA_THIS h[channel].dmaWrite16(&data_word);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
BX_MEM_WRITE_PHYSICAL(phy_addr, 2, &data_word);
BX_DBG_DMA_REPORT(phy_addr, 2, BX_WRITE, data_word);
}
}
else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 2) { // read
// DMA controlled xfer of byte from Memory to I/O
if (!ma_sl) {
BX_MEM_READ_PHYSICAL(phy_addr, 1, &data_byte);
if (BX_DMA_THIS h[channel].dmaRead8)
BX_DMA_THIS h[channel].dmaRead8(&data_byte);
BX_DBG_DMA_REPORT(phy_addr, 1, BX_READ, data_byte);
}
else {
BX_MEM_READ_PHYSICAL(phy_addr, 2, &data_word);
if (BX_DMA_THIS h[channel].dmaRead16)
BX_DMA_THIS h[channel].dmaRead16(&data_word);
BX_DBG_DMA_REPORT(phy_addr, 2, BX_READ, data_word);
}
}
else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 0) {
// verify
if (!ma_sl) {
if (BX_DMA_THIS h[channel].dmaWrite8)
BX_DMA_THIS h[channel].dmaWrite8(&data_byte);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
}
else {
if (BX_DMA_THIS h[channel].dmaWrite16)
BX_DMA_THIS h[channel].dmaWrite16(&data_word);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
}
}
else {
BX_PANIC(("hlda: transfer_type 3 is undefined"));
}
if (count_expired) {
BX_DMA_THIS TC = 0; // clear TC, adapter card already notified
BX_DMA_THIS HLDA = 0;
bx_pc_system.set_HRQ(0); // clear HRQ to CPU
BX_DMA_THIS s[ma_sl].DACK[channel] = 0; // clear DACK to adapter card
if (!ma_sl) {
BX_DMA_THIS set_DRQ(4, 0); // clear DRQ to cascade
BX_DMA_THIS s[1].DACK[0] = 0; // clear DACK to cascade
}
}
}