Bochs/bochs/cpu/stack64.cc

146 lines
3.8 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2014 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EqM(bxInstruction_c *i)
{
RSP_SPECULATIVE;
Bit64u val64 = pop_64();
// Note: there is one little weirdism here. It is possible to use
// RSP in the modrm addressing. If used, the value of RSP after the
// pop is used to calculate the address.
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i->ResolveModrm, (i));
write_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr), val64);
RSP_COMMIT;
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EqR(bxInstruction_c *i)
{
push_64(BX_READ_64BIT_REG(i->dst()));
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EqR(bxInstruction_c *i)
{
BX_WRITE_64BIT_REG(i->dst(), pop_64());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH64_Sw(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[i->src()].selector.value);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP64_Sw(bxInstruction_c *i)
{
Bit16u selector = stack_read_word(RSP);
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
RSP += 8;
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH64_Id(bxInstruction_c *i)
{
Bit64u imm64 = (Bit32s) i->Id();
push_64(imm64);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EqM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i->ResolveModrm, (i));
Bit64u op1_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
push_64(op1_64);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER64_IwIb(bxInstruction_c *i)
{
Bit8u level = i->Ib2();
level &= 0x1F;
Bit64u temp_RSP = RSP, temp_RBP = RBP;
temp_RSP -= 8;
stack_write_qword(temp_RSP, temp_RBP);
Bit64u frame_ptr64 = temp_RSP;
if (level > 0) {
/* do level-1 times */
while (--level) {
temp_RBP -= 8;
Bit64u temp64 = stack_read_qword(temp_RBP);
temp_RSP -= 8;
stack_write_qword(temp_RSP, temp64);
} /* while (--level) */
/* push(frame pointer) */
temp_RSP -= 8;
stack_write_qword(temp_RSP, frame_ptr64);
} /* if (level > 0) ... */
temp_RSP -= i->Iw();
// ENTER finishes with memory write check on the final stack pointer
// the memory is touched but no write actually occurs
// emulate it by doing RMW read access from SS:RSP
read_RMW_linear_qword(BX_SEG_REG_SS, temp_RSP);
RBP = frame_ptr64;
RSP = temp_RSP;
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE64(bxInstruction_c *i)
{
// restore frame pointer
Bit64u temp64 = stack_read_qword(RBP);
RSP = RBP + 8;
RBP = temp64;
BX_NEXT_INSTR(i);
}
#endif /* if BX_SUPPORT_X86_64 */