Bochs/bochs/cpu/cpu.h
Kevin Lawton 281e62d8b1 I integrated my hacks to get Linux/x86-64 booting. To keep
these from interfering from a normal compile here's what I did.
In config.h.in (which will generate config.h after a configure),
I added a #define called KPL64Hacks:

  #define KPL64Hacks

*After* running configure, you must set this by hand.  It will
default to off, so you won't get my hacks in a normal compile.
This will go away soon.  There is also a macro just after that
called BailBigRSP().  You don't need to enabled that, but you
can.  In many of the instructions which seemed like they could
be hit by the fetchdecode64() process, but which also touched
EIP/ESP, I inserted a macro.  Usually this macro expands to nothing.
If you like, you can enabled it, and it will panic if it finds
the upper bits of RIP/RSP set.   This helped me find bugs.

Also, I cleaned up the emulation in ctrl_xfer{8,16,32}.cc.
There were some really old legacy code snippets which directly
accessed operands on the stack with access_linear.  Lots of
ugly code instead of just pop_32() etc.  Cleaning those up,
minimized the number of instructions which directly manipulate
the stack pointer, which should help in refining 64-bit support.
2002-09-24 00:44:56 +00:00

2986 lines
104 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cpu.h,v 1.74 2002-09-24 00:44:55 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef BX_CPU_H
# define BX_CPU_H 1
#include <setjmp.h>
#include "cpu/lazy_flags.h"
#if BX_SUPPORT_X86_64
typedef Bit64u bx_address;
#else
typedef Bit32u bx_address;
#endif
#define BX_SREG_ES 0
#define BX_SREG_CS 1
#define BX_SREG_SS 2
#define BX_SREG_DS 3
#define BX_SREG_FS 4
#define BX_SREG_GS 5
// segment register encoding
#define BX_SEG_REG_ES 0
#define BX_SEG_REG_CS 1
#define BX_SEG_REG_SS 2
#define BX_SEG_REG_DS 3
#define BX_SEG_REG_FS 4
#define BX_SEG_REG_GS 5
// NULL now has to fit in 3 bits.
#define BX_SEG_REG_NULL 7
#define BX_NULL_SEG_REG(seg) ((seg) == BX_SEG_REG_NULL)
#ifdef BX_LITTLE_ENDIAN
#define BX_REG8L_OFFSET 0
#define BX_REG8H_OFFSET 1
#define BX_REG16_OFFSET 0
#else // BX_BIG_ENDIAN
#define BX_REG8L_OFFSET 3
#define BX_REG8H_OFFSET 2
#define BX_REG16_OFFSET 2
#endif // ifdef BX_LITTLE_ENDIAN
#define BX_8BIT_REG_AL 0
#define BX_8BIT_REG_CL 1
#define BX_8BIT_REG_DL 2
#define BX_8BIT_REG_BL 3
#define BX_8BIT_REG_AH 4
#define BX_8BIT_REG_CH 5
#define BX_8BIT_REG_DH 6
#define BX_8BIT_REG_BH 7
#define BX_16BIT_REG_AX 0
#define BX_16BIT_REG_CX 1
#define BX_16BIT_REG_DX 2
#define BX_16BIT_REG_BX 3
#define BX_16BIT_REG_SP 4
#define BX_16BIT_REG_BP 5
#define BX_16BIT_REG_SI 6
#define BX_16BIT_REG_DI 7
#define BX_32BIT_REG_EAX 0
#define BX_32BIT_REG_ECX 1
#define BX_32BIT_REG_EDX 2
#define BX_32BIT_REG_EBX 3
#define BX_32BIT_REG_ESP 4
#define BX_32BIT_REG_EBP 5
#define BX_32BIT_REG_ESI 6
#define BX_32BIT_REG_EDI 7
#if defined(NEED_CPU_REG_SHORTCUTS)
/* WARNING:
Only BX_CPU_C member functions can use these shortcuts safely!
Functions that use the shortcuts outside of BX_CPU_C might work
when BX_USE_CPU_SMF=1 but will fail when BX_USE_CPU_SMF=0
(for example in SMP mode).
*/
// access to 8 bit general registers
#define AL (BX_CPU_THIS_PTR gen_reg[0].word.byte.rl)
#define CL (BX_CPU_THIS_PTR gen_reg[1].word.byte.rl)
#define DL (BX_CPU_THIS_PTR gen_reg[2].word.byte.rl)
#define BL (BX_CPU_THIS_PTR gen_reg[3].word.byte.rl)
#define AH (BX_CPU_THIS_PTR gen_reg[0].word.byte.rh)
#define CH (BX_CPU_THIS_PTR gen_reg[1].word.byte.rh)
#define DH (BX_CPU_THIS_PTR gen_reg[2].word.byte.rh)
#define BH (BX_CPU_THIS_PTR gen_reg[3].word.byte.rh)
// access to 16 bit general registers
#define AX (BX_CPU_THIS_PTR gen_reg[0].word.rx)
#define CX (BX_CPU_THIS_PTR gen_reg[1].word.rx)
#define DX (BX_CPU_THIS_PTR gen_reg[2].word.rx)
#define BX (BX_CPU_THIS_PTR gen_reg[3].word.rx)
#define SP (BX_CPU_THIS_PTR gen_reg[4].word.rx)
#define BP (BX_CPU_THIS_PTR gen_reg[5].word.rx)
#define SI (BX_CPU_THIS_PTR gen_reg[6].word.rx)
#define DI (BX_CPU_THIS_PTR gen_reg[7].word.rx)
// access to 16 bit instruction pointer
#define IP (* (Bit16u *) (((Bit8u *) &BX_CPU_THIS_PTR dword.eip) + BX_REG16_OFFSET))
// accesss to 32 bit general registers
#define EAX BX_CPU_THIS_PTR gen_reg[0].dword.erx
#define ECX BX_CPU_THIS_PTR gen_reg[1].dword.erx
#define EDX BX_CPU_THIS_PTR gen_reg[2].dword.erx
#define EBX BX_CPU_THIS_PTR gen_reg[3].dword.erx
#define ESP BX_CPU_THIS_PTR gen_reg[4].dword.erx
#define EBP BX_CPU_THIS_PTR gen_reg[5].dword.erx
#define ESI BX_CPU_THIS_PTR gen_reg[6].dword.erx
#define EDI BX_CPU_THIS_PTR gen_reg[7].dword.erx
#if BX_SUPPORT_X86_64
// accesss to 64 bit general registers
#define RAX BX_CPU_THIS_PTR gen_reg[0].rrx
#define RCX BX_CPU_THIS_PTR gen_reg[1].rrx
#define RDX BX_CPU_THIS_PTR gen_reg[2].rrx
#define RBX BX_CPU_THIS_PTR gen_reg[3].rrx
#define RSP BX_CPU_THIS_PTR gen_reg[4].rrx
#define RBP BX_CPU_THIS_PTR gen_reg[5].rrx
#define RSI BX_CPU_THIS_PTR gen_reg[6].rrx
#define RDI BX_CPU_THIS_PTR gen_reg[7].rrx
#define R8 BX_CPU_THIS_PTR gen_reg[8].rrx
#define R9 BX_CPU_THIS_PTR gen_reg[9].rrx
#define R10 BX_CPU_THIS_PTR gen_reg[10].rrx
#define R11 BX_CPU_THIS_PTR gen_reg[11].rrx
#define R12 BX_CPU_THIS_PTR gen_reg[12].rrx
#define R13 BX_CPU_THIS_PTR gen_reg[13].rrx
#define R14 BX_CPU_THIS_PTR gen_reg[14].rrx
#define R15 BX_CPU_THIS_PTR gen_reg[15].rrx
#endif
// access to 32 bit instruction pointer
#define EIP BX_CPU_THIS_PTR dword.eip
#if BX_SUPPORT_X86_64
// access to 64 bit instruction pointer
#define RIP BX_CPU_THIS_PTR rip
#endif
#if BX_SUPPORT_X86_64
#define BX_READ_8BIT_REGx(index,extended) ((((index) < 4) || (extended)) ? \
(BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
(BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx)
#define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].dword.erx)
#define BX_READ_64BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].rrx)
#else
#define BX_READ_8BIT_REG(index) (((index) < 4) ? \
(BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
(BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_8BIT_REGx(index,ext) BX_READ_8BIT_REG(index)
#define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx)
#define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].dword.erx)
#endif
#define BX_READ_16BIT_BASE_REG(var, index) {\
var = *BX_CPU_THIS_PTR _16bit_base_reg[index];\
}
#define BX_READ_16BIT_INDEX_REG(var, index) {\
var = *BX_CPU_THIS_PTR _16bit_index_reg[index];\
}
#if BX_SUPPORT_X86_64
#define BX_WRITE_8BIT_REGx(index, extended, val) {\
if (((index) < 4) || (extended)) \
BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
else \
BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
}
#define BX_WRITE_16BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \
}
#define BX_WRITE_32BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = val; \
}
#define BX_WRITE_32BIT_REGZ(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].rrx = (Bit32u) val; \
}
#define BX_WRITE_64BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].rrx = val; \
}
#else
#define BX_WRITE_8BIT_REG(index, val) {\
if ((index) < 4) \
BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
else \
BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
}
#define BX_WRITE_8BIT_REGx(index, ext, val) BX_WRITE_8BIT_REG(index, val)
#define BX_WRITE_16BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \
}
#define BX_WRITE_32BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = val; \
}
// For x86-32, I just pretend this one is like the macro above,
// so common code can be used.
#define BX_WRITE_32BIT_REGZ(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = (Bit32u) val; \
}
#endif
#ifndef CPL
#define CPL (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl)
#endif
#endif // defined(NEED_CPU_REG_SHORTCUTS)
#define BX_DE_EXCEPTION 0 // Divide Error (fault)
#define BX_DB_EXCEPTION 1 // Debug (fault/trap)
#define BX_BP_EXCEPTION 3 // Breakpoint (trap)
#define BX_OF_EXCEPTION 4 // Overflow (trap)
#define BX_BR_EXCEPTION 5 // BOUND (fault)
#define BX_UD_EXCEPTION 6
#define BX_NM_EXCEPTION 7
#define BX_DF_EXCEPTION 8
#define BX_TS_EXCEPTION 10
#define BX_NP_EXCEPTION 11
#define BX_SS_EXCEPTION 12
#define BX_GP_EXCEPTION 13
#define BX_PF_EXCEPTION 14
#define BX_MF_EXCEPTION 16
#define BX_AC_EXCEPTION 17
#define BX_MC_EXCEPTION 18
#define BX_XF_EXCEPTION 19
/* MSR registers */
#define BX_MSR_P5_MC_ADDR 0x0000
#define BX_MSR_MC_TYPE 0x0001
#define BX_MSR_TSC 0x0010
#define BX_MSR_CESR 0x0011
#define BX_MSR_CTR0 0x0012
#define BX_MSR_CTR1 0x0013
#define BX_MSR_APICBASE 0x001b
#define BX_MSR_EBL_CR_POWERON 0x002a
#define BX_MSR_TEST_CTL 0x0033
#define BX_MSR_BIOS_UPDT_TRIG 0x0079
#define BX_MSR_BBL_CR_D0 0x0088
#define BX_MSR_BBL_CR_D1 0x0089
#define BX_MSR_BBL_CR_D2 0x008a
#define BX_MSR_BBL_CR_D3 0x008b /* = BIOS_SIGN */
#define BX_MSR_PERFCTR0 0x00c1
#define BX_MSR_PERFCTR1 0x00c2
#define BX_MSR_MTRRCAP 0x00fe
#define BX_MSR_BBL_CR_ADDR 0x0116
#define BX_MSR_BBL_DECC 0x0118
#define BX_MSR_BBL_CR_CTL 0x0119
#define BX_MSR_BBL_CR_TRIG 0x011a
#define BX_MSR_BBL_CR_BUSY 0x011b
#define BX_MSR_BBL_CR_CTL3 0x011e
#define BX_MSR_MCG_CAP 0x0179
#define BX_MSR_MCG_STATUS 0x017a
#define BX_MSR_MCG_CTL 0x017b
#define BX_MSR_EVNTSEL0 0x0186
#define BX_MSR_EVNTSEL1 0x0187
#define BX_MSR_DEBUGCTLMSR 0x01d9
#define BX_MSR_LASTBRANCHFROMIP 0x01db
#define BX_MSR_LASTBRANCHTOIP 0x01dc
#define BX_MSR_LASTINTOIP 0x01dd
#define BX_MSR_ROB_CR_BKUPTMPDR6 0x01e0
#define BX_MSR_MTRRPHYSBASE0 0x0200
#define BX_MSR_MTRRPHYSMASK0 0x0201
#define BX_MSR_MTRRPHYSBASE1 0x0202
#if BX_SUPPORT_X86_64
#define BX_MSR_EFER 0xc0000080
#define BX_MSR_STAR 0xc0000081
#define BX_MSR_LSTAR 0xc0000082
#define BX_MSR_CSTAR 0xc0000083
#define BX_MSR_FMASK 0xc0000084
#define BX_MSR_FSBASE 0xc0000100
#define BX_MSR_GSBASE 0xc0000101
#define BX_MSR_KERNELGSBASE 0xc0000102
#endif
#define BX_MODE_IA32 0x0
#define BX_MODE_LONG_COMPAT 0x1
#define BX_MODE_LONG_64 0x2
class BX_CPU_C;
#if BX_USE_CPU_SMF == 0
// normal member functions. This can ONLY be used within BX_CPU_C classes.
// Anyone on the outside should use the BX_CPU macro (defined in bochs.h)
// instead.
# define BX_CPU_THIS_PTR this->
# define BX_CPU_THIS this
# define BX_SMF
# define BX_CPU_C_PREFIX BX_CPU_C::
// with normal member functions, calling a member fn pointer looks like
// object->*(fnptr)(arg, ...);
// Since this is different from when SMF=1, encapsulate it in a macro.
# define BX_CPU_CALL_METHOD(func, args) \
do { \
BX_INSTR_OPCODE_BEGIN (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
(this->*((BxExecutePtr_t) (func))) args \
BX_INSTR_OPCODE_END (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
} while (0)
#else
// static member functions. With SMF, there is only one CPU by definition.
# define BX_CPU_THIS_PTR BX_CPU(0)->
# define BX_CPU_THIS BX_CPU(0)
# define BX_SMF static
# define BX_CPU_C_PREFIX
# define BX_CPU_CALL_METHOD(func, args) \
do { \
BX_INSTR_OPCODE_BEGIN (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
((BxExecutePtr_t) (func)) args; \
BX_INSTR_OPCODE_END (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
} while (0)
#endif
#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
extern BX_CPU_C bx_cpu;
#else
// multiprocessor simulation, we need an array of cpus and memories
extern BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
#endif
typedef struct {
/* 31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16
* ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|==
* 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP|VF|AC|VM|RF
*
* 15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
* ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|==
* 0|NT| IOPL|OF|DF|IF|TF|SF|ZF| 0|AF| 0|PF| 1|CF
*/
Bit32u val32; // Raw 32-bit value in x86 bit position. Used to store
// some eflags which are not cached in separate fields.
Bit32u VM_cached;
#define DECLARE_EFLAGS_ACCESSORS() \
BX_CPP_INLINE void BX_CPU_C::setEFlags(Bit32u val);
#define IMPLEMENT_EFLAGS_ACCESSORS() \
BX_CPP_INLINE void BX_CPU_C::setEFlags(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 = val; \
BX_CPU_THIS_PTR eflags.VM_cached = val & (1<<17); \
}
// accessors for all eflags in bx_flags_reg_t
// The macro is used once for each flag bit.
#define DECLARE_EFLAG_ACCESSOR(name,bitnum) \
BX_CPP_INLINE void assert_##name (); \
BX_CPP_INLINE void clear_##name (); \
BX_CPP_INLINE Boolean get_##name (); \
BX_CPP_INLINE Boolean getB_##name (); \
BX_CPP_INLINE void set_##name (Bit8u val);
#define IMPLEMENT_EFLAG_ACCESSOR(name,bitnum) \
BX_CPP_INLINE void BX_CPU_C::assert_##name () { \
BX_CPU_THIS_PTR eflags.val32 |= (1<<bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::clear_##name () { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
} \
BX_CPP_INLINE Boolean BX_CPU_C::getB_##name () { \
return 1 & (BX_CPU_THIS_PTR eflags.val32 >> bitnum); \
} \
BX_CPP_INLINE Boolean BX_CPU_C::get_##name () { \
return BX_CPU_THIS_PTR eflags.val32 & (1 << bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::set_##name (Bit8u val) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32&~(1<<bitnum)) | ((!!val)<<bitnum); \
}
#define DECLARE_EFLAG_ACCESSOR_VM(bitnum) \
BX_CPP_INLINE void assert_VM(); \
BX_CPP_INLINE void clear_VM(); \
BX_CPP_INLINE Boolean get_VM(); \
BX_CPP_INLINE void set_VM(Bit32u val);
#define IMPLEMENT_EFLAG_ACCESSOR_VM(bitnum) \
BX_CPP_INLINE void BX_CPU_C::assert_VM() { \
BX_CPU_THIS_PTR eflags.val32 |= (1<<bitnum); \
BX_CPU_THIS_PTR eflags.VM_cached = 1; \
} \
BX_CPP_INLINE void BX_CPU_C::clear_VM() { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
BX_CPU_THIS_PTR eflags.VM_cached = 0; \
} \
BX_CPP_INLINE Boolean BX_CPU_C::get_VM() { \
return BX_CPU_THIS_PTR eflags.VM_cached; \
} \
BX_CPP_INLINE void BX_CPU_C::set_VM(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32&~(1<<bitnum)) | (val ? (1<<bitnum) : 0); \
BX_CPU_THIS_PTR eflags.VM_cached = val; \
}
#define DECLARE_EFLAG_ACCESSOR_IOPL(bitnum) \
BX_CPP_INLINE void set_IOPL(Bit32u val); \
BX_CPP_INLINE Boolean get_IOPL(void);
#define IMPLEMENT_EFLAG_ACCESSOR_IOPL(bitnum) \
BX_CPP_INLINE void BX_CPU_C::set_IOPL(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 &= ~(3<<12); \
BX_CPU_THIS_PTR eflags.val32 |= ((3&val) << 12); \
} \
BX_CPP_INLINE Boolean BX_CPU_C::get_IOPL() { \
return 3 & (BX_CPU_THIS_PTR eflags.val32 >> 12); \
}
#define EFlagsOSZAPCMask 0x000008d5
#define EFlagsOSZAPMask 0x000008d4
} bx_flags_reg_t;
#define DECLARE_8BIT_REGISTER_ACCESSORS(name) \
BX_SMF BX_CPP_INLINE Bit8u get_##name(void); \
BX_SMF BX_CPP_INLINE void set_##name(Bit8u val);
#define DECLARE_16BIT_REGISTER_ACCESSORS(name) \
BX_SMF BX_CPP_INLINE Bit16u get_##name(void); \
BX_SMF BX_CPP_INLINE void set_##name(Bit16u val);
#define DECLARE_32BIT_REGISTER_ACCESSORS(name) \
BX_SMF BX_CPP_INLINE Bit32u get_##name(void); \
BX_SMF BX_CPP_INLINE void set_##name(Bit32u val);
#define IMPLEMENT_8LBIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit8u val) { \
BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name].word.byte.rl = val; \
} \
BX_CPP_INLINE Bit8u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name].word.byte.rl); \
}
#define IMPLEMENT_8HBIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit8u val) { \
BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name-4].word.byte.rh = val; \
} \
BX_CPP_INLINE Bit8u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name-4].word.byte.rh); \
}
#define IMPLEMENT_16BIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit16u val) { \
BX_CPU_THIS_PTR gen_reg[BX_16BIT_REG_##name].word.rx = val; \
} \
BX_CPP_INLINE Bit16u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_16BIT_REG_##name].word.rx); \
}
#define IMPLEMENT_32BIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit32u val) { \
BX_CPU_THIS_PTR gen_reg[BX_32BIT_REG_##name].dword.erx = val; \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_32BIT_REG_##name].dword.erx); \
}
#if BX_CPU_LEVEL >= 2
typedef struct {
Bit32u val32; // 32bit value of register
// bitfields broken out for efficient access
#if BX_CPU_LEVEL >= 3
Boolean pg; // paging
#endif
// CR0 notes:
// Each x86 level has its own quirks regarding how it handles
// reserved bits. I used DOS DEBUG.EXE in real mode on the
// following processors, tried to clear bits 1..30, then tried
// to set bits 1..30, to see how these bits are handled.
// I found the following:
//
// Processor try to clear bits 1..30 try to set bits 1..30
// 386 7FFFFFF0 7FFFFFFE
// 486DX2 00000010 6005003E
// Pentium 00000010 7FFFFFFE
// Pentium-II 00000010 6005003E
//
// My assumptions:
// All processors: bit 4 is hardwired to 1 (not true on all clones)
// 386: bits 5..30 of CR0 are also hardwired to 1
// Pentium: reserved bits retain value set using mov cr0, reg32
// 486DX2/Pentium-II: reserved bits are hardwired to 0
#if BX_CPU_LEVEL >= 4
Boolean cd; // cache disable
Boolean nw; // no write-through
Boolean am; // alignment mask
Boolean wp; // write-protect
Boolean ne; // numerics exception
#endif
Boolean ts; // task switched
Boolean em; // emulate math coprocessor
Boolean mp; // monitor coprocessor
Boolean pe; // protected mode enable
} bx_cr0_t;
#endif
#if BX_CPU_LEVEL >= 4
typedef struct {
Bit32u registerValue; // 32bit value of register
// Accessors for all cr4 bitfields.
#define IMPLEMENT_CR4_ACCESSORS(name,bitnum) \
BX_CPP_INLINE Boolean get_##name () { \
return 1 & (registerValue >> bitnum); \
} \
BX_CPP_INLINE void set_##name (Bit8u val) { \
registerValue = (registerValue&~(1<<bitnum)) | (val ? (1<<bitnum) : 0); \
}
IMPLEMENT_CR4_ACCESSORS(VME, 0);
IMPLEMENT_CR4_ACCESSORS(PVI, 1);
IMPLEMENT_CR4_ACCESSORS(TSD, 2);
IMPLEMENT_CR4_ACCESSORS(DE, 3);
IMPLEMENT_CR4_ACCESSORS(PSE, 4);
IMPLEMENT_CR4_ACCESSORS(PAE, 5);
IMPLEMENT_CR4_ACCESSORS(MCE, 6);
IMPLEMENT_CR4_ACCESSORS(PGE, 7);
IMPLEMENT_CR4_ACCESSORS(PCE, 8);
IMPLEMENT_CR4_ACCESSORS(OSFXSR, 9);
IMPLEMENT_CR4_ACCESSORS(OSXMMEXCPT, 10);
BX_CPP_INLINE Boolean getRegister() { return registerValue; }
BX_CPP_INLINE void setRegister(Bit32u r) { registerValue = r; }
} bx_cr4_t;
#endif // #if BX_CPU_LEVEL >= 4
#if BX_CPU_LEVEL >= 5
typedef struct {
Bit8u p5_mc_addr;
Bit8u p5_mc_type;
Bit8u tsc;
Bit8u cesr;
Bit8u ctr0;
Bit8u ctr1;
Bit64u apicbase;
#if BX_SUPPORT_X86_64
// x86-64 EFER bits
Boolean sce;
Boolean lme;
Boolean lma;
Bit64u star;
Bit64u lstar;
Bit64u cstar;
Bit64u fmask;
Bit64u kernelgsbase;
#endif
/* TODO finish of the others */
} bx_regs_msr_t;
#endif
typedef struct { /* bx_selector_t */
Bit16u value; /* the 16bit value of the selector */
#if BX_CPU_LEVEL >= 2
/* the following fields are extracted from the value field in protected
mode only. They're used for sake of efficiency */
Bit16u index; /* 13bit index extracted from value in protected mode */
Bit8u ti; /* table indicator bit extracted from value */
Bit8u rpl; /* RPL extracted from value */
#endif
} bx_selector_t;
typedef struct {
#define SegValidCache 0x1
#define SegAccessROK 0x2
#define SegAccessWOK 0x4
Boolean valid; // Holds above values, Or'd together. Used to
// hold only 0 or 1.
Boolean p; /* present */
Bit8u dpl; /* descriptor privilege level 0..3 */
Boolean segment; /* 0 = system/gate, 1 = data/code segment */
Bit8u type; /* For system & gate descriptors, only
* 0 = invalid descriptor (reserved)
* 1 = 286 available Task State Segment (TSS)
* 2 = LDT descriptor
* 3 = 286 busy Task State Segment (TSS)
* 4 = 286 call gate
* 5 = task gate
* 6 = 286 interrupt gate
* 7 = 286 trap gate
* 8 = (reserved)
* 9 = 386 available TSS
* 10 = (reserved)
* 11 = 386 busy TSS
* 12 = 386 call gate
* 13 = (reserved)
* 14 = 386 interrupt gate
* 15 = 386 trap gate */
union {
struct {
Boolean executable; /* 1=code, 0=data or stack segment */
Boolean c_ed; /* for code: 1=conforming,
for data/stack: 1=expand down */
Boolean r_w; /* for code: readable?, for data/stack: writeable? */
Boolean a; /* accessed? */
bx_address base; /* base address: 286=24bits, 386=32bits, long=64 */
Bit32u limit; /* limit: 286=16bits, 386=20bits */
Bit32u limit_scaled; /* for efficiency, this contrived field is set to
* limit for byte granular, and
* (limit << 12) | 0xfff for page granular seg's
*/
#if BX_CPU_LEVEL >= 3
Boolean g; /* granularity: 0=byte, 1=4K (page) */
Boolean d_b; /* default size: 0=16bit, 1=32bit */
#if BX_SUPPORT_X86_64
Boolean l; /* long mode: 0=compat, 1=64 bit */
#endif
Boolean avl; /* available for use by system */
#endif
} segment;
struct {
Bit8u word_count; /* 5bits (0..31) #words to copy from caller's stack
* to called procedure's stack. (call gates only)*/
Bit16u dest_selector;
Bit16u dest_offset;
} gate286;
struct { // type 5: Task Gate Descriptor
Bit16u tss_selector; // TSS segment selector
} taskgate;
#if BX_CPU_LEVEL >= 3
struct {
Bit8u dword_count; /* 5bits (0..31) #dwords to copy from caller's stack
* to called procedure's stack. (call gates only)*/
Bit16u dest_selector;
Bit32u dest_offset;
} gate386;
#endif
struct {
Bit32u base; /* 24 bit 286 TSS base */
Bit16u limit; /* 16 bit 286 TSS limit */
} tss286;
#if BX_CPU_LEVEL >= 3
struct {
bx_address base; /* 32/64 bit 386 TSS base */
Bit32u limit; /* 20 bit 386 TSS limit */
Bit32u limit_scaled; // Same notes as for 'segment' field
Boolean g; /* granularity: 0=byte, 1=4K (page) */
Boolean avl; /* available for use by system */
} tss386;
#endif
struct {
bx_address base; /* 286=24 386+ =32/64 bit LDT base */
Bit16u limit; /* 286+ =16 bit LDT limit */
} ldt;
} u;
} bx_descriptor_t;
typedef struct {
bx_selector_t selector;
bx_descriptor_t cache;
} bx_segment_reg_t;
typedef void * (*BxVoidFPtr_t)(void);
class BX_CPU_C;
class bxInstruction_c {
public:
// Function pointers; a function to resolve the modRM address
// given the current state of the CPU and the instruction data,
// and a function to execute the instruction after resolving
// the memory address (if any).
#if BX_USE_CPU_SMF
void (*ResolveModrm)(bxInstruction_c *);
void (*execute)(bxInstruction_c *);
#else
void (BX_CPU_C::*ResolveModrm)(bxInstruction_c *);
void (BX_CPU_C::*execute)(bxInstruction_c *);
#endif
// 26..23 ilen (0..15). Leave this one on top so no mask is needed.
// 22..22 mod==c0 (modrm)
// 21..13 b1 (9bits of opcode; 1byte-op=0..255, 2byte-op=256..511.
// 12..12 BxRepeatableZF (pass-thru from fetchdecode attributes)
// 11..11 BxRepeatable (pass-thru from fetchdecode attributes)
// 10...9 repUsed (0=none, 2=0xF2, 3=0xF3).
// 8...8 extend8bit
// 7...7 as64
// 6...6 os64
// 5...5 as32
// 4...4 os32
// 3...3 (unused)
// 2...0 seg
unsigned metaInfo;
union {
// Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
struct {
// Note: if you add more bits, mask the previously upper field,
// in the accessor.
// 27..20 modRM (modrm)
// 19..16 index (sib)
// 15..12 base (sib)
// 11...8 nnn (modrm)
// 7...6 mod (modrm)
// 5...4 scale (sib)
// 3...0 rm (modrm)
Bit32u modRMData;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit16u displ16u; // for 16-bit modrm forms
Bit32u displ32u; // for 32-bit modrm forms
};
} modRMForm;
struct {
Bit32u dummy;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit32u Id2; // Not used (for alignment)
Bit16u Iw2;
Bit8u Ib2;
};
} IxIxForm;
struct {
// For opcodes which don't use modRM, but which encode the
// register in the low 3 bits of the opcode, extended by the
// REX.B bit on x86-64, the register value is cached in opcodeReg.
Bit32u opcodeReg;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
Bit32u dummy;
} IxForm;
#if BX_SUPPORT_X86_64
// Form: [opcode/Iq]. These opcode never use a modrm sequence.
struct {
Bit32u opcodeReg;
Bit64u Iq; // for MOV Rx,imm64
} IqForm;
#endif
};
BX_CPP_INLINE unsigned opcodeReg() {
// The opcodeReg form (low 3 bits of the opcode byte (extended
// by REX.B on x86-64) can be accessed by IxForm or IqForm. They
// are aligned in the same place, so it doesn't matter.
return IxForm.opcodeReg;
}
BX_CPP_INLINE unsigned modrm() { return (modRMForm.modRMData>>20) & 0xff; }
BX_CPP_INLINE unsigned mod() { return modRMForm.modRMData & 0xc0; }
BX_CPP_INLINE unsigned modC0()
{
// This is a cheaper way to test for modRM instructions where
// the mod field is 0xc0. FetchDecode flags this condition since
// it is quite common to be tested for.
return metaInfo & (1<<22);
}
BX_CPP_INLINE unsigned nnn() {
return (modRMForm.modRMData >> 8) & 0xf;
}
BX_CPP_INLINE unsigned rm() { return modRMForm.modRMData & 0xf; }
BX_CPP_INLINE unsigned sibScale() {
return (modRMForm.modRMData >> 4) & 0x3;
}
BX_CPP_INLINE unsigned sibIndex() {
return (modRMForm.modRMData >> 16) & 0xf;
}
BX_CPP_INLINE unsigned sibBase() {
return (modRMForm.modRMData >> 12) & 0xf;
}
BX_CPP_INLINE Bit32u displ32u() { return modRMForm.displ32u; }
BX_CPP_INLINE Bit16u displ16u() { return modRMForm.displ16u; }
BX_CPP_INLINE Bit32u Id() { return modRMForm.Id; }
BX_CPP_INLINE Bit16u Iw() { return modRMForm.Iw; }
BX_CPP_INLINE Bit8u Ib() { return modRMForm.Ib; }
BX_CPP_INLINE Bit16u Iw2() { return IxIxForm.Iw2; } // Legacy
BX_CPP_INLINE Bit8u Ib2() { return IxIxForm.Ib2; } // Legacy
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u Iq() { return IqForm.Iq; }
#endif
// Info in the metaInfo field.
// Note: the 'L' at the end of certain flags, means the value returned
// is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you
// want a Boolean value, use os32B() etc. This makes for smaller
// code, when a strict 0 or 1 is not necessary.
BX_CPP_INLINE void initMetaInfo(unsigned seg,
unsigned os32, unsigned as32,
unsigned os64, unsigned as64,
unsigned extend8bit, unsigned repUsed) {
metaInfo = seg | (os32<<4) | (as32<<5) |
(os64<<6) | (as64<<7) | (extend8bit<<8) | (repUsed<<9);
}
BX_CPP_INLINE unsigned seg(void) {
return metaInfo & 7;
}
BX_CPP_INLINE void setSeg(unsigned val) {
metaInfo = (metaInfo & ~7) | val;
}
BX_CPP_INLINE unsigned os32L(void) {
return metaInfo & (1<<4);
}
BX_CPP_INLINE unsigned os32B(void) {
return (metaInfo >> 4) & 1;
}
BX_CPP_INLINE void setOs32B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<4)) | (bit<<4);
}
BX_CPP_INLINE void assertOs32(void) {
metaInfo |= (1<<4);
}
BX_CPP_INLINE unsigned as32L(void) {
return metaInfo & (1<<5);
}
BX_CPP_INLINE unsigned as32B(void) {
return (metaInfo >> 5) & 1;
}
BX_CPP_INLINE void setAs32B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<5)) | (bit<<5);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned os64L(void) {
return metaInfo & (1<<6);
}
BX_CPP_INLINE void setOs64B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<6)) | (bit<<6);
}
BX_CPP_INLINE void assertOs64(void) {
metaInfo |= (1<<6);
}
#else
BX_CPP_INLINE unsigned os64L(void) { return 0; }
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned as64L(void) {
return metaInfo & (1<<7);
}
BX_CPP_INLINE void setAs64B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<7)) | (bit<<7);
}
#else
BX_CPP_INLINE unsigned as64L(void) { return 0; }
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned extend8bitL(void) {
return metaInfo & (1<<8);
}
BX_CPP_INLINE void assertExtend8bit(void) {
metaInfo |= (1<<8);
}
#endif
BX_CPP_INLINE unsigned repUsedL(void) {
return metaInfo & (3<<9);
}
BX_CPP_INLINE unsigned repUsedValue(void) {
return (metaInfo >> 9) & 3;
}
BX_CPP_INLINE void setRepUsed(unsigned value) {
metaInfo = (metaInfo & ~(3<<9)) | (value<<9);
}
BX_CPP_INLINE void setRepAttr(unsigned value) {
// value is expected to be masked, and only contain bits
// for BxRepeatable and BxRepeatableZF. We don't need to
// keep masking out these bits before we add in new ones,
// since the fetch process won't start with repeatable attributes
// and then delete them.
metaInfo |= value;
}
BX_CPP_INLINE unsigned repeatableL(void) {
return metaInfo & (1<<11);
}
BX_CPP_INLINE unsigned repeatableZFL(void) {
return metaInfo & (1<<12);
}
BX_CPP_INLINE unsigned b1(void) {
return (metaInfo >> 13) & 0x1ff;
}
BX_CPP_INLINE void setB1(unsigned b1) {
metaInfo = (metaInfo & ~(0x1ff<<13)) | (b1<<13);
}
// Note this is the highest field, and thus needs no masking.
// DON'T PUT ANY FIELDS HIGHER THAN THIS ONE WITHOUT ADDING A MASK.
BX_CPP_INLINE unsigned ilen(void) {
return metaInfo >> 23;
}
BX_CPP_INLINE void setILen(unsigned ilen) {
metaInfo |= (ilen<<23);
}
};
#if BX_USE_CPU_SMF
typedef void (*BxExecutePtr_t)(bxInstruction_c *);
#else
typedef void (BX_CPU_C::*BxExecutePtr_t)(bxInstruction_c *);
#endif
// ========== iCache =============================================
#if BX_SupportICache
#define BxICacheEntries (32 * 1024) // Must be a power of 2.
// bit31: 1=CS is 32/64-bit, 0=CS is 16-bit.
// bit30: 1=Long Mode, 0=not Long Mode.
// bit29: 1=iCache page, 0=Data.
#define ICacheWriteStampInvalid 0x1fffffff
#define ICacheWriteStampMax 0x1fffffff // Decrements from here.
#define ICacheWriteStampMask 0x1fffffff
class bxICacheEntry_c {
public:
Bit32u pAddr; // Physical address of the instruction.
Bit32u writeStamp; // Generation ID. Each write to a physical page
// decrements this value.
bxInstruction_c i; // The instruction decode information.
};
class bxICache_c {
public:
bxICacheEntry_c entry[BxICacheEntries];
// A table (dynamically allocated) to store write-stamp
// generation IDs. Each time a write occurs to a physical page,
// a generation ID is decremented. Only iCache entries which have
// write stamps matching the physical page write stamp are valid.
Bit32u *pageWriteStampTable; // Allocated later.
Bit32u fetchModeMask;
bxICache_c::bxICache_c() {
// Initially clear the iCache;
memset(this, 0, sizeof(*this));
pageWriteStampTable = NULL;
for (unsigned i=0; i<BxICacheEntries; i++) {
entry[i].writeStamp = ICacheWriteStampInvalid;
}
}
BX_CPP_INLINE void alloc(unsigned memSizeInBytes) {
pageWriteStampTable =
(Bit32u*) malloc(sizeof(Bit32u) * (memSizeInBytes>>12));
for (unsigned i=0; i<(memSizeInBytes>>12); i++) {
pageWriteStampTable[i] = ICacheWriteStampInvalid;
}
}
BX_CPP_INLINE void decWriteStamp(BX_CPU_C *cpu, Bit32u a20Addr);
BX_CPP_INLINE void clear(void) {
memset(this, 0, sizeof(*this));
}
BX_CPP_INLINE unsigned hash(Bit32u pAddr) {
// A pretty dumb hash function for now.
return pAddr & (BxICacheEntries-1);
}
BX_CPP_INLINE Bit32u createFetchModeMask(BX_CPU_C *cpu);
};
#endif
// ===============================================================
#if BX_CPU_LEVEL < 2
/* no GDTR or IDTR register in an 8086 */
#else
typedef struct {
bx_address base; /* base address: 24bits=286,32bits=386,64bits=x86-64 */
Bit16u limit; /* limit, 16bits */
} bx_global_segment_reg_t;
#endif
#if BX_USE_TLB
typedef struct {
bx_address lpf; // linear page frame
Bit32u ppf; // physical page frame
Bit32u accessBits; // Page Table Address for updating A & D bits
Bit32u hostPageAddr;
} bx_TLB_entry;
#endif // #if BX_USE_TLB
#if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u dword_filler;
Bit16u word_filler;
union {
Bit16u rx;
struct {
Bit8u rh;
Bit8u rl;
} byte;
};
} word;
Bit64u rrx;
struct {
Bit32u hrx; // hi 32 bits
Bit32u erx; // low 32 bits
} dword;
};
} bx_gen_reg_t;
#else
typedef struct {
union {
struct {
union {
Bit16u rx;
struct {
Bit8u rl;
Bit8u rh;
} byte;
};
Bit16u word_filler;
Bit32u dword_filler;
} word;
Bit64u rrx;
struct {
Bit32u erx; // low 32 bits
Bit32u hrx; // hi 32 bits
} dword;
};
} bx_gen_reg_t;
#endif
#else // #if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u erx;
} dword;
struct {
Bit16u word_filler;
union {
Bit16u rx;
struct {
Bit8u rh;
Bit8u rl;
} byte;
};
} word;
};
} bx_gen_reg_t;
#else
typedef struct {
union {
struct {
Bit32u erx;
} dword;
struct {
union {
Bit16u rx;
struct {
Bit8u rl;
Bit8u rh;
} byte;
};
Bit16u word_filler;
} word;
};
} bx_gen_reg_t;
#endif
#endif // #if BX_SUPPORT_X86_64
typedef enum {
APIC_TYPE_NONE,
APIC_TYPE_IOAPIC,
APIC_TYPE_LOCAL_APIC
} bx_apic_type_t;
#define APIC_BASE_ADDR 0xfee00000 // default APIC address
#if BX_SUPPORT_APIC
class bx_generic_apic_c : public logfunctions {
protected:
Bit32u base_addr;
Bit8u id;
#define APIC_UNKNOWN_ID 0xff
#define APIC_VERSION_ID 0x00170011 // same version as 82093 IOAPIC
public:
bx_generic_apic_c ();
virtual ~bx_generic_apic_c ();
virtual void init ();
virtual void hwreset () { }
Bit32u get_base (void) { return base_addr; }
void set_base (Bit32u newbase);
void set_id (Bit8u newid);
Bit8u get_id () { return id; }
virtual char *get_name();
Boolean is_selected (Bit32u addr, Bit32u len);
void read (Bit32u addr, void *data, unsigned len);
virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len);
virtual void write(Bit32u address, Bit32u *value, unsigned len);
virtual void startup_msg (Bit32u vector);
// on local APIC, trigger means deliver to the CPU.
// on I/O APIC, trigger means direct to another APIC according to table.
virtual void trigger_irq (unsigned num, unsigned from);
virtual void untrigger_irq (unsigned num, unsigned from);
virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode);
virtual Boolean deliver (Bit8u destination, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector, Bit8u polarity, Bit8u trig_mode);
virtual Boolean match_logical_addr (Bit8u address);
virtual bx_apic_type_t get_type ();
virtual void set_arb_id (int newid); // only implemented on local apics
};
class bx_local_apic_c : public bx_generic_apic_c {
#define BX_LOCAL_APIC_MAX_INTS 256
// TMR=trigger mode register. Cleared for edge-triggered interrupts
// and set for level-triggered interrupts. If set, local APIC must send
// EOI message to all other APICs. EOI's are not implemented.
Bit8u tmr[BX_LOCAL_APIC_MAX_INTS];
// IRR=interrupt request register. When an interrupt is triggered by
// the I/O APIC or another processor, it sets a bit in irr. The bit is
// cleared when the interrupt is acknowledged by the processor.
Bit8u irr[BX_LOCAL_APIC_MAX_INTS];
// ISR=in-service register. When an IRR bit is cleared, the corresponding
// bit in ISR is set. The ISR bit is cleared when
Bit8u isr[BX_LOCAL_APIC_MAX_INTS];
Bit32u arb_id, arb_priority, task_priority, log_dest, dest_format, spurious_vec;
Bit32u lvt[6];
#define APIC_LVT_TIMER 0
#define APIC_LVT_THERMAL 1
#define APIC_LVT_PERFORM 2
#define APIC_LVT_LINT0 3
#define APIC_LVT_LINT1 4
#define APIC_LVT_ERROR 5
Bit32u timer_initial, timer_current, timer_divconf;
Boolean timer_active; // internal state, not accessible from bus
Bit32u timer_divide_counter, timer_divide_factor;
Bit32u icr_high, icr_low;
Bit32u err_status;
#define APIC_ERR_ILLEGAL_ADDR 0x80
#define APIC_ERR_RX_ILLEGAL_VEC 0x40
#define APIC_ERR_TX_ILLEGAL_VEC 0x20
#define APIC_ERR_RX_ACCEPT_ERR 0x08
#define APIC_ERR_TX_ACCEPT_ERR 0x04
#define APIC_ERR_RX_CHECKSUM 0x02
#define APIC_ERR_TX_CHECKSUM 0x01
public:
bx_local_apic_c(BX_CPU_C *mycpu);
virtual ~bx_local_apic_c(void);
BX_CPU_C *cpu;
virtual void hwreset ();
virtual void init ();
BX_CPU_C *get_cpu (Bit8u id);
void set_id (Bit8u newid); // redefine to set cpu->name
virtual char *get_name();
virtual void write (Bit32u addr, Bit32u *data, unsigned len);
virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len);
virtual void startup_msg (Bit32u vector);
// on local APIC, trigger means raise the CPU's INTR line. For now
// I also have to raise pc_system.INTR but that should be replaced
// with the cpu-specific INTR signals.
virtual void trigger_irq (unsigned num, unsigned from);
virtual void untrigger_irq (unsigned num, unsigned from);
Bit8u acknowledge_int (); // only the local CPU should call this
int highest_priority_int (Bit8u *array);
void service_local_apic ();
void print_status ();
virtual Boolean match_logical_addr (Bit8u address);
virtual Boolean is_local_apic () { return true; }
virtual bx_apic_type_t get_type () { return APIC_TYPE_LOCAL_APIC; }
virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode);
virtual Boolean deliver (Bit8u destination, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector, Bit8u polarity, Bit8u trig_mode);
Bit8u get_ppr ();
Bit8u get_apr ();
void periodic (Bit32u usec_delta);
void set_divide_configuration (Bit32u value);
virtual void update_msr_apicbase(Bit32u newaddr);
virtual void set_arb_id (int newid);
};
#define APIC_MAX_ID 16
extern bx_generic_apic_c *apic_index[APIC_MAX_ID];
#endif // if BX_SUPPORT_APIC
typedef void (*BxDTShim_t)(void);
class BX_MEM_C;
#include "cpu/i387.h"
class BX_CPU_C : public logfunctions {
public: // for now...
char name[64];
// General register set
// eax: accumulator
// ebx: base
// ecx: count
// edx: data
// ebp: base pointer
// esi: source index
// edi: destination index
// esp: stack pointer
#if BX_SUPPORT_X86_64
bx_gen_reg_t gen_reg[16];
union {
#ifdef BX_BIG_ENDIAN
struct {
Bit32u rip_upper;
Bit32u eip;
} dword;
#else
struct {
Bit32u eip;
Bit32u rip_upper;
} dword;
#endif
Bit64u rip;
};
#else
bx_gen_reg_t gen_reg[8];
union {
Bit32u eip; // instruction pointer
} dword;
#endif
#if BX_CPU_LEVEL > 0
// so that we can back up when handling faults, exceptions, etc.
// we need to store the value of the instruction pointer, before
// each fetch/execute cycle.
bx_address prev_eip;
#endif
// A few pointer to functions for use by the dynamic translation
// code. Keep them close to the gen_reg declaration, so I can
// use an 8bit offset to access them.
#if BX_DYNAMIC_TRANSLATION
BxDTShim_t DTWrite8vShim;
BxDTShim_t DTWrite16vShim;
BxDTShim_t DTWrite32vShim;
BxDTShim_t DTRead8vShim;
BxDTShim_t DTRead16vShim;
BxDTShim_t DTRead32vShim;
BxDTShim_t DTReadRMW8vShim;
BxDTShim_t DTReadRMW16vShim;
BxDTShim_t DTReadRMW32vShim;
BxDTShim_t DTWriteRMW8vShim;
BxDTShim_t DTWriteRMW16vShim;
BxDTShim_t DTWriteRMW32vShim;
BxDTShim_t DTSetFlagsOSZAPCPtr;
BxDTShim_t DTIndBrHandler;
BxDTShim_t DTDirBrHandler;
#endif
// status and control flags register set
Bit32u lf_flags_status;
bx_flags_reg_t eflags;
bx_lf_flags_entry oszapc;
bx_lf_flags_entry oszap;
bx_address prev_esp;
#define BX_INHIBIT_INTERRUPTS 0x01
#define BX_INHIBIT_DEBUG 0x02
// What events to inhibit at any given time. Certain instructions
// inhibit interrupts, some debug exceptions and single-step traps.
unsigned inhibit_mask;
/* user segment register set */
bx_segment_reg_t sregs[6];
/* system segment registers */
#if BX_CPU_LEVEL >= 2
bx_global_segment_reg_t gdtr; /* global descriptor table register */
bx_global_segment_reg_t idtr; /* interrupt descriptor table register */
#endif
bx_segment_reg_t ldtr; /* interrupt descriptor table register */
bx_segment_reg_t tr; /* task register */
/* debug registers 0-7 (unimplemented) */
#if BX_CPU_LEVEL >= 3
Bit32u dr0;
Bit32u dr1;
Bit32u dr2;
Bit32u dr3;
Bit32u dr6;
Bit32u dr7;
#endif
/* TR3 - TR7 (Test Register 3-7), unimplemented */
/* Control registers */
#if BX_CPU_LEVEL >= 2
bx_cr0_t cr0;
Bit32u cr1;
bx_address cr2;
bx_address cr3;
#endif
#if BX_CPU_LEVEL >= 4
bx_cr4_t cr4;
#endif
#if BX_CPU_LEVEL >= 5
bx_regs_msr_t msr;
#endif
i387_t the_i387;
// pointer to the address space that this processor uses.
BX_MEM_C *mem;
Boolean EXT; /* 1 if processing external interrupt or exception
* or if not related to current instruction,
* 0 if current CS:IP caused exception */
unsigned errorno; /* signal exception during instruction emulation */
Bit32u debug_trap; // holds DR6 value to be set as well
volatile Boolean async_event;
volatile Boolean INTR;
volatile Boolean kill_bochs_request;
/* wether this CPU is the BSP always set for UP */
Boolean bsp;
// for accessing registers by index number
Bit16u *_16bit_base_reg[8];
Bit16u *_16bit_index_reg[8];
Bit32u empty_register;
// for decoding instructions; accessing seg reg's by index
unsigned sreg_mod00_rm16[8];
unsigned sreg_mod01_rm16[8];
unsigned sreg_mod10_rm16[8];
#if BX_SUPPORT_X86_64
unsigned sreg_mod01_rm32[16];
unsigned sreg_mod10_rm32[16];
unsigned sreg_mod0_base32[16];
unsigned sreg_mod1or2_base32[16];
#else
unsigned sreg_mod01_rm32[8];
unsigned sreg_mod10_rm32[8];
unsigned sreg_mod0_base32[8];
unsigned sreg_mod1or2_base32[8];
#endif
// for exceptions
jmp_buf jmp_buf_env;
Bit8u curr_exception[2];
static const Boolean is_exception_OK[3][3];
bx_segment_reg_t save_cs;
bx_segment_reg_t save_ss;
Bit32u save_eip;
Bit32u save_esp;
// Boundaries of current page, based on EIP
bx_address eipPageBias;
bx_address eipPageWindowSize;
Bit8u *eipFetchPtr;
Bit32u pAddrA20Page; // Guest physical address of current instruction
// page with A20() already applied.
#if BX_SUPPORT_X86_64
// for x86-64 (MODE_IA32,MODE_LONG,MODE_64)
unsigned cpu_mode;
#else
// x86-32 is always in IA32 mode.
enum { cpu_mode = BX_MODE_IA32 };
#endif
#if BX_DEBUGGER
Bit32u watchpoint;
Bit8u break_point;
#ifdef MAGIC_BREAKPOINT
Bit8u magic_break;
#endif
Bit8u stop_reason;
Bit8u trace;
Bit8u trace_reg;
Bit8u mode_break; /* BW */
Boolean debug_vm; /* BW contains current mode*/
Bit8u show_eip; /* BW record eip at special instr f.ex eip */
Bit8u show_flag; /* BW shows instr class executed */
bx_guard_found_t guard_found;
#endif
#if BX_SUPPORT_X86_64
#define TLB_GENERATION_MAX (BX_TLB_SIZE-1)
#endif
// for paging
#if BX_USE_TLB
struct {
bx_TLB_entry entry[BX_TLB_SIZE] BX_CPP_AlignN(16);
#if BX_USE_QUICK_TLB_INVALIDATE
# define BX_TLB_LPF_VALUE(lpf) (lpf | BX_CPU_THIS_PTR TLB.tlb_invalidate)
Bit32u tlb_invalidate;
#else
# define BX_TLB_LPF_VALUE(lpf) (lpf)
#endif
} TLB;
#endif // #if BX_USE_TLB
// An instruction cache. Each entry should be exactly 32 bytes, and
// this structure should be aligned on a 32-byte boundary to be friendly
// with the host cache lines.
#if BX_SupportICache
bxICache_c iCache BX_CPP_AlignN(32);
#endif
struct {
bx_address rm_addr; // The address offset after resolution.
Bit32u paddress1; // physical address after translation of 1st len1 bytes of data
Bit32u paddress2; // physical address after translation of 2nd len2 bytes of data
Bit32u len1; // Number of bytes in page 1
Bit32u len2; // Number of bytes in page 2
Bit32u pages; // Number of pages access spans (1 or 2). Also used
// for the case when a native host pointer is
// available for the R-M-W instructions. The host
// pointer is stuffed here. Since this field has
// to be checked anyways (and thus cached), if it
// is greated than 2 (the maximum possible for
// normal cases) it is a native pointer and is used
// for a direct write access.
} address_xlation;
#if BX_SUPPORT_X86_64
// data upper 32 bits - not used any longer
//Bit32s daddr_upper; // upper bits must be canonical (-virtmax --> + virtmax)
// instruction upper 32 bits - not used any longer
//Bit32s iaddr_upper; // upper bits must be canonical (-virtmax --> + virtmax)
void ask (int level, const char *prefix, const char *fmt, va_list ap);
#endif
#define ArithmeticalFlag(flag, lfMaskShift, eflagsBitShift) \
BX_SMF Boolean get_##flag##Lazy(void); \
BX_SMF Boolean getB_##flag(void) { \
if ( (BX_CPU_THIS_PTR lf_flags_status & (0xf<<lfMaskShift)) == \
((Bit32u) (BX_LF_INDEX_KNOWN<<lfMaskShift)) ) \
return (BX_CPU_THIS_PTR eflags.val32 >> eflagsBitShift) & 1; \
else \
return get_##flag##Lazy(); \
} \
BX_SMF Boolean get_##flag(void) { \
if ( (BX_CPU_THIS_PTR lf_flags_status & (0xf<<lfMaskShift)) == \
((Bit32u) (BX_LF_INDEX_KNOWN<<lfMaskShift)) ) \
return BX_CPU_THIS_PTR eflags.val32 & (1<<eflagsBitShift); \
else \
return get_##flag##Lazy(); \
}
ArithmeticalFlag(OF, 20, 11);
ArithmeticalFlag(SF, 16, 7);
ArithmeticalFlag(ZF, 12, 6);
ArithmeticalFlag(AF, 8, 4);
ArithmeticalFlag(PF, 4, 2);
ArithmeticalFlag(CF, 0, 0);
// constructors & destructors...
BX_CPU_C();
~BX_CPU_C(void);
void init (BX_MEM_C *addrspace);
// prototypes for CPU instructions...
BX_SMF void ADD_EbGb(bxInstruction_c *);
BX_SMF void ADD_EdGd(bxInstruction_c *);
BX_SMF void ADD_GbEb(bxInstruction_c *);
BX_SMF void ADD_GdEd(bxInstruction_c *);
BX_SMF void ADD_ALIb(bxInstruction_c *);
BX_SMF void ADD_EAXId(bxInstruction_c *);
BX_SMF void OR_EbGb(bxInstruction_c *);
BX_SMF void OR_EdGd(bxInstruction_c *);
BX_SMF void OR_EwGw(bxInstruction_c *);
BX_SMF void OR_GbEb(bxInstruction_c *);
BX_SMF void OR_GdEd(bxInstruction_c *);
BX_SMF void OR_GwEw(bxInstruction_c *);
BX_SMF void OR_ALIb(bxInstruction_c *);
BX_SMF void OR_EAXId(bxInstruction_c *);
BX_SMF void OR_AXIw(bxInstruction_c *);
BX_SMF void PUSH_CS(bxInstruction_c *);
BX_SMF void PUSH_DS(bxInstruction_c *);
BX_SMF void POP_DS(bxInstruction_c *);
BX_SMF void PUSH_ES(bxInstruction_c *);
BX_SMF void POP_ES(bxInstruction_c *);
BX_SMF void PUSH_FS(bxInstruction_c *);
BX_SMF void POP_FS(bxInstruction_c *);
BX_SMF void PUSH_GS(bxInstruction_c *);
BX_SMF void POP_GS(bxInstruction_c *);
BX_SMF void PUSH_SS(bxInstruction_c *);
BX_SMF void POP_SS(bxInstruction_c *);
BX_SMF void ADC_EbGb(bxInstruction_c *);
BX_SMF void ADC_EdGd(bxInstruction_c *);
BX_SMF void ADC_GbEb(bxInstruction_c *);
BX_SMF void ADC_GdEd(bxInstruction_c *);
BX_SMF void ADC_ALIb(bxInstruction_c *);
BX_SMF void ADC_EAXId(bxInstruction_c *);
BX_SMF void SBB_EbGb(bxInstruction_c *);
BX_SMF void SBB_EdGd(bxInstruction_c *);
BX_SMF void SBB_GbEb(bxInstruction_c *);
BX_SMF void SBB_GdEd(bxInstruction_c *);
BX_SMF void SBB_ALIb(bxInstruction_c *);
BX_SMF void SBB_EAXId(bxInstruction_c *);
BX_SMF void AND_EbGb(bxInstruction_c *);
BX_SMF void AND_EdGd(bxInstruction_c *);
BX_SMF void AND_EwGw(bxInstruction_c *);
BX_SMF void AND_GbEb(bxInstruction_c *);
BX_SMF void AND_GdEd(bxInstruction_c *);
BX_SMF void AND_GwEw(bxInstruction_c *);
BX_SMF void AND_ALIb(bxInstruction_c *);
BX_SMF void AND_EAXId(bxInstruction_c *);
BX_SMF void AND_AXIw(bxInstruction_c *);
BX_SMF void DAA(bxInstruction_c *);
BX_SMF void SUB_EbGb(bxInstruction_c *);
BX_SMF void SUB_EdGd(bxInstruction_c *);
BX_SMF void SUB_GbEb(bxInstruction_c *);
BX_SMF void SUB_GdEd(bxInstruction_c *);
BX_SMF void SUB_ALIb(bxInstruction_c *);
BX_SMF void SUB_EAXId(bxInstruction_c *);
BX_SMF void DAS(bxInstruction_c *);
BX_SMF void XOR_EbGb(bxInstruction_c *);
BX_SMF void XOR_EdGd(bxInstruction_c *);
BX_SMF void XOR_EwGw(bxInstruction_c *);
BX_SMF void XOR_GbEb(bxInstruction_c *);
BX_SMF void XOR_GdEd(bxInstruction_c *);
BX_SMF void XOR_GwEw(bxInstruction_c *);
BX_SMF void XOR_ALIb(bxInstruction_c *);
BX_SMF void XOR_EAXId(bxInstruction_c *);
BX_SMF void XOR_AXIw(bxInstruction_c *);
BX_SMF void AAA(bxInstruction_c *);
BX_SMF void CMP_EbGb(bxInstruction_c *);
BX_SMF void CMP_EdGd(bxInstruction_c *);
BX_SMF void CMP_GbEb(bxInstruction_c *);
BX_SMF void CMP_GdEd(bxInstruction_c *);
BX_SMF void CMP_ALIb(bxInstruction_c *);
BX_SMF void CMP_EAXId(bxInstruction_c *);
BX_SMF void AAS(bxInstruction_c *);
BX_SMF void PUSHAD32(bxInstruction_c *);
BX_SMF void PUSHAD16(bxInstruction_c *);
BX_SMF void POPAD32(bxInstruction_c *);
BX_SMF void POPAD16(bxInstruction_c *);
BX_SMF void BOUND_GvMa(bxInstruction_c *);
BX_SMF void ARPL_EwGw(bxInstruction_c *);
BX_SMF void PUSH_Id(bxInstruction_c *);
BX_SMF void PUSH_Iw(bxInstruction_c *);
BX_SMF void IMUL_GdEdId(bxInstruction_c *);
BX_SMF void INSB_YbDX(bxInstruction_c *);
BX_SMF void INSW_YvDX(bxInstruction_c *);
BX_SMF void OUTSB_DXXb(bxInstruction_c *);
BX_SMF void OUTSW_DXXv(bxInstruction_c *);
BX_SMF void TEST_EbGb(bxInstruction_c *);
BX_SMF void TEST_EdGd(bxInstruction_c *);
BX_SMF void TEST_EwGw(bxInstruction_c *);
BX_SMF void XCHG_EbGb(bxInstruction_c *);
BX_SMF void XCHG_EdGd(bxInstruction_c *);
BX_SMF void XCHG_EwGw(bxInstruction_c *);
BX_SMF void MOV_EbGb(bxInstruction_c *);
BX_SMF void MOV_EdGd(bxInstruction_c *);
BX_SMF void MOV_EwGw(bxInstruction_c *);
BX_SMF void MOV_GbEb(bxInstruction_c *);
BX_SMF void MOV_GdEd(bxInstruction_c *);
BX_SMF void MOV_GwEw(bxInstruction_c *);
BX_SMF void MOV_EwSw(bxInstruction_c *);
BX_SMF void LEA_GdM(bxInstruction_c *);
BX_SMF void LEA_GwM(bxInstruction_c *);
BX_SMF void MOV_SwEw(bxInstruction_c *);
BX_SMF void POP_Ev(bxInstruction_c *);
BX_SMF void CBW(bxInstruction_c *);
BX_SMF void CWD(bxInstruction_c *);
BX_SMF void CALL32_Ap(bxInstruction_c *);
BX_SMF void CALL16_Ap(bxInstruction_c *);
BX_SMF void FWAIT(bxInstruction_c *);
BX_SMF void PUSHF_Fv(bxInstruction_c *);
BX_SMF void POPF_Fv(bxInstruction_c *);
BX_SMF void SAHF(bxInstruction_c *);
BX_SMF void LAHF(bxInstruction_c *);
BX_SMF void MOV_ALOb(bxInstruction_c *);
BX_SMF void MOV_EAXOd(bxInstruction_c *);
BX_SMF void MOV_AXOw(bxInstruction_c *);
BX_SMF void MOV_ObAL(bxInstruction_c *);
BX_SMF void MOV_OdEAX(bxInstruction_c *);
BX_SMF void MOV_OwAX(bxInstruction_c *);
BX_SMF void MOVSB_XbYb(bxInstruction_c *);
BX_SMF void MOVSW_XvYv(bxInstruction_c *);
BX_SMF void CMPSB_XbYb(bxInstruction_c *);
BX_SMF void CMPSW_XvYv(bxInstruction_c *);
BX_SMF void TEST_ALIb(bxInstruction_c *);
BX_SMF void TEST_EAXId(bxInstruction_c *);
BX_SMF void TEST_AXIw(bxInstruction_c *);
BX_SMF void STOSB_YbAL(bxInstruction_c *);
BX_SMF void STOSW_YveAX(bxInstruction_c *);
BX_SMF void LODSB_ALXb(bxInstruction_c *);
BX_SMF void LODSW_eAXXv(bxInstruction_c *);
BX_SMF void SCASB_ALXb(bxInstruction_c *);
BX_SMF void SCASW_eAXXv(bxInstruction_c *);
BX_SMF void RETnear32(bxInstruction_c *);
BX_SMF void RETnear16(bxInstruction_c *);
BX_SMF void LES_GvMp(bxInstruction_c *);
BX_SMF void LDS_GvMp(bxInstruction_c *);
BX_SMF void MOV_EbIb(bxInstruction_c *);
BX_SMF void MOV_EdId(bxInstruction_c *);
BX_SMF void MOV_EwIw(bxInstruction_c *);
BX_SMF void ENTER_IwIb(bxInstruction_c *);
BX_SMF void LEAVE(bxInstruction_c *);
BX_SMF void RETfar32(bxInstruction_c *);
BX_SMF void RETfar16(bxInstruction_c *);
BX_SMF void INT1(bxInstruction_c *);
BX_SMF void INT3(bxInstruction_c *);
BX_SMF void INT_Ib(bxInstruction_c *);
BX_SMF void INTO(bxInstruction_c *);
BX_SMF void IRET32(bxInstruction_c *);
BX_SMF void IRET16(bxInstruction_c *);
BX_SMF void AAM(bxInstruction_c *);
BX_SMF void AAD(bxInstruction_c *);
BX_SMF void SALC(bxInstruction_c *);
BX_SMF void XLAT(bxInstruction_c *);
BX_SMF void LOOPNE_Jb(bxInstruction_c *);
BX_SMF void LOOPE_Jb(bxInstruction_c *);
BX_SMF void LOOP_Jb(bxInstruction_c *);
BX_SMF void JCXZ_Jb(bxInstruction_c *);
BX_SMF void IN_ALIb(bxInstruction_c *);
BX_SMF void IN_eAXIb(bxInstruction_c *);
BX_SMF void OUT_IbAL(bxInstruction_c *);
BX_SMF void OUT_IbeAX(bxInstruction_c *);
BX_SMF void CALL_Aw(bxInstruction_c *);
BX_SMF void CALL_Ad(bxInstruction_c *);
BX_SMF void JMP_Jd(bxInstruction_c *);
BX_SMF void JMP_Jw(bxInstruction_c *);
BX_SMF void JMP_Ap(bxInstruction_c *);
BX_SMF void IN_ALDX(bxInstruction_c *);
BX_SMF void IN_eAXDX(bxInstruction_c *);
BX_SMF void OUT_DXAL(bxInstruction_c *);
BX_SMF void OUT_DXeAX(bxInstruction_c *);
BX_SMF void HLT(bxInstruction_c *);
BX_SMF void CMC(bxInstruction_c *);
BX_SMF void CLC(bxInstruction_c *);
BX_SMF void STC(bxInstruction_c *);
BX_SMF void CLI(bxInstruction_c *);
BX_SMF void STI(bxInstruction_c *);
BX_SMF void CLD(bxInstruction_c *);
BX_SMF void STD(bxInstruction_c *);
BX_SMF void LAR_GvEw(bxInstruction_c *);
BX_SMF void LSL_GvEw(bxInstruction_c *);
BX_SMF void CLTS(bxInstruction_c *);
BX_SMF void INVD(bxInstruction_c *);
BX_SMF void WBINVD(bxInstruction_c *);
BX_SMF void MOV_CdRd(bxInstruction_c *);
BX_SMF void MOV_DdRd(bxInstruction_c *);
BX_SMF void MOV_RdCd(bxInstruction_c *);
BX_SMF void MOV_RdDd(bxInstruction_c *);
BX_SMF void MOV_TdRd(bxInstruction_c *);
BX_SMF void MOV_RdTd(bxInstruction_c *);
BX_SMF void JCC_Jd(bxInstruction_c *);
BX_SMF void JCC_Jw(bxInstruction_c *);
BX_SMF void JZ_Jd(bxInstruction_c *);
BX_SMF void JZ_Jw(bxInstruction_c *);
BX_SMF void JNZ_Jd(bxInstruction_c *);
BX_SMF void JNZ_Jw(bxInstruction_c *);
BX_SMF void SETO_Eb(bxInstruction_c *);
BX_SMF void SETNO_Eb(bxInstruction_c *);
BX_SMF void SETB_Eb(bxInstruction_c *);
BX_SMF void SETNB_Eb(bxInstruction_c *);
BX_SMF void SETZ_Eb(bxInstruction_c *);
BX_SMF void SETNZ_Eb(bxInstruction_c *);
BX_SMF void SETBE_Eb(bxInstruction_c *);
BX_SMF void SETNBE_Eb(bxInstruction_c *);
BX_SMF void SETS_Eb(bxInstruction_c *);
BX_SMF void SETNS_Eb(bxInstruction_c *);
BX_SMF void SETP_Eb(bxInstruction_c *);
BX_SMF void SETNP_Eb(bxInstruction_c *);
BX_SMF void SETL_Eb(bxInstruction_c *);
BX_SMF void SETNL_Eb(bxInstruction_c *);
BX_SMF void SETLE_Eb(bxInstruction_c *);
BX_SMF void SETNLE_Eb(bxInstruction_c *);
BX_SMF void CPUID(bxInstruction_c *);
BX_SMF void BT_EvGv(bxInstruction_c *);
BX_SMF void SHLD_EdGd(bxInstruction_c *);
BX_SMF void SHLD_EwGw(bxInstruction_c *);
BX_SMF void BTS_EvGv(bxInstruction_c *);
BX_SMF void SHRD_EwGw(bxInstruction_c *);
BX_SMF void SHRD_EdGd(bxInstruction_c *);
BX_SMF void IMUL_GdEd(bxInstruction_c *);
BX_SMF void LSS_GvMp(bxInstruction_c *);
BX_SMF void BTR_EvGv(bxInstruction_c *);
BX_SMF void LFS_GvMp(bxInstruction_c *);
BX_SMF void LGS_GvMp(bxInstruction_c *);
BX_SMF void MOVZX_GdEb(bxInstruction_c *);
BX_SMF void MOVZX_GwEb(bxInstruction_c *);
BX_SMF void MOVZX_GdEw(bxInstruction_c *);
BX_SMF void MOVZX_GwEw(bxInstruction_c *);
BX_SMF void BTC_EvGv(bxInstruction_c *);
BX_SMF void BSF_GvEv(bxInstruction_c *);
BX_SMF void BSR_GvEv(bxInstruction_c *);
BX_SMF void MOVSX_GdEb(bxInstruction_c *);
BX_SMF void MOVSX_GwEb(bxInstruction_c *);
BX_SMF void MOVSX_GdEw(bxInstruction_c *);
BX_SMF void MOVSX_GwEw(bxInstruction_c *);
BX_SMF void BSWAP_EAX(bxInstruction_c *);
BX_SMF void BSWAP_ECX(bxInstruction_c *);
BX_SMF void BSWAP_EDX(bxInstruction_c *);
BX_SMF void BSWAP_EBX(bxInstruction_c *);
BX_SMF void BSWAP_ESP(bxInstruction_c *);
BX_SMF void BSWAP_EBP(bxInstruction_c *);
BX_SMF void BSWAP_ESI(bxInstruction_c *);
BX_SMF void BSWAP_EDI(bxInstruction_c *);
BX_SMF void ADD_EbIb(bxInstruction_c *);
BX_SMF void ADC_EbIb(bxInstruction_c *);
BX_SMF void SBB_EbIb(bxInstruction_c *);
BX_SMF void SUB_EbIb(bxInstruction_c *);
BX_SMF void CMP_EbIb(bxInstruction_c *);
BX_SMF void XOR_EbIb(bxInstruction_c *);
BX_SMF void OR_EbIb(bxInstruction_c *);
BX_SMF void AND_EbIb(bxInstruction_c *);
BX_SMF void ADD_EdId(bxInstruction_c *);
BX_SMF void OR_EdId(bxInstruction_c *);
BX_SMF void OR_EwIw(bxInstruction_c *);
BX_SMF void ADC_EdId(bxInstruction_c *);
BX_SMF void SBB_EdId(bxInstruction_c *);
BX_SMF void AND_EdId(bxInstruction_c *);
BX_SMF void AND_EwIw(bxInstruction_c *);
BX_SMF void SUB_EdId(bxInstruction_c *);
BX_SMF void XOR_EdId(bxInstruction_c *);
BX_SMF void XOR_EwIw(bxInstruction_c *);
BX_SMF void CMP_EdId(bxInstruction_c *);
BX_SMF void ROL_Eb(bxInstruction_c *);
BX_SMF void ROR_Eb(bxInstruction_c *);
BX_SMF void RCL_Eb(bxInstruction_c *);
BX_SMF void RCR_Eb(bxInstruction_c *);
BX_SMF void SHL_Eb(bxInstruction_c *);
BX_SMF void SHR_Eb(bxInstruction_c *);
BX_SMF void SAR_Eb(bxInstruction_c *);
BX_SMF void ROL_Ed(bxInstruction_c *);
BX_SMF void ROL_Ew(bxInstruction_c *);
BX_SMF void ROR_Ed(bxInstruction_c *);
BX_SMF void ROR_Ew(bxInstruction_c *);
BX_SMF void RCL_Ed(bxInstruction_c *);
BX_SMF void RCL_Ew(bxInstruction_c *);
BX_SMF void RCR_Ed(bxInstruction_c *);
BX_SMF void RCR_Ew(bxInstruction_c *);
BX_SMF void SHL_Ed(bxInstruction_c *);
BX_SMF void SHL_Ew(bxInstruction_c *);
BX_SMF void SHR_Ed(bxInstruction_c *);
BX_SMF void SHR_Ew(bxInstruction_c *);
BX_SMF void SAR_Ed(bxInstruction_c *);
BX_SMF void SAR_Ew(bxInstruction_c *);
BX_SMF void TEST_EbIb(bxInstruction_c *);
BX_SMF void NOT_Eb(bxInstruction_c *);
BX_SMF void NEG_Eb(bxInstruction_c *);
BX_SMF void MUL_ALEb(bxInstruction_c *);
BX_SMF void IMUL_ALEb(bxInstruction_c *);
BX_SMF void DIV_ALEb(bxInstruction_c *);
BX_SMF void IDIV_ALEb(bxInstruction_c *);
BX_SMF void TEST_EdId(bxInstruction_c *);
BX_SMF void TEST_EwIw(bxInstruction_c *);
BX_SMF void NOT_Ed(bxInstruction_c *);
BX_SMF void NOT_Ew(bxInstruction_c *);
BX_SMF void NEG_Ed(bxInstruction_c *);
BX_SMF void MUL_EAXEd(bxInstruction_c *);
BX_SMF void IMUL_EAXEd(bxInstruction_c *);
BX_SMF void DIV_EAXEd(bxInstruction_c *);
BX_SMF void IDIV_EAXEd(bxInstruction_c *);
BX_SMF void INC_Eb(bxInstruction_c *);
BX_SMF void DEC_Eb(bxInstruction_c *);
BX_SMF void INC_Ed(bxInstruction_c *);
BX_SMF void DEC_Ed(bxInstruction_c *);
BX_SMF void CALL_Ed(bxInstruction_c *);
BX_SMF void CALL_Ew(bxInstruction_c *);
BX_SMF void CALL32_Ep(bxInstruction_c *);
BX_SMF void CALL16_Ep(bxInstruction_c *);
BX_SMF void JMP_Ed(bxInstruction_c *);
BX_SMF void JMP_Ew(bxInstruction_c *);
BX_SMF void JMP32_Ep(bxInstruction_c *);
BX_SMF void JMP16_Ep(bxInstruction_c *);
BX_SMF void PUSH_Ed(bxInstruction_c *);
BX_SMF void PUSH_Ew(bxInstruction_c *);
BX_SMF void SLDT_Ew(bxInstruction_c *);
BX_SMF void STR_Ew(bxInstruction_c *);
BX_SMF void LLDT_Ew(bxInstruction_c *);
BX_SMF void LTR_Ew(bxInstruction_c *);
BX_SMF void VERR_Ew(bxInstruction_c *);
BX_SMF void VERW_Ew(bxInstruction_c *);
BX_SMF void SGDT_Ms(bxInstruction_c *);
BX_SMF void SIDT_Ms(bxInstruction_c *);
BX_SMF void LGDT_Ms(bxInstruction_c *);
BX_SMF void LIDT_Ms(bxInstruction_c *);
BX_SMF void SMSW_Ew(bxInstruction_c *);
BX_SMF void LMSW_Ew(bxInstruction_c *);
BX_SMF void BT_EvIb(bxInstruction_c *);
BX_SMF void BTS_EvIb(bxInstruction_c *);
BX_SMF void BTR_EvIb(bxInstruction_c *);
BX_SMF void BTC_EvIb(bxInstruction_c *);
BX_SMF void ESC0(bxInstruction_c *);
BX_SMF void ESC1(bxInstruction_c *);
BX_SMF void ESC2(bxInstruction_c *);
BX_SMF void ESC3(bxInstruction_c *);
BX_SMF void ESC4(bxInstruction_c *);
BX_SMF void ESC5(bxInstruction_c *);
BX_SMF void ESC6(bxInstruction_c *);
BX_SMF void ESC7(bxInstruction_c *);
/* MMX */
BX_SMF void PUNPCKLBW_PqQd(bxInstruction_c *i);
BX_SMF void PUNPCKLWD_PqQd(bxInstruction_c *i);
BX_SMF void PUNPCKLDQ_PqQd(bxInstruction_c *i);
BX_SMF void PACKSSWB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTW_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTD_PqQq(bxInstruction_c *i);
BX_SMF void PACKUSWB_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHBW_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHWD_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHDQ_PqQq(bxInstruction_c *i);
BX_SMF void PACKSSDW_PqQq(bxInstruction_c *i);
BX_SMF void MOVD_PqEd(bxInstruction_c *i);
BX_SMF void MOVQ_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQW_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQD_PqQq(bxInstruction_c *i);
BX_SMF void EMMS(bxInstruction_c *i);
BX_SMF void MOVD_EdPd(bxInstruction_c *i);
BX_SMF void MOVQ_QqPq(bxInstruction_c *i);
BX_SMF void PSRLW_PqQq(bxInstruction_c *i);
BX_SMF void PSRLD_PqQq(bxInstruction_c *i);
BX_SMF void PSRLQ_PqQq(bxInstruction_c *i);
BX_SMF void PMULLW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBUSB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBUSW_PqQq(bxInstruction_c *i);
BX_SMF void PAND_PqQq(bxInstruction_c *i);
BX_SMF void PADDUSB_PqQq(bxInstruction_c *i);
BX_SMF void PADDUSW_PqQq(bxInstruction_c *i);
BX_SMF void PANDN_PqQq(bxInstruction_c *i);
BX_SMF void PSRAW_PqQq(bxInstruction_c *i);
BX_SMF void PSRAD_PqQq(bxInstruction_c *i);
BX_SMF void PMULHW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBSB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBSW_PqQq(bxInstruction_c *i);
BX_SMF void POR_PqQq(bxInstruction_c *i);
BX_SMF void PADDSB_PqQq(bxInstruction_c *i);
BX_SMF void PADDSW_PqQq(bxInstruction_c *i);
BX_SMF void PXOR_PqQq(bxInstruction_c *i);
BX_SMF void PSLLW_PqQq(bxInstruction_c *i);
BX_SMF void PSLLD_PqQq(bxInstruction_c *i);
BX_SMF void PSLLQ_PqQq(bxInstruction_c *i);
BX_SMF void PMADDWD_PqQq(bxInstruction_c *i);
BX_SMF void PSUBB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBD_PqQq(bxInstruction_c *i);
BX_SMF void PADDB_PqQq(bxInstruction_c *i);
BX_SMF void PADDW_PqQq(bxInstruction_c *i);
BX_SMF void PADDD_PqQq(bxInstruction_c *i);
BX_SMF void PSRLW_PqIb(bxInstruction_c *i);
BX_SMF void PSRAW_PqIb(bxInstruction_c *i);
BX_SMF void PSLLW_PqIb(bxInstruction_c *i);
BX_SMF void PSRLD_PqIb(bxInstruction_c *i);
BX_SMF void PSRAD_PqIb(bxInstruction_c *i);
BX_SMF void PSLLD_PqIb(bxInstruction_c *i);
BX_SMF void PSRLQ_PqIb(bxInstruction_c *i);
BX_SMF void PSLLQ_PqIb(bxInstruction_c *i);
/* MMX */
#if BX_SUPPORT_MMX
BX_SMF void PrepareMmxInstruction(void);
BX_SMF void PrintMmxRegisters(void);
#endif
BX_SMF void fpu_execute(bxInstruction_c *i);
BX_SMF void fpu_init(void);
BX_SMF void fpu_print_regs (void);
BX_SMF void CMPXCHG_XBTS(bxInstruction_c *);
BX_SMF void CMPXCHG_IBTS(bxInstruction_c *);
BX_SMF void CMPXCHG_EbGb(bxInstruction_c *);
BX_SMF void CMPXCHG_EdGd(bxInstruction_c *);
BX_SMF void CMPXCHG8B(bxInstruction_c *);
BX_SMF void XADD_EbGb(bxInstruction_c *);
BX_SMF void XADD_EdGd(bxInstruction_c *);
BX_SMF void RETnear32_Iw(bxInstruction_c *);
BX_SMF void RETnear16_Iw(bxInstruction_c *);
BX_SMF void RETfar32_Iw(bxInstruction_c *);
BX_SMF void RETfar16_Iw(bxInstruction_c *);
BX_SMF void LOADALL(bxInstruction_c *);
BX_SMF void CMOV_GdEd(bxInstruction_c *);
BX_SMF void CMOV_GwEw(bxInstruction_c *);
BX_SMF void ADD_EwGw(bxInstruction_c *);
BX_SMF void ADD_GwEw(bxInstruction_c *);
BX_SMF void ADD_AXIw(bxInstruction_c *);
BX_SMF void ADC_EwGw(bxInstruction_c *);
BX_SMF void ADC_GwEw(bxInstruction_c *);
BX_SMF void ADC_AXIw(bxInstruction_c *);
BX_SMF void SBB_EwGw(bxInstruction_c *);
BX_SMF void SBB_GwEw(bxInstruction_c *);
BX_SMF void SBB_AXIw(bxInstruction_c *);
BX_SMF void SBB_EwIw(bxInstruction_c *);
BX_SMF void SUB_EwGw(bxInstruction_c *);
BX_SMF void SUB_GwEw(bxInstruction_c *);
BX_SMF void SUB_AXIw(bxInstruction_c *);
BX_SMF void CMP_EwGw(bxInstruction_c *);
BX_SMF void CMP_GwEw(bxInstruction_c *);
BX_SMF void CMP_AXIw(bxInstruction_c *);
BX_SMF void CWDE(bxInstruction_c *);
BX_SMF void CDQ(bxInstruction_c *);
BX_SMF void XADD_EwGw(bxInstruction_c *);
BX_SMF void ADD_EwIw(bxInstruction_c *);
BX_SMF void ADC_EwIw(bxInstruction_c *);
BX_SMF void SUB_EwIw(bxInstruction_c *);
BX_SMF void CMP_EwIw(bxInstruction_c *);
BX_SMF void NEG_Ew(bxInstruction_c *);
BX_SMF void INC_Ew(bxInstruction_c *);
BX_SMF void DEC_Ew(bxInstruction_c *);
BX_SMF void CMPXCHG_EwGw(bxInstruction_c *);
BX_SMF void MUL_AXEw(bxInstruction_c *);
BX_SMF void IMUL_AXEw(bxInstruction_c *);
BX_SMF void DIV_AXEw(bxInstruction_c *);
BX_SMF void IDIV_AXEw(bxInstruction_c *);
BX_SMF void IMUL_GwEwIw(bxInstruction_c *);
BX_SMF void IMUL_GwEw(bxInstruction_c *);
BX_SMF void NOP(bxInstruction_c *);
BX_SMF void MOV_RLIb(bxInstruction_c *);
BX_SMF void MOV_RHIb(bxInstruction_c *);
BX_SMF void MOV_RXIw(bxInstruction_c *);
BX_SMF void MOV_ERXId(bxInstruction_c *);
BX_SMF void INC_RX(bxInstruction_c *);
BX_SMF void DEC_RX(bxInstruction_c *);
BX_SMF void INC_ERX(bxInstruction_c *);
BX_SMF void DEC_ERX(bxInstruction_c *);
BX_SMF void PUSH_RX(bxInstruction_c *);
BX_SMF void POP_RX(bxInstruction_c *);
BX_SMF void PUSH_ERX(bxInstruction_c *);
BX_SMF void POP_ERX(bxInstruction_c *);
BX_SMF void POP_Ew(bxInstruction_c *);
BX_SMF void POP_Ed(bxInstruction_c *);
BX_SMF void XCHG_RXAX(bxInstruction_c *);
BX_SMF void XCHG_ERXEAX(bxInstruction_c *);
#if BX_SUPPORT_X86_64
// 64 bit extensions
BX_SMF void ADD_EqGq(bxInstruction_c *);
BX_SMF void ADD_GqEq(bxInstruction_c *);
BX_SMF void ADD_RAXId(bxInstruction_c *);
BX_SMF void OR_EqGq(bxInstruction_c *);
BX_SMF void OR_GqEq(bxInstruction_c *);
BX_SMF void OR_RAXId(bxInstruction_c *);
BX_SMF void ADC_EqGq(bxInstruction_c *);
BX_SMF void ADC_GqEq(bxInstruction_c *);
BX_SMF void ADC_RAXId(bxInstruction_c *);
BX_SMF void SBB_EqGq(bxInstruction_c *);
BX_SMF void SBB_GqEq(bxInstruction_c *);
BX_SMF void SBB_RAXId(bxInstruction_c *);
BX_SMF void AND_EqGq(bxInstruction_c *);
BX_SMF void AND_GqEq(bxInstruction_c *);
BX_SMF void AND_RAXId(bxInstruction_c *);
BX_SMF void SUB_EqGq(bxInstruction_c *);
BX_SMF void SUB_GqEq(bxInstruction_c *);
BX_SMF void SUB_RAXId(bxInstruction_c *);
BX_SMF void XOR_EqGq(bxInstruction_c *);
BX_SMF void XOR_GqEq(bxInstruction_c *);
BX_SMF void XOR_RAXId(bxInstruction_c *);
BX_SMF void CMP_EqGq(bxInstruction_c *);
BX_SMF void CMP_GqEq(bxInstruction_c *);
BX_SMF void CMP_RAXId(bxInstruction_c *);
BX_SMF void PUSHAD64(bxInstruction_c *);
BX_SMF void POPAD64(bxInstruction_c *);
BX_SMF void PUSH64_Id(bxInstruction_c *);
BX_SMF void IMUL_GqEqId(bxInstruction_c *);
BX_SMF void TEST_EqGq(bxInstruction_c *);
BX_SMF void XCHG_EqGq(bxInstruction_c *);
BX_SMF void MOV_EqGq(bxInstruction_c *);
BX_SMF void MOV_GqEq(bxInstruction_c *);
BX_SMF void LEA_GqM(bxInstruction_c *);
BX_SMF void CALL64_Ap(bxInstruction_c *);
BX_SMF void MOV_RAXOq(bxInstruction_c *);
BX_SMF void MOV_OqRAX(bxInstruction_c *);
BX_SMF void MOV_EAXOq(bxInstruction_c *);
BX_SMF void MOV_OqEAX(bxInstruction_c *);
BX_SMF void MOV_AXOq(bxInstruction_c *);
BX_SMF void MOV_OqAX(bxInstruction_c *);
BX_SMF void MOV_ALOq(bxInstruction_c *);
BX_SMF void MOV_OqAL(bxInstruction_c *);
BX_SMF void TEST_RAXId(bxInstruction_c *);
BX_SMF void RETnear64(bxInstruction_c *);
BX_SMF void MOV_EqId(bxInstruction_c *);
BX_SMF void ENTER64_IwIb(bxInstruction_c *);
BX_SMF void LEAVE64(bxInstruction_c *);
BX_SMF void RETfar64(bxInstruction_c *);
BX_SMF void IRET64(bxInstruction_c *);
//BX_SMF void IN_eAXIb(bxInstruction_c *);
//BX_SMF void OUT_IbeAX(bxInstruction_c *);
BX_SMF void CALL_Aq(bxInstruction_c *);
BX_SMF void JMP_Jq(bxInstruction_c *);
//BX_SMF void IN_eAXDX(bxInstruction_c *);
//BX_SMF void OUT_DXeAX(bxInstruction_c *);
BX_SMF void MOV_CqRq(bxInstruction_c *);
BX_SMF void MOV_DqRq(bxInstruction_c *);
BX_SMF void MOV_RqCq(bxInstruction_c *);
BX_SMF void MOV_RqDq(bxInstruction_c *);
BX_SMF void MOV_TqRq(bxInstruction_c *);
BX_SMF void MOV_RqTq(bxInstruction_c *);
BX_SMF void JCC_Jq(bxInstruction_c *);
BX_SMF void SHLD_EqGq(bxInstruction_c *);
BX_SMF void SHRD_EqGq(bxInstruction_c *);
BX_SMF void IMUL_GqEq(bxInstruction_c *);
BX_SMF void MOVZX_GqEb(bxInstruction_c *);
BX_SMF void MOVZX_GqEw(bxInstruction_c *);
BX_SMF void MOVSX_GqEb(bxInstruction_c *);
BX_SMF void MOVSX_GqEw(bxInstruction_c *);
BX_SMF void MOVSX_GqEd(bxInstruction_c *);
BX_SMF void BSWAP_RAX(bxInstruction_c *);
BX_SMF void BSWAP_RCX(bxInstruction_c *);
BX_SMF void BSWAP_RDX(bxInstruction_c *);
BX_SMF void BSWAP_RBX(bxInstruction_c *);
BX_SMF void BSWAP_RSP(bxInstruction_c *);
BX_SMF void BSWAP_RBP(bxInstruction_c *);
BX_SMF void BSWAP_RSI(bxInstruction_c *);
BX_SMF void BSWAP_RDI(bxInstruction_c *);
BX_SMF void ADD_EqId(bxInstruction_c *);
BX_SMF void OR_EqId(bxInstruction_c *);
BX_SMF void ADC_EqId(bxInstruction_c *);
BX_SMF void SBB_EqId(bxInstruction_c *);
BX_SMF void AND_EqId(bxInstruction_c *);
BX_SMF void SUB_EqId(bxInstruction_c *);
BX_SMF void XOR_EqId(bxInstruction_c *);
BX_SMF void CMP_EqId(bxInstruction_c *);
BX_SMF void ROL_Eq(bxInstruction_c *);
BX_SMF void ROR_Eq(bxInstruction_c *);
BX_SMF void RCL_Eq(bxInstruction_c *);
BX_SMF void RCR_Eq(bxInstruction_c *);
BX_SMF void SHL_Eq(bxInstruction_c *);
BX_SMF void SHR_Eq(bxInstruction_c *);
BX_SMF void SAR_Eq(bxInstruction_c *);
BX_SMF void TEST_EqId(bxInstruction_c *);
BX_SMF void NOT_Eq(bxInstruction_c *);
BX_SMF void NEG_Eq(bxInstruction_c *);
BX_SMF void MUL_RAXEq(bxInstruction_c *);
BX_SMF void IMUL_RAXEq(bxInstruction_c *);
BX_SMF void DIV_RAXEq(bxInstruction_c *);
BX_SMF void IDIV_RAXEq(bxInstruction_c *);
BX_SMF void INC_Eq(bxInstruction_c *);
BX_SMF void DEC_Eq(bxInstruction_c *);
BX_SMF void CALL_Eq(bxInstruction_c *);
BX_SMF void CALL64_Ep(bxInstruction_c *);
BX_SMF void JMP_Eq(bxInstruction_c *);
BX_SMF void JMP64_Ep(bxInstruction_c *);
BX_SMF void PUSH_Eq(bxInstruction_c *);
BX_SMF void CMPXCHG_EqGq(bxInstruction_c *);
BX_SMF void CDQE(bxInstruction_c *);
BX_SMF void CQO(bxInstruction_c *);
BX_SMF void XADD_EqGq(bxInstruction_c *);
BX_SMF void RETnear64_Iw(bxInstruction_c *);
BX_SMF void RETfar64_Iw(bxInstruction_c *);
BX_SMF void CMOV_GqEq(bxInstruction_c *);
BX_SMF void MOV_RRXIq(bxInstruction_c *);
BX_SMF void INC_RRX(bxInstruction_c *);
BX_SMF void DEC_RRX(bxInstruction_c *);
BX_SMF void PUSH_RRX(bxInstruction_c *);
BX_SMF void POP_RRX(bxInstruction_c *);
BX_SMF void POP_Eq(bxInstruction_c *);
BX_SMF void XCHG_RRXRAX(bxInstruction_c *);
BX_SMF void PUSH64_CS(bxInstruction_c *);
BX_SMF void PUSH64_DS(bxInstruction_c *);
BX_SMF void POP64_DS(bxInstruction_c *);
BX_SMF void PUSH64_ES(bxInstruction_c *);
BX_SMF void POP64_ES(bxInstruction_c *);
BX_SMF void PUSH64_FS(bxInstruction_c *);
BX_SMF void POP64_FS(bxInstruction_c *);
BX_SMF void PUSH64_GS(bxInstruction_c *);
BX_SMF void POP64_GS(bxInstruction_c *);
BX_SMF void PUSH64_SS(bxInstruction_c *);
BX_SMF void POP64_SS(bxInstruction_c *);
#endif // #if BX_SUPPORT_X86_64
// mch added
BX_SMF void INVLPG(bxInstruction_c *);
BX_SMF void wait_for_interrupt();
BX_SMF void RSM(bxInstruction_c *);
BX_SMF void WRMSR(bxInstruction_c *);
BX_SMF void RDTSC(bxInstruction_c *);
BX_SMF void RDMSR(bxInstruction_c *);
BX_SMF void SetCR0(Bit32u val_32);
#if BX_CPU_LEVEL >= 4
BX_SMF void SetCR4(Bit32u val_32);
#endif
BX_SMF void dynamic_translate(void);
BX_SMF void dynamic_init(void);
BX_SMF unsigned fetchDecode(Bit8u *, bxInstruction_c *, unsigned);
#if BX_SUPPORT_X86_64
BX_SMF unsigned fetchDecode64(Bit8u *, bxInstruction_c *, unsigned);
#endif
BX_SMF void UndefinedOpcode(bxInstruction_c *);
BX_SMF void BxError(bxInstruction_c *i);
BX_SMF void BxResolveError(bxInstruction_c *i);
BX_SMF void Resolve16Mod0Rm0(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm1(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm2(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm3(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm4(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm5(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm6(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm7(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm0(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm1(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm2(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm3(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm4(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm5(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm6(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm7(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm0(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm1(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm2(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm3(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm5(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm6(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm7(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm0(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm1(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm2(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm3(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm5(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm6(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm7(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base0(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base1(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base2(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base3(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base4(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base5(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base6(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base7(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base0(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base1(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base2(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base3(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base4(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base5(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base6(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base7(bxInstruction_c *);
#if BX_SUPPORT_X86_64
// 64 bit addressing
BX_SMF void Resolve64Mod0Rm0(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm1(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm2(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm3(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm5(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm6(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm7(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm8(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm9(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm10(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm11(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm12(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm13(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm14(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm15(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm0(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm1(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm2(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm3(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm5(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm6(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm7(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm8(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm9(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm10(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm11(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm12(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm13(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm14(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm15(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base0(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base1(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base2(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base3(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base4(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base5(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base6(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base7(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base8(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base9(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base10(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base11(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base12(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base13(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base14(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base15(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base0(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base1(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base2(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base3(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base4(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base5(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base6(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base7(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base8(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base9(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base10(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base11(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base12(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base13(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base14(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base15(bxInstruction_c *);
#endif // #if BX_SUPPORT_X86_64
BX_SMF void REP(void (*)(void));
BX_SMF void REP_ZF(void (*)(void), unsigned rep_prefix);
#if BX_DEBUGGER
BX_SMF void dbg_take_irq(void);
BX_SMF void dbg_force_interrupt(unsigned vector);
BX_SMF void dbg_take_dma(void);
BX_SMF Boolean dbg_get_cpu(bx_dbg_cpu_t *cpu);
BX_SMF Boolean dbg_set_cpu(bx_dbg_cpu_t *cpu);
BX_SMF Boolean dbg_set_reg(unsigned reg, Bit32u val);
BX_SMF Bit32u dbg_get_reg(unsigned reg);
BX_SMF Boolean dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no);
BX_SMF unsigned dbg_query_pending(void);
BX_SMF Bit32u dbg_get_descriptor_l(bx_descriptor_t *);
BX_SMF Bit32u dbg_get_descriptor_h(bx_descriptor_t *);
BX_SMF Bit32u dbg_get_eflags(void);
BX_SMF Boolean dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32);
BX_SMF Boolean dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip,
Bit32u laddr, Bit32u is_32);
#endif
#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION
BX_SMF void dbg_xlate_linear2phy(Bit32u linear, Bit32u *phy, Boolean *valid);
#endif
BX_SMF void atexit(void);
// now for some ancillary functions...
BX_SMF void cpu_loop(Bit32s max_instr_count);
BX_SMF void boundaryFetch(bxInstruction_c *i);
BX_SMF void decode_exgx16(unsigned need_fetch);
BX_SMF void decode_exgx32(unsigned need_fetch);
BX_SMF void prefetch(void);
// revalidate_prefetch_q is now a no-op, due to the newer EIP window
// technique.
BX_SMF BX_CPP_INLINE void revalidate_prefetch_q(void) { }
BX_SMF BX_CPP_INLINE void invalidate_prefetch_q(void) {
BX_CPU_THIS_PTR eipPageWindowSize = 0;
}
BX_SMF void write_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length);
BX_SMF void read_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length);
BX_SMF void write_virtual_byte(unsigned seg, bx_address offset, Bit8u *data);
BX_SMF void write_virtual_word(unsigned seg, bx_address offset, Bit16u *data);
BX_SMF void write_virtual_dword(unsigned seg, bx_address offset, Bit32u *data);
BX_SMF void write_virtual_qword(unsigned seg, bx_address offset, Bit64u *data);
BX_SMF void read_virtual_byte(unsigned seg, bx_address offset, Bit8u *data);
BX_SMF void read_virtual_word(unsigned seg, bx_address offset, Bit16u *data);
BX_SMF void read_virtual_dword(unsigned seg, bx_address offset, Bit32u *data);
BX_SMF void read_virtual_qword(unsigned seg, bx_address offset, Bit64u *data);
BX_SMF void read_RMW_virtual_byte(unsigned seg, bx_address offset, Bit8u *data);
BX_SMF void read_RMW_virtual_word(unsigned seg, bx_address offset, Bit16u *data);
BX_SMF void read_RMW_virtual_dword(unsigned seg, bx_address offset, Bit32u *data);
BX_SMF void read_RMW_virtual_qword(unsigned seg, bx_address offset, Bit64u *data);
BX_SMF void write_RMW_virtual_byte(Bit8u val8);
BX_SMF void write_RMW_virtual_word(Bit16u val16);
BX_SMF void write_RMW_virtual_dword(Bit32u val32);
BX_SMF void write_RMW_virtual_qword(Bit64u val64);
#define Write_RMW_virtual_byte(val8) write_RMW_virtual_byte(val8)
#define Write_RMW_virtual_word(val16) write_RMW_virtual_word(val16)
#define Write_RMW_virtual_dword(val32) write_RMW_virtual_dword(val32)
#define Write_RMW_virtual_qword(val32) write_RMW_virtual_qword(val32)
BX_SMF void access_linear(bx_address address, unsigned length, unsigned pl,
unsigned rw, void *data);
BX_SMF Bit32u itranslate_linear(bx_address laddr, unsigned pl);
BX_SMF Bit32u dtranslate_linear(bx_address laddr, unsigned pl, unsigned rw);
BX_SMF void TLB_flush(Boolean invalidateGlobal);
BX_SMF void TLB_init(void);
BX_SMF void set_INTR(Boolean value);
BX_SMF char *strseg(bx_segment_reg_t *seg);
BX_SMF void interrupt(Bit8u vector, Boolean is_INT, Boolean is_error_code,
Bit16u error_code);
#if BX_CPU_LEVEL >= 2
BX_SMF void exception(unsigned vector, Bit16u error_code, Boolean is_INT);
#endif
BX_SMF int int_number(bx_segment_reg_t *seg);
BX_SMF void shutdown_cpu(void);
BX_SMF void CR3_change(bx_address value);
BX_SMF void pagingCR0Changed(Bit32u oldCR0, Bit32u newCR0);
BX_SMF void pagingCR4Changed(Bit32u oldCR4, Bit32u newCR4);
BX_SMF void pagingA20Changed(void);
BX_SMF void reset(unsigned source);
BX_SMF void jump_protected(bxInstruction_c *, Bit16u cs, bx_address disp);
BX_SMF void call_protected(bxInstruction_c *, Bit16u cs, bx_address disp);
BX_SMF void return_protected(bxInstruction_c *, Bit16u pop_bytes);
BX_SMF void iret_protected(bxInstruction_c *);
BX_SMF void validate_seg_regs(void);
BX_SMF void stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector,
Bit32u flags32);
BX_SMF void stack_return_from_v86(bxInstruction_c *);
BX_SMF void init_v8086_mode(void);
BX_SMF void v8086_message(void);
BX_SMF void task_switch(bx_selector_t *selector,
bx_descriptor_t *descriptor,
unsigned source,
Bit32u dword1, Bit32u dword2);
BX_SMF void get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp);
#if BX_SUPPORT_X86_64
BX_SMF void get_RSP_from_TSS(unsigned pl, Bit64u *rsp);
#endif
BX_SMF void write_flags(Bit16u flags, Boolean change_IOPL, Boolean change_IF);
BX_SMF void write_eflags(Bit32u eflags, Boolean change_IOPL, Boolean change_IF,
Boolean change_VM, Boolean change_RF);
BX_SMF Bit16u read_flags(void);
BX_SMF Bit32u read_eflags(void);
BX_SMF Bit32u get_segment_base(unsigned seg);
BX_SMF Bit8u inp8(Bit16u addr);
BX_SMF void outp8(Bit16u addr, Bit8u value);
BX_SMF Bit16u inp16(Bit16u addr);
BX_SMF void outp16(Bit16u addr, Bit16u value);
BX_SMF Bit32u inp32(Bit16u addr);
BX_SMF void outp32(Bit16u addr, Bit32u value);
BX_SMF Boolean allow_io(Bit16u addr, unsigned len);
BX_SMF void enter_protected_mode(void);
BX_SMF void enter_real_mode(void);
BX_SMF void parse_selector(Bit16u raw_selector, bx_selector_t *selector);
BX_SMF void parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp);
BX_SMF void load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor);
BX_SMF void load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
BX_SMF void load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
#if BX_SUPPORT_X86_64
BX_SMF void load_ss_null(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
#endif
BX_SMF void fetch_raw_descriptor(bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, Bit8u exception);
BX_SMF void load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value);
BX_SMF Boolean fetch_raw_descriptor2(bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2);
BX_SMF void push_16(Bit16u value16);
BX_SMF void push_32(Bit32u value32);
#if BX_SUPPORT_X86_64
BX_SMF void push_64(Bit64u value64);
#endif
BX_SMF void pop_16(Bit16u *value16_ptr);
BX_SMF void pop_32(Bit32u *value32_ptr);
#if BX_SUPPORT_X86_64
BX_SMF void pop_64(Bit64u *value64_ptr);
#endif
BX_SMF Boolean can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes);
BX_SMF Boolean can_pop(Bit32u bytes);
BX_SMF void sanity_checks(void);
BX_SMF void debug(Bit32u offset);
#if BX_EXTERNAL_DEBUGGER
BX_SMF void trap_debugger(Boolean callnow);
#endif
#if BX_X86_DEBUGGER
// x86 hardware debug support
BX_SMF Bit32u hwdebug_compare(Bit32u laddr, unsigned size,
unsigned opa, unsigned opb);
#endif
BX_CPP_INLINE const bx_gen_reg_t *get_gen_reg() { return gen_reg; }
DECLARE_EFLAGS_ACCESSORS()
DECLARE_EFLAG_ACCESSOR (DF, 10)
DECLARE_EFLAG_ACCESSOR (ID, 21)
DECLARE_EFLAG_ACCESSOR (VP, 20)
DECLARE_EFLAG_ACCESSOR (VF, 19)
DECLARE_EFLAG_ACCESSOR (AC, 18)
DECLARE_EFLAG_ACCESSOR_VM( 17)
DECLARE_EFLAG_ACCESSOR (RF, 16)
DECLARE_EFLAG_ACCESSOR (NT, 14)
DECLARE_EFLAG_ACCESSOR_IOPL( 12)
DECLARE_EFLAG_ACCESSOR (IF, 9)
DECLARE_EFLAG_ACCESSOR (TF, 8)
BX_SMF BX_CPP_INLINE void set_CF(Boolean val);
BX_SMF BX_CPP_INLINE void set_AF(Boolean val);
BX_SMF BX_CPP_INLINE void set_ZF(Boolean val);
BX_SMF BX_CPP_INLINE void set_SF(Boolean val);
BX_SMF BX_CPP_INLINE void set_OF(Boolean val);
BX_SMF BX_CPP_INLINE void set_PF(Boolean val);
BX_SMF BX_CPP_INLINE void set_PF_base(Bit8u val);
DECLARE_8BIT_REGISTER_ACCESSORS(AL);
DECLARE_8BIT_REGISTER_ACCESSORS(AH);
DECLARE_8BIT_REGISTER_ACCESSORS(BL);
DECLARE_8BIT_REGISTER_ACCESSORS(BH);
DECLARE_8BIT_REGISTER_ACCESSORS(CL);
DECLARE_8BIT_REGISTER_ACCESSORS(CH);
DECLARE_8BIT_REGISTER_ACCESSORS(DL);
DECLARE_8BIT_REGISTER_ACCESSORS(DH);
DECLARE_16BIT_REGISTER_ACCESSORS(AX);
DECLARE_16BIT_REGISTER_ACCESSORS(BX);
DECLARE_16BIT_REGISTER_ACCESSORS(CX);
DECLARE_16BIT_REGISTER_ACCESSORS(DX);
DECLARE_16BIT_REGISTER_ACCESSORS(SP);
DECLARE_16BIT_REGISTER_ACCESSORS(BP);
DECLARE_16BIT_REGISTER_ACCESSORS(SI);
DECLARE_16BIT_REGISTER_ACCESSORS(DI);
DECLARE_32BIT_REGISTER_ACCESSORS(EAX);
DECLARE_32BIT_REGISTER_ACCESSORS(EBX);
DECLARE_32BIT_REGISTER_ACCESSORS(ECX);
DECLARE_32BIT_REGISTER_ACCESSORS(EDX);
DECLARE_32BIT_REGISTER_ACCESSORS(ESP);
DECLARE_32BIT_REGISTER_ACCESSORS(EBP);
DECLARE_32BIT_REGISTER_ACCESSORS(ESI);
DECLARE_32BIT_REGISTER_ACCESSORS(EDI);
BX_CPP_INLINE Bit8u get_CPL(void);
BX_CPP_INLINE Bit32u get_EIP(void);
BX_SMF BX_CPP_INLINE int which_cpu(void);
#if BX_CPU_LEVEL >= 2
BX_SMF BX_CPP_INLINE Boolean real_mode(void);
#endif
#if BX_CPU_LEVEL >= 3
BX_SMF BX_CPP_INLINE Boolean protected_mode(void);
BX_SMF BX_CPP_INLINE Boolean v8086_mode(void);
#endif
#if BX_SUPPORT_APIC
bx_local_apic_c local_apic;
Boolean int_from_local_apic;
#endif
};
#if BX_SupportICache
BX_CPP_INLINE void bxICache_c::decWriteStamp(BX_CPU_C *cpu, Bit32u a20Addr) {
// Increment page write stamp, so iCache entries with older stamps
// are effectively invalidated.
Bit32u pageIndex = a20Addr >> 12;
Bit32u writeStamp = cpu->iCache.pageWriteStampTable[pageIndex];
if ( writeStamp & 0x20000000 ) {
// Page possibly contains iCache code.
if ( writeStamp & ICacheWriteStampMask ) {
// Short case: there is room to decrement the generation counter.
cpu->iCache.pageWriteStampTable[pageIndex]--;
}
else {
// Long case: there is no more room to decrement. We have dump
// all iCache entries which can possibly hash to this page since
// we don't keep track of individual entries.
// Take the hash of the 0th page offset.
unsigned iCacheHash = cpu->iCache.hash(a20Addr & 0xfffff000);
for (unsigned o=0; o<4096; o++) {
cpu->iCache.entry[iCacheHash].writeStamp = ICacheWriteStampInvalid;
iCacheHash = (iCacheHash + 1) % BxICacheEntries;
}
// Reset write stamp to highest value to begin the decrementing process
// again.
cpu->iCache.pageWriteStampTable[pageIndex] = ICacheWriteStampInvalid;
}
}
}
BX_CPP_INLINE Bit32u bxICache_c::createFetchModeMask(BX_CPU_C *cpu) {
return (cpu->sregs[BX_SEG_REG_CS].cache.u.segment.d_b << 31)
#if BX_SUPPORT_X86_64
| ((cpu->cpu_mode == BX_MODE_LONG_64)<<30)
#endif
| (1<<29) // iCache code.
;
}
#endif
#if BX_X86_DEBUGGER
#define BX_HWDebugInstruction 0x00
#define BX_HWDebugMemW 0x01
#define BX_HWDebugIO 0x02
#define BX_HWDebugMemRW 0x03
#endif
BX_SMF BX_CPP_INLINE int BX_CPU_C_PREFIX which_cpu(void)
{
#if (BX_SMP_PROCESSORS==1)
return 0;
#else
return local_apic.get_id();
#endif
}
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(AL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(AH);
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(BL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(BH);
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(CL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(CH);
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(DL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(DH);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(AX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(BX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(CX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(DX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(SP);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(BP);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(SI);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(DI);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EAX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EBX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(ECX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EDX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(ESP);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EBP);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(ESI);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EDI);
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_CPL(void) {
return (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl);
}
BX_CPP_INLINE Bit32u BX_CPU_C::get_EIP(void) {
return (BX_CPU_THIS_PTR dword.eip);
}
BX_SMF BX_CPP_INLINE Bit32u BX_CPU_C_PREFIX get_segment_base(unsigned seg) {
return (BX_CPU_THIS_PTR sregs[seg].cache.u.segment.base);
}
#if BX_CPU_LEVEL >= 2
BX_CPP_INLINE Boolean BX_CPU_C::real_mode(void) { return( !BX_CPU_THIS_PTR cr0.pe ); };
#endif
#if BX_CPU_LEVEL == 2
BX_CPP_INLINE Boolean BX_CPU_C::protected_mode(void) { return( BX_CPU_THIS_PTR cr0.pe ); };
#endif
#if BX_CPU_LEVEL >= 3
# if BX_SUPPORT_V8086_MODE
BX_CPP_INLINE Boolean
BX_CPU_C::v8086_mode(void) {
return (BX_CPU_THIS_PTR get_VM ());
}
BX_CPP_INLINE Boolean
BX_CPU_C::protected_mode(void) {
return(BX_CPU_THIS_PTR cr0.pe && !BX_CPU_THIS_PTR get_VM ());
}
# else
BX_CPP_INLINE Boolean
BX_CPU_C::v8086_mode(void) {
return(0);
}
BX_CPP_INLINE Boolean
BX_CPU_C::protected_mode(void) {
return(BX_CPU_THIS_PTR cr0.pe);
}
# endif
#endif
BX_CPP_INLINE void
BX_CPU_C::set_CF(Boolean val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xfffff0;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<0);
BX_CPU_THIS_PTR eflags.val32 |= (!!val);
}
BX_CPP_INLINE void
BX_CPU_C::set_AF(Boolean val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<4);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<4;
}
BX_CPP_INLINE void
BX_CPU_C::set_ZF(Boolean val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<6);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<6;
}
BX_CPP_INLINE void
BX_CPU_C::set_SF(Boolean val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<7);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<7;
}
BX_CPP_INLINE void
BX_CPU_C::set_OF(Boolean val) {
BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<11);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<11;
}
BX_CPP_INLINE void
BX_CPU_C::set_PF(Boolean val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<2;
}
extern const Boolean bx_parity_lookup[256];
BX_CPP_INLINE void
BX_CPU_C::set_PF_base(Bit8u val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
val = bx_parity_lookup[val]; // Always returns 0 or 1.
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= val<<2;
}
#define SET_FLAGS_OSZAPC_8(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_8 = op1; \
BX_CPU_THIS_PTR oszapc.op2_8 = op2; \
BX_CPU_THIS_PTR oszapc.result_8 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_8_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_8 = op1; \
BX_CPU_THIS_PTR oszapc.op2_8 = op2; \
BX_CPU_THIS_PTR oszapc.result_8 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_16(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_16 = op1; \
BX_CPU_THIS_PTR oszapc.op2_16 = op2; \
BX_CPU_THIS_PTR oszapc.result_16 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_16_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_16 = op1; \
BX_CPU_THIS_PTR oszapc.op2_16 = op2; \
BX_CPU_THIS_PTR oszapc.result_16 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_32(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_32 = op1; \
BX_CPU_THIS_PTR oszapc.op2_32 = op2; \
BX_CPU_THIS_PTR oszapc.result_32 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_32_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_32 = op1; \
BX_CPU_THIS_PTR oszapc.op2_32 = op2; \
BX_CPU_THIS_PTR oszapc.result_32 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_64(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_64 = op1; \
BX_CPU_THIS_PTR oszapc.op2_64 = op2; \
BX_CPU_THIS_PTR oszapc.result_64 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_64_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_64 = op1; \
BX_CPU_THIS_PTR oszapc.op2_64 = op2; \
BX_CPU_THIS_PTR oszapc.result_64 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAP_8(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_8 = op1; \
BX_CPU_THIS_PTR oszap.op2_8 = op2; \
BX_CPU_THIS_PTR oszap.result_8 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_16(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_16 = op1; \
BX_CPU_THIS_PTR oszap.op2_16 = op2; \
BX_CPU_THIS_PTR oszap.result_16 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_32(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_32 = op1; \
BX_CPU_THIS_PTR oszap.op2_32 = op2; \
BX_CPU_THIS_PTR oszap.result_32 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_64(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_64 = op1; \
BX_CPU_THIS_PTR oszap.op2_64 = op2; \
BX_CPU_THIS_PTR oszap.result_64 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OxxxxC(new_of, new_cf) { \
BX_CPU_THIS_PTR eflags.val32 &= ~((1<<11) | (1<<0)); \
BX_CPU_THIS_PTR eflags.val32 |= ((!!new_of)<<11) | ((!!new_cf)<<0); \
BX_CPU_THIS_PTR lf_flags_status &= 0x0ffff0; \
/* ??? could also mark other bits undefined here */ \
}
IMPLEMENT_EFLAGS_ACCESSORS()
IMPLEMENT_EFLAG_ACCESSOR (DF, 10)
IMPLEMENT_EFLAG_ACCESSOR (ID, 21)
IMPLEMENT_EFLAG_ACCESSOR (VP, 20)
IMPLEMENT_EFLAG_ACCESSOR (VF, 19)
IMPLEMENT_EFLAG_ACCESSOR (AC, 18)
IMPLEMENT_EFLAG_ACCESSOR_VM( 17)
IMPLEMENT_EFLAG_ACCESSOR (RF, 16)
IMPLEMENT_EFLAG_ACCESSOR (NT, 14)
IMPLEMENT_EFLAG_ACCESSOR_IOPL( 12)
IMPLEMENT_EFLAG_ACCESSOR (IF, 9)
IMPLEMENT_EFLAG_ACCESSOR (TF, 8)
#define BX_REPE_PREFIX 10
#define BX_REPNE_PREFIX 11
#define BX_TASK_FROM_JUMP 10
#define BX_TASK_FROM_CALL_OR_INT 11
#define BX_TASK_FROM_IRET 12
//
// For decoding...
//
// If the Immediate bit is set, the lowest 3 bits of the attribute
// specify which kinds of immediate data a required by instruction.
#define BxImmediate 0x000f // bits 3..0: any immediate
#define BxImmediate_Ib 0x0001 // 8 bits regardless
#define BxImmediate_Ib_SE 0x0002 // sign extend to OS size
#define BxImmediate_Iv 0x0003 // 16 or 32 depending on OS size
#define BxImmediate_Iw 0x0004 // 16 bits regardless
#define BxImmediate_IvIw 0x0005 // call_Ap
#define BxImmediate_IwIb 0x0006 // enter_IwIb
#define BxImmediate_O 0x0007 // mov_ALOb, mov_ObAL, mov_eAXOv, mov_OveAX
#define BxImmediate_BrOff8 0x0008 // Relative branch offset byte
#define BxImmediate_BrOff16 0x0009 // Relative branch offset word
#define BxImmediate_BrOff32 BxImmediate_Iv
#if BX_SUPPORT_X86_64
#define BxImmediate_Iq 0x000A // 64 bit override
#define BxImmediate_Oq BxImmediate_Iq // mov_ALOq, mov_OqAL, mov_eAXOq, mov_OqeAX
#endif
#define BxPrefix 0x0010 // bit 4
#define BxAnother 0x0020 // bit 5
#define BxRepeatable 0x0800 // bit 11 (pass through to metaInfo field)
#define BxRepeatableZF 0x1000 // bit 12 (pass through to metaInfo field)
#define BxGroupN 0x0100 // bits 8
#define BxGroup1 BxGroupN
#define BxGroup2 BxGroupN
#define BxGroup3 BxGroupN
#define BxGroup4 BxGroupN
#define BxGroup5 BxGroupN
#define BxGroup6 BxGroupN
#define BxGroup7 BxGroupN
#define BxGroup8 BxGroupN
#define BxGroup9 BxGroupN
#define BxGroupA BxGroupN
#if BX_SUPPORT_MMX
#define BxAnotherMMX BxAnother
#else
#define BxAnotherMMX (0)
#endif
#define BxGroup15 BxGroupN
#if BX_DEBUGGER
typedef enum _show_flags {
Flag_call = 0x1,
Flag_ret = 0x2,
Flag_int = 0x4,
Flag_iret = 0x8,
Flag_intsig = 0x10
} show_flags_t;
#endif
// Can be used as LHS or RHS.
#define RMAddr(i) (BX_CPU_THIS_PTR address_xlation.rm_addr)
#endif // #ifndef BX_CPU_H