Bochs/bochs/memory/memory.cc
Bryce Denney daf2a9fb55 - add RCS Id to header of every file. This makes it easier to know what's
going on when someone sends in a modified file.
2001-10-03 13:10:38 +00:00

485 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: memory.cc,v 1.9 2001-10-03 13:10:38 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS BX_MEM_THIS
#if BX_PROVIDE_CPU_MEMORY
void
BX_MEM_C::write_physical(BX_CPU_C *cpu, Bit32u addr, unsigned len, void *data)
{
Bit8u *data_ptr;
Bit32u a20addr;
#if BX_IODEBUG_SUPPORT
bx_iodebug_c::mem_write( cpu, addr, len, data);
#endif
a20addr = A20ADDR(addr);
BX_INSTR_PHY_WRITE(a20addr, len);
#if BX_DEBUGGER
// (mch) Check for physical write break points, TODO
// (bbd) Each breakpoint should have an associated CPU#, TODO
for (int i = 0; i < num_write_watchpoints; i++)
if (write_watchpoint[i] == a20addr) {
BX_CPU(0)->break_point = BREAK_POINT_WRITE;
break;
}
#endif
if ( (a20addr + len) <= BX_MEM_THIS len ) {
// all of data is within limits of physical memory
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
if (len == 4) {
if ((a20addr & 0x00000003) == 0) {
// write 4byte data to aligned memory location
Bit32u data32;
data32 = * (Bit32u *) data;
#ifdef BX_BIG_ENDIAN
data32 = (data32 << 24) | (data32 >> 24) |
((data32&0x00ff0000)>>8) | ((data32&0x0000ff00)<<8);
#endif
* ((Bit32u *) (&vector[a20addr])) = data32;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
return;
}
else {
Bit32u data32;
data32 = * (Bit32u *) data;
* ((Bit8u *) (&vector[a20addr])) = data32; data32 >>= 8;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
* ((Bit8u *) (&vector[A20ADDR(addr+1)])) = data32; data32 >>= 8;
* ((Bit8u *) (&vector[A20ADDR(addr+2)])) = data32; data32 >>= 8;
* ((Bit8u *) (&vector[A20ADDR(addr+3)])) = data32;
// worst case, last byte is in different page; possible extra dirty page
BX_DBG_DIRTY_PAGE(A20ADDR(addr+3) >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
return;
}
}
if (len == 2) {
if ((a20addr & 0x00000001) == 0) {
// write 2-byte data to aligned memory location
Bit16u data16;
data16 = * (Bit16u *) data;
#ifdef BX_BIG_ENDIAN
data16 = (data16 >> 8) | (data16 << 8);
#endif
* ((Bit16u *) (&vector[a20addr])) = data16;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
return;
}
else {
Bit16u data16;
data16 = * (Bit16u *) data;
* ((Bit8u *) (&vector[a20addr])) = (Bit8u) data16;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
* ((Bit8u *) (&vector[A20ADDR(a20addr+1)])) = (data16 >> 8);
BX_DBG_DIRTY_PAGE(A20ADDR(a20addr+1) >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
return;
}
}
if (len == 1) {
Bit8u data8;
data8 = * (Bit8u *) data;
* ((Bit8u *) (&vector[a20addr])) = data8;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
return;
}
// len == 3 case can just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
write_one:
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
// addr *not* in range 00080000 .. 000FFFFF
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
inc_one:
if (len == 1) return;
len--;
addr++;
a20addr = A20ADDR(addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
goto write_one;
}
// addr in range 00080000 .. 000FFFFF
if (a20addr <= 0x0009ffff) {
// regular memory 80000 .. 9FFFF
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
goto inc_one;
}
if (a20addr <= 0x000bffff) {
// VGA memory A0000 .. BFFFF
BX_VGA_MEM_WRITE(a20addr, *data_ptr);
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_WRITE, *data_ptr); // obsolete
goto inc_one;
}
// adapter ROM C0000 .. DFFFF
// ROM BIOS memory E0000 .. FFFFF
// (ignore write)
//BX_INFO(("ROM lock %08x: len=%u",
// (unsigned) a20addr, (unsigned) len));
#if BX_PCI_SUPPORT == 0
#if BX_SHADOW_RAM
// Write it since its in shadow RAM
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
#else
// ignore write to ROM
#endif
#else
// Write Based on 440fx Programming
if (bx_options.Oi440FXSupport->get () &&
((a20addr >= 0xC0000) && (a20addr <= 0xFFFFF))) {
switch (bx_devices.pci->wr_memType(a20addr & 0xFC000)) {
case 0x0: // Writes to ShadowRAM
// BX_INFO(("Writing to ShadowRAM %08x, len %u ! ", (unsigned) a20addr, (unsigned) len));
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
goto inc_one;
case 0x1: // Writes to ROM, Inhibit
// bx_pci.s.i440fx.shadow[(a20addr - 0xc0000)] = *data_ptr;
// BX_INFO(("Writing to ROM %08x, Data %02x ! ", (unsigned) a20addr, *data_ptr));
goto inc_one;
default:
BX_PANIC(("write_physical: default case"));
goto inc_one;
}
}
#endif
goto inc_one;
}
else {
// some or all of data is outside limits of physical memory
unsigned i;
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
bx_generic_apic_c *ioapic = bx_devices.ioapic;
if (local_apic->is_selected (a20addr, len)) {
local_apic->write (a20addr, (Bit32u *)data, len);
return;
} else if (ioapic->is_selected (a20addr, len)) {
ioapic->write (a20addr, (Bit32u *)data, len);
return;
}
else
#endif
for (i = 0; i < len; i++) {
if (a20addr < BX_MEM_THIS len) {
vector[a20addr] = *data_ptr;
BX_DBG_DIRTY_PAGE(a20addr >> 12);
BX_DYN_DIRTY_PAGE(a20addr >> 12);
}
// otherwise ignore byte, since it overruns memory
addr++;
a20addr = A20ADDR(addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return;
}
}
void
BX_MEM_C::read_physical(BX_CPU_C *cpu, Bit32u addr, unsigned len, void *data)
{
Bit8u *data_ptr;
Bit32u a20addr;
#if BX_IODEBUG_SUPPORT
bx_iodebug_c::mem_read( cpu, addr, len, data);
#endif
a20addr = A20ADDR(addr);
BX_INSTR_PHY_READ(a20addr, len);
#if BX_DEBUGGER
// (mch) Check for physical read break points, TODO
// (bbd) Each breakpoint should have an associated CPU#, TODO
for (int i = 0; i < num_read_watchpoints; i++)
if (read_watchpoint[i] == a20addr) {
BX_CPU(0)->break_point = BREAK_POINT_READ;
break;
}
#endif
if ( (a20addr + len) <= BX_MEM_THIS len ) {
// all of data is within limits of physical memory
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
if (len == 4) {
if ((a20addr & 0x00000003) == 0) {
// read 4-byte data from aligned memory location
Bit32u data32;
data32 = * ((Bit32u *) (&vector[a20addr]));
#ifdef BX_BIG_ENDIAN
data32 = (data32 << 24) | (data32 >> 24) |
((data32&0x00ff0000)>>8) | ((data32&0x0000ff00)<<8);
#endif
* (Bit32u *) data = data32;
return;
}
else {
Bit32u data32;
data32 = * ((Bit8u *) (&vector[A20ADDR(addr+3)])); data32 <<= 8;
data32 |= * ((Bit8u *) (&vector[A20ADDR(addr+2)])); data32 <<= 8;
data32 |= * ((Bit8u *) (&vector[A20ADDR(addr+1)])); data32 <<= 8;
data32 |= * ((Bit8u *) (&vector[a20addr]));
* (Bit32u *) data = data32;
return;
}
}
if (len == 2) {
if ((a20addr & 0x00000001) == 0) {
// read 2-byte data from aligned memory location
Bit16u data16;
data16 = * ((Bit16u *) (&vector[a20addr]));
#ifdef BX_BIG_ENDIAN
data16 = (data16 >> 8) | (data16 << 8);
#endif
* (Bit16u *) data = data16;
return;
}
else {
Bit16u data16;
data16 = * ((Bit8u *) (&vector[A20ADDR(addr+1)])); data16 <<= 8;
data16 |= * ((Bit8u *) (&vector[a20addr]));
* (Bit16u *) data = data16;
return;
}
}
if (len == 1) {
Bit8u data8;
data8 = * ((Bit8u *) (&vector[a20addr]));
* (Bit8u *) data = data8;
return;
}
// len == 3 case can just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
read_one:
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
// addr *not* in range 00080000 .. 000FFFFF
*data_ptr = vector[a20addr];
inc_one:
if (len == 1) return;
len--;
addr++;
a20addr = A20ADDR(addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
goto read_one;
}
// addr in range 00080000 .. 000FFFFF
#if BX_PCI_SUPPORT == 0
if ((a20addr <= 0x0009ffff) || (a20addr >= 0x000c0000) ) {
// regular memory 80000 .. 9FFFF, C0000 .. F0000
*data_ptr = vector[a20addr];
goto inc_one;
}
// VGA memory A0000 .. BFFFF
*data_ptr = BX_VGA_MEM_READ(a20addr);
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_READ, *data_ptr); // obsolete
goto inc_one;
#else // #if BX_PCI_SUPPORT == 0
if (a20addr <= 0x0009ffff) {
*data_ptr = vector[a20addr];
goto inc_one;
}
if (a20addr <= 0x000BFFFF) {
// VGA memory A0000 .. BFFFF
*data_ptr = BX_VGA_MEM_READ(a20addr);
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_READ, *data_ptr);
goto inc_one;
}
// a20addr in C0000 .. FFFFF
if (!bx_options.Oi440FXSupport->get ()) {
*data_ptr = vector[a20addr];
goto inc_one;
}
else {
switch (bx_devices.pci->rd_memType(a20addr & 0xFC000)) {
case 0x0: // Read from ShadowRAM
*data_ptr = vector[a20addr];
BX_INFO(("Reading from ShadowRAM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
goto inc_one;
case 0x1: // Read from ROM
*data_ptr = bx_pci.s.i440fx.shadow[(a20addr - 0xc0000)];
//BX_INFO(("Reading from ROM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
goto inc_one;
default:
BX_PANIC(("::read_physical: default case"));
}
}
goto inc_one;
#endif // #if BX_PCI_SUPPORT == 0
}
else {
// some or all of data is outside limits of physical memory
unsigned i;
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
bx_generic_apic_c *ioapic = bx_devices.ioapic;
if (local_apic->is_selected (addr, len)) {
local_apic->read (addr, data, len);
return;
} else if (ioapic->is_selected (addr, len)) {
ioapic->read (addr, data, len);
return;
}
#endif
for (i = 0; i < len; i++) {
#if BX_PCI_SUPPORT == 0
if (a20addr < BX_MEM_THIS len)
*data_ptr = vector[a20addr];
else
*data_ptr = 0xff;
#else // BX_PCI_SUPPORT == 0
if (a20addr < BX_MEM_THIS len) {
if ((a20addr >= 0x000C0000) && (a20addr <= 0x000FFFFF)) {
if (!bx_options.Oi440FXSupport->get ())
*data_ptr = vector[a20addr];
else {
switch (bx_devices.pci->rd_memType(a20addr & 0xFC000)) {
case 0x0: // Read from ROM
*data_ptr = vector[a20addr];
//BX_INFO(("Reading from ROM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
break;
case 0x1: // Read from Shadow RAM
*data_ptr = bx_pci.s.i440fx.shadow[(a20addr - 0xc0000)];
BX_INFO(("Reading from ShadowRAM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
break;
default:
BX_PANIC(("read_physical: default case"));
} // Switch
}
}
else {
*data_ptr = vector[a20addr];
BX_INFO(("Reading from Norm %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
}
}
else
*data_ptr = 0xff;
#endif // BX_PCI_SUPPORT == 0
addr++;
a20addr = A20ADDR(addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return;
}
}
#endif // #if BX_PROVIDE_CPU_MEMORY