Bochs/bochs/cpu/xsave.cc
2021-07-27 15:36:11 +00:00

1102 lines
34 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008-2019 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#include "msr.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "decoder/ia_opcodes.h"
const Bit64u XSAVEC_COMPACTION_ENABLED = BX_CONST64(0x8000000000000000);
#if BX_CPU_LEVEL >= 6
extern XSaveRestoreStateHelper xsave_restore[];
#endif
#if BX_USE_CPU_SMF == 0
#define CALL_XSAVE_FN(ptrToFunc) (this->*(ptrToFunc))
#else
#define CALL_XSAVE_FN(ptrToFunc) (ptrToFunc)
#endif
/* 0F AE /4 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XSAVE(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
BX_CPU_THIS_PTR prepareXSAVE();
bool xsaveopt = (i->getIaOpcode() == BX_IA_XSAVEOPT);
BX_DEBUG(("%s: save processor state XCR0=0x%08x", i->getIaOpcodeNameShort(), BX_CPU_THIS_PTR xcr0.get32()));
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
bx_address laddr = get_laddr(i->seg(), eaddr);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 0x3) {
BX_ERROR(("%s: access not aligned to 4-byte cause model specific #AC(0)", i->getIaOpcodeNameShort()));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
if (laddr & 0x3f) {
BX_ERROR(("%s: access not aligned to 64-byte", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
bx_address asize_mask = i->asize_mask();
Bit64u xstate_bv = read_virtual_qword(i->seg(), (eaddr + 512) & asize_mask);
Bit32u requested_feature_bitmap = BX_CPU_THIS_PTR xcr0.get32() & EAX;
Bit32u xinuse = get_xinuse_vector(requested_feature_bitmap);
/////////////////////////////////////////////////////////////////////////////
if ((requested_feature_bitmap & BX_XCR0_FPU_MASK) != 0)
{
if (! xsaveopt || (xinuse & BX_XCR0_FPU_MASK) != 0)
xsave_x87_state(i, eaddr);
if (xinuse & BX_XCR0_FPU_MASK)
xstate_bv |= BX_XCR0_FPU_MASK;
else
xstate_bv &= ~BX_XCR0_FPU_MASK;
}
/////////////////////////////////////////////////////////////////////////////
if ((requested_feature_bitmap & (BX_XCR0_SSE_MASK | BX_XCR0_YMM_MASK)) != 0)
{
// store MXCSR - write cannot cause any boundary cross because XSAVE image is 64-byte aligned
write_virtual_dword(i->seg(), eaddr + 24, BX_MXCSR_REGISTER);
write_virtual_dword(i->seg(), eaddr + 28, MXCSR_MASK);
}
/////////////////////////////////////////////////////////////////////////////
for (unsigned feature = xcr0_t::BX_XCR0_SSE_BIT; feature < xcr0_t::BX_XCR0_LAST; feature++)
{
Bit32u feature_mask = (1 << feature);
if ((requested_feature_bitmap & feature_mask) != 0)
{
if (! xsave_restore[feature].len) {
BX_ERROR(("%s: feature #%d requested to save but not implemented !", i->getIaOpcodeNameShort(), feature));
continue;
}
if (! xsaveopt || (xinuse & feature_mask) != 0) {
BX_ASSERT(xsave_restore[feature].xsave_method);
CALL_XSAVE_FN(xsave_restore[feature].xsave_method)(i, eaddr+xsave_restore[feature].offset);
}
if (xinuse & feature_mask)
xstate_bv |= Bit64u(feature_mask);
else
xstate_bv &= ~Bit64u(feature_mask);
}
}
// always update header to 'dirty' state
write_virtual_qword(i->seg(), (eaddr + 512) & asize_mask, xstate_bv);
#endif
BX_NEXT_INSTR(i);
}
/* 0F C7 /4 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XSAVEC(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
BX_CPU_THIS_PTR prepareXSAVE();
bool xsaves = (i->getIaOpcode() == BX_IA_XSAVES);
if (xsaves) {
if (CPL != 0) {
BX_ERROR(("%s: with CPL != 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest) {
if (! SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_XSAVES_XRSTORS)) {
BX_ERROR(("%s in VMX guest: not allowed to use instruction !", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs;
Bit64u requested_features = (((Bit64u) EDX) << 32) | EAX;
if (requested_features & BX_CPU_THIS_PTR msr.ia32_xss & vm->xss_exiting_bitmap)
VMexit_Instruction(i, VMX_VMEXIT_XSAVES);
}
#endif
}
BX_DEBUG(("%s: save processor state XCR0=0x%08x XSS=" FMT_LL "x", i->getIaOpcodeNameShort(), BX_CPU_THIS_PTR xcr0.get32(), BX_CPU_THIS_PTR msr.ia32_xss));
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
bx_address laddr = get_laddr(i->seg(), eaddr);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 0x3) {
BX_ERROR(("%s: access not aligned to 4-byte cause model specific #AC(0)", i->getIaOpcodeNameShort()));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
if (laddr & 0x3f) {
BX_ERROR(("%s: access not aligned to 64-byte", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
bx_address asize_mask = i->asize_mask();
Bit64u xcr0 = (Bit64u) BX_CPU_THIS_PTR xcr0.get32();
if (xsaves)
xcr0 |= BX_CPU_THIS_PTR msr.ia32_xss;
Bit32u requested_feature_bitmap = xcr0 & EAX;
Bit32u xinuse = get_xinuse_vector(requested_feature_bitmap);
Bit64u xstate_bv = requested_feature_bitmap & xinuse;
Bit64u xcomp_bv = requested_feature_bitmap | XSAVEC_COMPACTION_ENABLED;
if ((requested_feature_bitmap & BX_XCR0_FPU_MASK) != 0)
{
if (xinuse & BX_XCR0_FPU_MASK) {
xsave_x87_state(i, eaddr);
}
}
if ((requested_feature_bitmap & BX_XCR0_SSE_MASK) != 0)
{
// write cannot cause any boundary cross because XSAVE image is 64-byte aligned
write_virtual_dword(i->seg(), eaddr + 24, BX_MXCSR_REGISTER);
write_virtual_dword(i->seg(), eaddr + 28, MXCSR_MASK);
}
Bit32u offset = XSAVE_SSE_STATE_OFFSET;
/////////////////////////////////////////////////////////////////////////////
for (unsigned feature = xcr0_t::BX_XCR0_SSE_BIT; feature < xcr0_t::BX_XCR0_LAST; feature++)
{
Bit32u feature_mask = (1 << feature);
if ((requested_feature_bitmap & feature_mask) != 0)
{
if (! xsave_restore[feature].len) {
BX_ERROR(("%s: feature #%d requested to save but not implemented !", i->getIaOpcodeNameShort(), feature));
continue;
}
if (xinuse & feature_mask) {
BX_ASSERT(xsave_restore[feature].xsave_method);
CALL_XSAVE_FN(xsave_restore[feature].xsave_method)(i, eaddr+offset);
}
offset += xsave_restore[feature].len;
}
}
// always update header to 'dirty' state
write_virtual_qword(i->seg(), (eaddr + 512) & asize_mask, xstate_bv);
write_virtual_qword(i->seg(), (eaddr + 520) & asize_mask, xcomp_bv);
#endif
BX_NEXT_INSTR(i);
}
/* 0F AE /5 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XRSTOR(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
BX_CPU_THIS_PTR prepareXSAVE();
bool xrstors = (i->getIaOpcode() == BX_IA_XRSTORS);
if (xrstors) {
if (CPL != 0) {
BX_ERROR(("%s: with CPL != 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest) {
if (! SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_XSAVES_XRSTORS)) {
BX_ERROR(("%s in VMX guest: not allowed to use instruction !", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs;
Bit64u requested_features = (((Bit64u) EDX) << 32) | EAX;
if (requested_features & BX_CPU_THIS_PTR msr.ia32_xss & vm->xss_exiting_bitmap)
VMexit_Instruction(i, VMX_VMEXIT_XRSTORS);
}
#endif
}
BX_DEBUG(("%s: restore processor state XCR0=0x%08x XSS=" FMT_LL "x", i->getIaOpcodeNameShort(), BX_CPU_THIS_PTR xcr0.get32(), BX_CPU_THIS_PTR msr.ia32_xss));
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
bx_address laddr = get_laddr(i->seg(), eaddr);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 0x3) {
BX_ERROR(("%s: access not aligned to 4-byte cause model specific #AC(0)", i->getIaOpcodeNameShort()));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
if (laddr & 0x3f) {
BX_ERROR(("%s: access not aligned to 64-byte", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
bx_address asize_mask = i->asize_mask();
Bit64u xstate_bv = read_virtual_qword(i->seg(), (eaddr + 512) & asize_mask);
Bit64u xcomp_bv = read_virtual_qword(i->seg(), (eaddr + 520) & asize_mask);
Bit64u header3 = read_virtual_qword(i->seg(), (eaddr + 528) & asize_mask);
if (header3 != 0) {
BX_ERROR(("%s: Reserved header3 state is not '0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
bool compaction = (xcomp_bv & XSAVEC_COMPACTION_ENABLED) != 0;
if (! BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVEC) || ! compaction) {
if (xcomp_bv != 0) {
BX_ERROR(("%s: Reserved header2 state is not '0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
}
Bit64u xcr0 = (Bit64u) BX_CPU_THIS_PTR xcr0.get32();
if (xrstors)
xcr0 |= BX_CPU_THIS_PTR msr.ia32_xss;
if (! compaction) {
if (xrstors) {
BX_ERROR(("XRSTORS require compaction XCOMP_BV[63] to be set"));
exception(BX_GP_EXCEPTION, 0);
}
if ((~xcr0 & xstate_bv) != 0) {
BX_ERROR(("%s: Invalid xsave_bv state", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
}
else {
if ((~xcr0 & xcomp_bv & ~XSAVEC_COMPACTION_ENABLED) != 0) {
BX_ERROR(("%s: Invalid xcomp_bv state", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
if (xstate_bv & ~xcomp_bv) {
BX_ERROR(("%s: xstate_bv set a bit which is not in xcomp_bv state", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
Bit64u header4 = read_virtual_qword(i->seg(), (eaddr + 536) & asize_mask);
Bit64u header5 = read_virtual_qword(i->seg(), (eaddr + 544) & asize_mask);
Bit64u header6 = read_virtual_qword(i->seg(), (eaddr + 552) & asize_mask);
Bit64u header7 = read_virtual_qword(i->seg(), (eaddr + 560) & asize_mask);
Bit64u header8 = read_virtual_qword(i->seg(), (eaddr + 568) & asize_mask);
if (header4 | header5 | header6 | header7 | header8) {
BX_ERROR(("%s: Reserved header4_header7 state is not '0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
}
Bit32u requested_feature_bitmap = xcr0 & EAX;
/////////////////////////////////////////////////////////////////////////////
if ((requested_feature_bitmap & BX_XCR0_FPU_MASK) != 0)
{
if (xstate_bv & BX_XCR0_FPU_MASK)
xrstor_x87_state(i, eaddr);
else
xrstor_init_x87_state();
}
/////////////////////////////////////////////////////////////////////////////
if ((requested_feature_bitmap & BX_XCR0_SSE_MASK) != 0 ||
((requested_feature_bitmap & BX_XCR0_YMM_MASK) != 0 && ! compaction))
{
// read cannot cause any boundary cross because XSAVE image is 64-byte aligned
Bit32u new_mxcsr = read_virtual_dword(i->seg(), eaddr + 24);
if(new_mxcsr & ~MXCSR_MASK)
exception(BX_GP_EXCEPTION, 0);
BX_MXCSR_REGISTER = new_mxcsr;
}
/////////////////////////////////////////////////////////////////////////////
if ((requested_feature_bitmap & BX_XCR0_SSE_MASK) != 0)
{
if (xstate_bv & BX_XCR0_SSE_MASK)
xrstor_sse_state(i, eaddr+XSAVE_SSE_STATE_OFFSET);
else
xrstor_init_sse_state();
}
if (compaction) {
Bit32u offset = XSAVE_YMM_STATE_OFFSET;
/////////////////////////////////////////////////////////////////////////////
for (unsigned feature = xcr0_t::BX_XCR0_YMM_BIT; feature < xcr0_t::BX_XCR0_LAST; feature++)
{
Bit32u feature_mask = (1 << feature);
if ((requested_feature_bitmap & feature_mask) != 0)
{
if (! xsave_restore[feature].len) {
BX_ERROR(("%s: feature #%d requested to restore but not implemented !", i->getIaOpcodeNameShort(), feature));
continue;
}
if (xstate_bv & feature_mask) {
BX_ASSERT(xsave_restore[feature].xrstor_method);
CALL_XSAVE_FN(xsave_restore[feature].xrstor_method)(i, eaddr+offset);
}
else {
BX_ASSERT(xsave_restore[feature].xrstor_init_method);
CALL_XSAVE_FN(xsave_restore[feature].xrstor_init_method)();
}
offset += xsave_restore[feature].len;
}
}
}
else {
/////////////////////////////////////////////////////////////////////////////
for (unsigned feature = xcr0_t::BX_XCR0_YMM_BIT; feature < xcr0_t::BX_XCR0_LAST; feature++)
{
Bit32u feature_mask = (1 << feature);
if ((requested_feature_bitmap & feature_mask) != 0)
{
if (! xsave_restore[feature].len) {
BX_ERROR(("%s: feature #%d requested to restore but not implemented !", i->getIaOpcodeNameShort(), feature));
continue;
}
if (xstate_bv & feature_mask) {
BX_ASSERT(xsave_restore[feature].xrstor_method);
CALL_XSAVE_FN(xsave_restore[feature].xrstor_method)(i, eaddr+xsave_restore[feature].offset);
}
else {
BX_ASSERT(xsave_restore[feature].xrstor_init_method);
CALL_XSAVE_FN(xsave_restore[feature].xrstor_init_method)();
}
}
}
}
#if BX_SUPPORT_PKEYS
// take effect of changing the PKRU state
if ((requested_feature_bitmap & BX_XCR0_PKRU_MASK) != 0) {
set_PKeys(TMP32, BX_CPU_THIS_PTR pkrs);
}
#endif
#endif // BX_CPU_LEVEL >= 6
BX_NEXT_INSTR(i);
}
#if BX_CPU_LEVEL >= 6
// x87 state management //
void BX_CPU_C::xsave_x87_state(bxInstruction_c *i, bx_address offset)
{
BxPackedXmmRegister xmm;
bx_address asize_mask = i->asize_mask();
xmm.xmm16u(0) = BX_CPU_THIS_PTR the_i387.get_control_word();
xmm.xmm16u(1) = BX_CPU_THIS_PTR the_i387.get_status_word();
xmm.xmm16u(2) = pack_FPU_TW(BX_CPU_THIS_PTR the_i387.get_tag_word());
/* x87 FPU Opcode (16 bits) */
/* The lower 11 bits contain the FPU opcode, upper 5 bits are reserved */
xmm.xmm16u(3) = BX_CPU_THIS_PTR the_i387.foo;
/*
* x87 FPU IP Offset (32/64 bits)
* The contents of this field differ depending on the current
* addressing mode (16/32/64 bit) when the FXSAVE instruction was executed:
* + 64-bit mode - 64-bit IP offset
* + 32-bit mode - 32-bit IP offset
* + 16-bit mode - low 16 bits are IP offset; high 16 bits are reserved.
* x87 CS FPU IP Selector
* + 16 bit, in 16/32 bit mode only
*/
#if BX_SUPPORT_X86_64
if (i->os64L()) {
xmm.xmm64u(1) = (BX_CPU_THIS_PTR the_i387.fip);
}
else
#endif
{
xmm.xmm32u(2) = (Bit32u)(BX_CPU_THIS_PTR the_i387.fip);
xmm.xmm32u(3) = x87_get_FCS();
}
write_virtual_xmmword(i->seg(), offset, &xmm);
/*
* x87 FPU Instruction Operand (Data) Pointer Offset (32/64 bits)
* The contents of this field differ depending on the current
* addressing mode (16/32 bit) when the FXSAVE instruction was executed:
* + 64-bit mode - 64-bit offset
* + 32-bit mode - 32-bit offset
* + 16-bit mode - low 16 bits are offset; high 16 bits are reserved.
* x87 DS FPU Instruction Operand (Data) Pointer Selector
* + 16 bit, in 16/32 bit mode only
*/
#if BX_SUPPORT_X86_64
// write cannot cause any boundary cross because XSAVE image is 64-byte aligned
if (i->os64L()) {
write_virtual_qword(i->seg(), offset + 16, BX_CPU_THIS_PTR the_i387.fdp);
}
else
#endif
{
write_virtual_dword(i->seg(), offset + 16, (Bit32u) BX_CPU_THIS_PTR the_i387.fdp);
write_virtual_dword(i->seg(), offset + 20, x87_get_FDS());
}
/* do not touch MXCSR state */
/* store i387 register file */
for(unsigned index=0; index < 8; index++)
{
const floatx80 &fp = BX_READ_FPU_REG(index);
xmm.xmm64u(0) = fp.fraction;
xmm.xmm64u(1) = 0;
xmm.xmm16u(4) = fp.exp;
write_virtual_xmmword(i->seg(), (offset+index*16+32) & asize_mask, &xmm);
}
}
void BX_CPU_C::xrstor_x87_state(bxInstruction_c *i, bx_address offset)
{
BxPackedXmmRegister xmm;
bx_address asize_mask = i->asize_mask();
// load FPU state from XSAVE area
read_virtual_xmmword(i->seg(), offset, &xmm);
BX_CPU_THIS_PTR the_i387.cwd = xmm.xmm16u(0);
BX_CPU_THIS_PTR the_i387.swd = xmm.xmm16u(1);
BX_CPU_THIS_PTR the_i387.tos = (xmm.xmm16u(1) >> 11) & 0x07;
/* always set bit 6 as '1 */
BX_CPU_THIS_PTR the_i387.cwd =
(BX_CPU_THIS_PTR the_i387.cwd & ~FPU_CW_Reserved_Bits) | 0x0040;
/* Restore x87 FPU Opcode */
/* The lower 11 bits contain the FPU opcode, upper 5 bits are reserved */
BX_CPU_THIS_PTR the_i387.foo = xmm.xmm16u(3) & 0x7FF;
/* Restore x87 FPU IP */
#if BX_SUPPORT_X86_64
if (i->os64L()) {
BX_CPU_THIS_PTR the_i387.fip = xmm.xmm64u(1);
BX_CPU_THIS_PTR the_i387.fcs = 0;
}
else
#endif
{
BX_CPU_THIS_PTR the_i387.fip = xmm.xmm32u(2);
BX_CPU_THIS_PTR the_i387.fcs = xmm.xmm16u(6);
}
Bit32u tag_byte = xmm.xmmubyte(4);
/* Restore x87 FPU DP - read cannot cause any boundary cross because XSAVE image is 64-byte aligned */
read_virtual_xmmword(i->seg(), offset + 16, &xmm);
#if BX_SUPPORT_X86_64
if (i->os64L()) {
BX_CPU_THIS_PTR the_i387.fdp = xmm.xmm64u(0);
BX_CPU_THIS_PTR the_i387.fds = 0;
}
else
#endif
{
BX_CPU_THIS_PTR the_i387.fdp = xmm.xmm32u(0);
BX_CPU_THIS_PTR the_i387.fds = xmm.xmm16u(2);
}
/* load i387 register file */
for(unsigned index=0; index < 8; index++)
{
floatx80 reg;
reg.fraction = read_virtual_qword(i->seg(), (offset+index*16+32) & asize_mask);
reg.exp = read_virtual_word (i->seg(), (offset+index*16+40) & asize_mask);
// update tag only if it is not empty
BX_WRITE_FPU_REGISTER_AND_TAG(reg,
IS_TAG_EMPTY(index) ? FPU_Tag_Empty : FPU_tagof(reg), index);
}
/* Restore floating point tag word - see desription for FXRSTOR instruction */
BX_CPU_THIS_PTR the_i387.twd = unpack_FPU_TW(tag_byte);
/* check for unmasked exceptions */
if (FPU_PARTIAL_STATUS & ~FPU_CONTROL_WORD & FPU_CW_Exceptions_Mask) {
/* set the B and ES bits in the status-word */
FPU_PARTIAL_STATUS |= FPU_SW_Summary | FPU_SW_Backward;
}
else {
/* clear the B and ES bits in the status-word */
FPU_PARTIAL_STATUS &= ~(FPU_SW_Summary | FPU_SW_Backward);
}
}
void BX_CPU_C::xrstor_init_x87_state(void)
{
// initialize FPU with reset values
BX_CPU_THIS_PTR the_i387.init();
for (unsigned index=0;index<8;index++) {
static floatx80 reg = { 0, 0 };
BX_FPU_REG(index) = reg;
}
}
bool BX_CPU_C::xsave_x87_state_xinuse(void)
{
if (BX_CPU_THIS_PTR the_i387.get_control_word() != 0x037F ||
BX_CPU_THIS_PTR the_i387.get_status_word() != 0 ||
BX_CPU_THIS_PTR the_i387.get_tag_word() != 0xFFFF ||
BX_CPU_THIS_PTR the_i387.foo != 0 ||
BX_CPU_THIS_PTR the_i387.fip != 0 || BX_CPU_THIS_PTR the_i387.fcs != 0 ||
BX_CPU_THIS_PTR the_i387.fdp != 0 || BX_CPU_THIS_PTR the_i387.fds != 0) return true;
for (unsigned index=0;index<8;index++) {
floatx80 reg = BX_FPU_REG(index);
if (reg.exp != 0 || reg.fraction != 0) return true;
}
return false;
}
// SSE state management //
void BX_CPU_C::xsave_sse_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
/* store XMM register file */
for(unsigned index=0; index < 16; index++) {
// save XMM8-XMM15 only in 64-bit mode
if (index < 8 || long64_mode()) {
write_virtual_xmmword(i->seg(), (offset + index*16) & asize_mask, &BX_READ_XMM_REG(index));
}
}
}
void BX_CPU_C::xrstor_sse_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
// load SSE state from XSAVE area
for(unsigned index=0; index < 16; index++) {
// restore XMM8-XMM15 only in 64-bit mode
if (index < 8 || long64_mode()) {
read_virtual_xmmword(i->seg(), (offset+index*16) & asize_mask, &BX_READ_XMM_REG(index));
}
}
}
void BX_CPU_C::xrstor_init_sse_state(void)
{
// initialize SSE with reset values
for(unsigned index=0; index < 16; index++) {
// set XMM8-XMM15 only in 64-bit mode
if (index < 8 || long64_mode()) BX_CLEAR_XMM_REG(index);
}
}
bool BX_CPU_C::xsave_sse_state_xinuse(void)
{
for(unsigned index=0; index < 16; index++) {
// set XMM8-XMM15 only in 64-bit mode
if (index < 8 || long64_mode()) {
const BxPackedXmmRegister *reg = &BX_XMM_REG(index);
if (! is_clear(reg)) return true;
}
}
return false;
}
#if BX_SUPPORT_AVX
// YMM state management //
void BX_CPU_C::xsave_ymm_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
/* store AVX state */
for(unsigned index=0; index < 16; index++) {
// save YMM8-YMM15 only in 64-bit mode
if (index < 8 || long64_mode()) {
write_virtual_xmmword(i->seg(), (offset + index*16) & asize_mask, &BX_READ_AVX_REG_LANE(index, 1));
}
}
}
void BX_CPU_C::xrstor_ymm_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
// load AVX state from XSAVE area
for(unsigned index=0; index < 16; index++) {
// restore YMM8-YMM15 only in 64-bit mode
if (index < 8 || long64_mode()) {
read_virtual_xmmword(i->seg(), (offset + index*16) & asize_mask, &BX_READ_AVX_REG_LANE(index, 1));
}
}
}
void BX_CPU_C::xrstor_init_ymm_state(void)
{
// initialize upper part of AVX registers with reset values
for(unsigned index=0; index < 16; index++) {
// set YMM8-YMM15 only in 64-bit mode
if (index < 8 || long64_mode()) BX_CLEAR_AVX_HIGH128(index);
}
}
bool BX_CPU_C::xsave_ymm_state_xinuse(void)
{
for(unsigned index=0; index < 16; index++) {
// set YMM8-YMM15 only in 64-bit mode
if (index < 8 || long64_mode()) {
const BxPackedXmmRegister *reg = &BX_READ_AVX_REG_LANE(index, 1);
if (! is_clear(reg)) return true;
}
}
return false;
}
#if BX_SUPPORT_EVEX
// Opmask state management //
void BX_CPU_C::xsave_opmask_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
// save OPMASK state to XSAVE area
for(unsigned index=0; index < 8; index++) {
write_virtual_qword(i->seg(), (offset+index*8) & asize_mask, BX_READ_OPMASK(index));
}
}
void BX_CPU_C::xrstor_opmask_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
// load opmask registers from XSAVE area
for(unsigned index=0; index < 8; index++) {
Bit64u opmask = read_virtual_qword(i->seg(), (offset+index*8) & asize_mask);
BX_WRITE_OPMASK(index, opmask);
}
}
void BX_CPU_C::xrstor_init_opmask_state(void)
{
// initialize opmask registers with reset values
for(unsigned index=0; index < 8; index++) {
BX_WRITE_OPMASK(index, 0);
}
}
bool BX_CPU_C::xsave_opmask_state_xinuse(void)
{
for(unsigned index=0; index < 8; index++) {
if (BX_READ_OPMASK(index)) return true;
}
return false;
}
// ZMM_HI256 (upper part of zmm0..zmm15 registers) state management //
// In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H-ZMM15_H is 0.
// Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H-ZMM7_H is 0.
// An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H-ZMM15_H.
void BX_CPU_C::xsave_zmm_hi256_state(bxInstruction_c *i, bx_address offset)
{
unsigned num_regs = long64_mode() ? 16 : 8;
bx_address asize_mask = i->asize_mask();
// save upper part of ZMM registers to XSAVE area
for(unsigned index=0; index < num_regs; index++) {
write_virtual_ymmword(i->seg(), (offset+index*32) & asize_mask, &BX_READ_ZMM_REG_HI(index));
}
}
void BX_CPU_C::xrstor_zmm_hi256_state(bxInstruction_c *i, bx_address offset)
{
unsigned num_regs = long64_mode() ? 16 : 8;
bx_address asize_mask = i->asize_mask();
// load upper part of ZMM registers from XSAVE area
for(unsigned index=0; index < num_regs; index++) {
read_virtual_ymmword(i->seg(), (offset+index*32) & asize_mask, &BX_READ_ZMM_REG_HI(index));
}
}
void BX_CPU_C::xrstor_init_zmm_hi256_state(void)
{
unsigned num_regs = long64_mode() ? 16 : 8;
// initialize upper part of ZMM registers with reset values
for(unsigned index=0; index < num_regs; index++) {
BX_CLEAR_AVX_HIGH256(index);
}
}
bool BX_CPU_C::xsave_zmm_hi256_state_xinuse(void)
{
unsigned num_regs = long64_mode() ? 16 : 8;
for(unsigned index=0; index < num_regs; index++) {
for (unsigned n=2; n < 4; n++) {
const BxPackedXmmRegister *reg = &BX_READ_AVX_REG_LANE(index, n);
if (! is_clear(reg)) return true;
}
}
return false;
}
// HI_ZMM (zmm15..zmm31) state management //
// In 64-bit mode, Hi16_ZMM state is in its initial configuration if each of ZMM16-ZMM31 is 0.
// Outside 64-bit mode, Hi16_ZMM state is always in its initial configuration.
// An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM16-ZMM31.
void BX_CPU_C::xsave_hi_zmm_state(bxInstruction_c *i, bx_address offset)
{
if (!long64_mode()) return;
bx_address asize_mask = i->asize_mask();
// save high ZMM state to XSAVE area
for(unsigned index=0; index < 16; index++) {
write_virtual_zmmword(i->seg(), (offset+index*64) & asize_mask, &BX_READ_AVX_REG(index+16));
}
}
void BX_CPU_C::xrstor_hi_zmm_state(bxInstruction_c *i, bx_address offset)
{
if (!long64_mode()) return;
bx_address asize_mask = i->asize_mask();
// load high ZMM state from XSAVE area
for(unsigned index=0; index < 16; index++) {
read_virtual_zmmword(i->seg(), (offset+index*64) & asize_mask, &BX_READ_AVX_REG(index+16));
}
}
void BX_CPU_C::xrstor_init_hi_zmm_state(void)
{
if (!long64_mode()) return;
// initialize high ZMM registers with reset values
for(unsigned index=16; index < 32; index++) {
BX_CLEAR_AVX_REG(index);
}
}
bool BX_CPU_C::xsave_hi_zmm_state_xinuse(void)
{
if (!long64_mode()) return true;
for(unsigned index=16; index < 32; index++) {
for (unsigned n=0; n < 4; n++) {
const BxPackedXmmRegister *reg = &BX_READ_AVX_REG_LANE(index, n);
if (! is_clear(reg)) return true;
}
}
return false;
}
#endif // BX_SUPPORT_EVEX
#endif // BX_SUPPORT_AVX
#if BX_SUPPORT_PKEYS
// PKRU state management //
void BX_CPU_C::xsave_pkru_state(bxInstruction_c *i, bx_address offset)
{
write_virtual_qword(i->seg(), offset, (Bit64u) BX_CPU_THIS_PTR pkru);
}
void BX_CPU_C::xrstor_pkru_state(bxInstruction_c *i, bx_address offset)
{
// just write the pkru to TMP register for now and don't call set_PKeys
// calling it will take immediate effect on all future memory accesses including load of other XRSTOR components
TMP32 = read_virtual_dword(i->seg(), offset);
}
void BX_CPU_C::xrstor_init_pkru_state(void)
{
// just write the pkru to TMP register for now and don't call set_PKeys
// calling it will take immediate effect on all future memory accesses including load of other XRSTOR components
TMP32 = 0;
}
bool BX_CPU_C::xsave_pkru_state_xinuse(void)
{
return (BX_CPU_THIS_PTR pkru != 0);
}
#endif
#if BX_SUPPORT_CET
// CET U state management //
void BX_CPU_C::xsave_cet_u_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
write_virtual_qword(i->seg(), offset, BX_CPU_THIS_PTR msr.ia32_cet_control[1]);
write_virtual_qword(i->seg(), (offset + 8) & asize_mask, BX_CPU_THIS_PTR msr.ia32_pl_ssp[3]);
}
void BX_CPU_C::xrstor_cet_u_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
Bit64u ctrl = read_virtual_qword(i->seg(), offset);
Bit64u ia32_pl3_ssp = read_virtual_qword(i->seg(), (offset + 8) & asize_mask);
// XRSTOR on CET state does all reserved bits and canonicality check like WRMSR would do
wrmsr(BX_MSR_IA32_U_CET, ctrl);
wrmsr(BX_MSR_IA32_PL3_SSP, ia32_pl3_ssp);
}
void BX_CPU_C::xrstor_init_cet_u_state(void)
{
BX_CPU_THIS_PTR msr.ia32_cet_control[1] = 0;
BX_CPU_THIS_PTR msr.ia32_pl_ssp[3] = 0;
}
bool BX_CPU_C::xsave_cet_u_state_xinuse(void)
{
return BX_CPU_THIS_PTR msr.ia32_cet_control[1] == 0 &&
BX_CPU_THIS_PTR msr.ia32_pl_ssp[3] == 0;
}
// CET S state management //
void BX_CPU_C::xsave_cet_s_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
write_virtual_qword(i->seg(), offset, BX_CPU_THIS_PTR msr.ia32_pl_ssp[0]);
write_virtual_qword(i->seg(), (offset + 8) & asize_mask, BX_CPU_THIS_PTR msr.ia32_pl_ssp[1]);
write_virtual_qword(i->seg(), (offset + 16) & asize_mask, BX_CPU_THIS_PTR msr.ia32_pl_ssp[2]);
}
void BX_CPU_C::xrstor_cet_s_state(bxInstruction_c *i, bx_address offset)
{
bx_address asize_mask = i->asize_mask();
Bit64u ia32_pl0_ssp = read_virtual_qword(i->seg(), offset);
Bit64u ia32_pl1_ssp = read_virtual_qword(i->seg(), (offset + 8) & asize_mask);
Bit64u ia32_pl2_ssp = read_virtual_qword(i->seg(), (offset + 16) & asize_mask);
// XRSTOR on CET state does all reserved bits and canonicality check like WRMSR would do
wrmsr(BX_MSR_IA32_PL0_SSP, ia32_pl0_ssp);
wrmsr(BX_MSR_IA32_PL1_SSP, ia32_pl1_ssp);
wrmsr(BX_MSR_IA32_PL2_SSP, ia32_pl2_ssp);
}
void BX_CPU_C::xrstor_init_cet_s_state(void)
{
for (unsigned n=0;n<3;n++)
BX_CPU_THIS_PTR msr.ia32_pl_ssp[n] = 0;
}
bool BX_CPU_C::xsave_cet_s_state_xinuse(void)
{
for (unsigned n=0;n<3;n++)
return BX_CPU_THIS_PTR msr.ia32_pl_ssp[n] != 0;
return false;
}
#endif
Bit32u BX_CPU_C::get_xinuse_vector(Bit32u requested_feature_bitmap)
{
Bit32u xinuse = 0;
/////////////////////////////////////////////////////////////////////////////
for (unsigned feature = xcr0_t::BX_XCR0_FPU_BIT; feature < xcr0_t::BX_XCR0_LAST; feature++)
{
Bit32u feature_mask = (1 << feature);
if ((requested_feature_bitmap & feature_mask) != 0)
{
if (! xsave_restore[feature].len) {
BX_ERROR(("get_xinuse_vector(0x%08x): feature #%d requested but not implemented !", requested_feature_bitmap, feature));
continue;
}
BX_ASSERT(xsave_restore[feature].xstate_in_use_method);
if (CALL_XSAVE_FN(xsave_restore[feature].xstate_in_use_method)())
xinuse |= feature_mask;
}
}
/////////////////////////////////////////////////////////////////////////////
if (requested_feature_bitmap & BX_XCR0_SSE_MASK) {
if (BX_MXCSR_REGISTER != MXCSR_RESET)
xinuse |= BX_XCR0_SSE_MASK;
}
return xinuse;
}
#endif // BX_CPU_LEVEL >= 6
/* 0F 01 D0 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XGETBV(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
if(! BX_CPU_THIS_PTR cr4.get_OSXSAVE()) {
BX_ERROR(("XGETBV: OSXSAVE feature is not enabled in CR4!"));
exception(BX_UD_EXCEPTION, 0);
}
// For now hardcoded handle only XCR0 register, it should take a few
// years until extension will be required
if (ECX != 0) {
if (ECX == 1 && BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVEC)) {
// Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0
// and the current value of the XINUSE state-component bitmap.
// If XINUSE[i]=0, state component [i] is in its initial configuration.
RDX = 0;
RAX = get_xinuse_vector(BX_CPU_THIS_PTR xcr0.get32());
}
else {
BX_ERROR(("XGETBV: Invalid XCR%d register", ECX));
exception(BX_GP_EXCEPTION, 0);
}
}
else {
RDX = 0;
RAX = BX_CPU_THIS_PTR xcr0.get32();
}
#endif
BX_NEXT_INSTR(i);
}
/* 0F 01 D1 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XSETBV(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
if(! BX_CPU_THIS_PTR cr4.get_OSXSAVE()) {
BX_ERROR(("XSETBV: OSXSAVE feature is not enabled in CR4!"));
exception(BX_UD_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest) {
VMexit(VMX_VMEXIT_XSETBV, 0);
}
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT1_XSETBV)) Svm_Vmexit(SVM_VMEXIT_XSETBV);
}
#endif
// CPL is always 3 in vm8086 mode
if (/* v8086_mode() || */ CPL != 0) {
BX_ERROR(("XSETBV: The current priveledge level is not 0"));
exception(BX_GP_EXCEPTION, 0);
}
// For now hardcoded handle only XCR0 register, it should take a few
// years until extension will be required
if (ECX != 0) {
BX_ERROR(("XSETBV: Invalid XCR%d register", ECX));
exception(BX_GP_EXCEPTION, 0);
}
if (EDX != 0 || (EAX & ~BX_CPU_THIS_PTR xcr0_suppmask) != 0 || (EAX & BX_XCR0_FPU_MASK) == 0) {
BX_ERROR(("XSETBV: Attempt to change reserved bits"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_AVX
if ((EAX & (BX_XCR0_YMM_MASK | BX_XCR0_SSE_MASK)) == BX_XCR0_YMM_MASK) {
BX_ERROR(("XSETBV: Attempt to enable AVX without SSE"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
#if BX_SUPPORT_EVEX
if (EAX & (BX_XCR0_OPMASK_MASK | BX_XCR0_ZMM_HI256_MASK | BX_XCR0_HI_ZMM_MASK)) {
Bit32u avx512_state_mask = (BX_XCR0_FPU_MASK | BX_XCR0_SSE_MASK | BX_XCR0_YMM_MASK | BX_XCR0_OPMASK_MASK | BX_XCR0_ZMM_HI256_MASK | BX_XCR0_HI_ZMM_MASK);
if ((EAX & avx512_state_mask) != avx512_state_mask) {
BX_ERROR(("XSETBV: Illegal attempt to enable AVX-512 state"));
exception(BX_GP_EXCEPTION, 0);
}
}
#endif
BX_CPU_THIS_PTR xcr0.set32(EAX);
#if BX_SUPPORT_AVX
handleAvxModeChange();
#endif
#endif // BX_CPU_LEVEL >= 6
BX_NEXT_TRACE(i);
}