Bochs/bochs/cpu/logical32.cc
Bryce Denney 49664f7503 - parts of the SMP merge apparantly broke the debugger and this revision
tries to fix it.  The shortcuts to register names such as AX and DL are
  #defines in cpu/cpu.h, and they are defined in terms of BX_CPU_THIS_PTR.
  When BX_USE_CPU_SMF=1, this works fine.  (This is what bochs used for
  a long time, and nobody used the SMF=0 mode at all.)  To make SMP bochs
  work, I had to get SMF=0 mode working for the CPU so that there could
  be an array of cpus.

  When SMF=0 for the CPU, BX_CPU_THIS_PTR is defined to be "this->" which
  only works within methods of BX_CPU_C.  Code outside of BX_CPU_C must
  reference BX_CPU(num) instead.
- to try to enforce the correct use of AL/AX/DL/etc. shortcuts, they are
  now only #defined when "NEED_CPU_REG_SHORTCUTS" is #defined.  This is
  only done in the cpu/*.cc code.
2001-05-24 18:46:34 +00:00

436 lines
9.5 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XOR_EdGd(BxInstruction_t *i)
{
/* for 32 bit operand size mode */
Bit32u op2_32, op1_32, result_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 ^ op2_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::XOR_GdEd(BxInstruction_t *i)
{
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn);
/* op2_32 is a register or memory reference */
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
result_32 = op1_32 ^ op2_32;
/* now write result back to destination */
BX_WRITE_32BIT_REG(i->nnn, result_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::XOR_EAXId(BxInstruction_t *i)
{
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id;
sum_32 = op1_32 ^ op2_32;
/* now write sum back to destination */
EAX = sum_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::XOR_EdId(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 ^ op2_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::OR_EdId(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 | op2_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_OR32);
}
void
BX_CPU_C::NOT_Ed(BxInstruction_t *i)
{
Bit32u op1_32, result_32;
/* op1 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = ~op1_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
}
void
BX_CPU_C::OR_EdGd(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 | op2_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_OR32);
}
void
BX_CPU_C::OR_GdEd(BxInstruction_t *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn);
/* op2_32 is a register or memory reference */
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
result_32 = op1_32 | op2_32;
/* now write result back to destination */
BX_WRITE_32BIT_REG(i->nnn, result_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_OR32);
}
void
BX_CPU_C::OR_EAXId(BxInstruction_t *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id;
sum_32 = op1_32 | op2_32;
/* now write sum back to destination */
EAX = sum_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_OR32);
}
void
BX_CPU_C::AND_EdGd(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 & op2_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
}
void
BX_CPU_C::AND_GdEd(BxInstruction_t *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn);
/* op2_32 is a register or memory reference */
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
result_32 = op1_32 & op2_32;
/* now write result back to destination */
BX_WRITE_32BIT_REG(i->nnn, result_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
}
void
BX_CPU_C::AND_EAXId(BxInstruction_t *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id;
sum_32 = op1_32 & op2_32;
/* now write sum back to destination */
EAX = sum_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_AND32);
}
void
BX_CPU_C::AND_EdId(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 & op2_32;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, result_32);
}
else {
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
}
void
BX_CPU_C::TEST_EdGd(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32);
}
void
BX_CPU_C::TEST_EAXId(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
/* op1 is EAX register */
op1_32 = EAX;
/* op2 is imm32 */
op2_32 = i->Id;
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32);
}
void
BX_CPU_C::TEST_EdId(BxInstruction_t *i)
{
Bit32u op2_32, op1_32, result_32;
/* op2 is imm32 */
op2_32 = i->Id;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32);
}