Bochs/bochs/cpu/stack32.cc

418 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: stack32.cc,v 1.45 2008-01-10 19:37:56 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// Make code more tidy with a few macros.
#if BX_SUPPORT_X86_64==0
#define RSP ESP
#endif
void BX_CPU_C::POP_EdM(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u val32 = pop_32();
// Note: there is one little weirdism here. It is possible to use
// ESP in the modrm addressing. If used, the value of ESP after the
// pop is used to calculate the address.
//if (i->rm()==4 && i->sibBase()==4) {
// call method on BX_CPU_C object
BX_CPU_CALL_METHODR (i->ResolveModrm, (i));
//}
write_virtual_dword(i->seg(), RMAddr(i), val32);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPU_C::POP_EdR(bxInstruction_c *i)
{
BX_WRITE_32BIT_REGZ(i->rm(), pop_32());
}
void BX_CPU_C::PUSH_ERX(bxInstruction_c *i)
{
push_32(BX_READ_32BIT_REG(i->opcodeReg()));
}
void BX_CPU_C::POP_ERX(bxInstruction_c *i)
{
BX_WRITE_32BIT_REGZ(i->opcodeReg(), pop_32());
}
void BX_CPU_C::PUSH32_CS(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
}
void BX_CPU_C::PUSH32_DS(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
}
void BX_CPU_C::PUSH32_ES(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
}
void BX_CPU_C::PUSH32_FS(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
}
void BX_CPU_C::PUSH32_GS(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
}
void BX_CPU_C::PUSH32_SS(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
}
void BX_CPU_C::POP32_DS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u ds = pop_32();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPU_C::POP32_ES(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u es = pop_32();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPU_C::POP32_FS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u fs = pop_32();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPU_C::POP32_GS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u gs = pop_32();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPU_C::POP32_SS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u ss = pop_32();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss);
BX_CPU_THIS_PTR speculative_rsp = 0;
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
BX_CPU_THIS_PTR inhibit_mask |=
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
BX_CPU_THIS_PTR async_event = 1;
}
void BX_CPU_C::PUSH_Id(bxInstruction_c *i)
{
push_32(i->Id());
}
void BX_CPU_C::PUSH_EdM(bxInstruction_c *i)
{
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_virtual_dword(i->seg(), RMAddr(i));
push_32(op1_32);
}
void BX_CPU_C::PUSH_EdR(bxInstruction_c *i)
{
push_32(BX_READ_32BIT_REG(i->rm()));
}
void BX_CPU_C::PUSHAD32(bxInstruction_c *i)
{
Bit32u temp_ESP = ESP;
Bit16u temp_SP = SP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 4), EAX);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 8), ECX);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 12), EDX);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 16), EBX);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 20), temp_ESP);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 24), EBP);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 28), ESI);
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 32), EDI);
ESP -= 32;
}
else
{
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 4), EAX);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 8), ECX);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 12), EDX);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 16), EBX);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 20), temp_ESP);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 24), EBP);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 28), ESI);
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 32), EDI);
SP -= 32;
}
}
void BX_CPU_C::POPAD32(bxInstruction_c *i)
{
Bit32u edi, esi, ebp, ebx, edx, ecx, eax;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
Bit32u temp_ESP = ESP;
edi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0));
esi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4));
ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8));
ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 16));
edx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 20));
ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 24));
eax = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 28));
ESP += 32;
}
else
{
Bit16u temp_SP = SP;
edi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0));
esi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4));
ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8));
ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 16));
edx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 20));
ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 24));
eax = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 28));
SP += 32;
}
EDI = edi;
ESI = esi;
EBP = ebp;
EBX = ebx;
EDX = edx;
ECX = ecx;
EAX = eax;
}
#if BX_CPU_LEVEL >= 2
void BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i)
{
unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b;
Bit16u imm16 = i->Iw();
Bit8u level = i->Ib2();
level &= 0x1F;
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u ebp; // Use temp copy in case of exception.
push_16(BP);
Bit32u frame_ptr32 = ESP;
if (ss32) {
ebp = EBP;
}
else {
ebp = BP;
}
if (level > 0) {
/* do level-1 times */
while (--level) {
Bit16u temp16;
if (ss32) {
ebp -= 2;
temp16 = read_virtual_word(BX_SEG_REG_SS, ebp);
}
else { /* 16bit stacksize */
ebp -= 2;
ebp &= 0xffff;
temp16 = read_virtual_word(BX_SEG_REG_SS, ebp);
}
push_16(temp16);
}
/* push(frame pointer) */
push_16((Bit16u)frame_ptr32);
}
BX_CPU_THIS_PTR speculative_rsp = 0;
if (ss32) {
EBP = frame_ptr32;
ESP -= imm16;
}
else {
BP = (Bit16u) frame_ptr32;
SP -= imm16;
}
}
void BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i)
{
unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b;
Bit16u imm16 = i->Iw();
Bit8u level = i->Ib2();
level &= 0x1F;
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit32u ebp; // Use temp copy in case of exception.
push_32(EBP);
Bit32u frame_ptr32 = ESP;
if (ss32) {
ebp = EBP;
}
else {
ebp = BP;
}
if (level > 0) {
/* do level-1 times */
while (--level) {
Bit32u temp32;
if (ss32) {
ebp -= 4;
temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp);
}
else { /* 16bit stacksize */
ebp -= 4;
ebp &= 0xffff;
temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp);
}
push_32(temp32);
}
/* push(frame pointer) */
push_32(frame_ptr32);
}
BX_CPU_THIS_PTR speculative_rsp = 0;
if (ss32) {
EBP = frame_ptr32;
ESP -= imm16;
}
else {
BP = (Bit16u) frame_ptr32;
SP -= imm16;
}
}
void BX_CPU_C::LEAVE(bxInstruction_c *i)
{
Bit32u temp_EBP;
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_EBP = EBP;
else
#endif
temp_EBP = BP;
if (protected_mode()) {
if (IS_DATA_SEGMENT_EXPAND_DOWN(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type)) {
if (temp_EBP <= BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
BX_PANIC(("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit"));
exception(BX_SS_EXCEPTION, 0, 0);
}
}
else { /* normal */
if (temp_EBP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
BX_PANIC(("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit"));
exception(BX_SS_EXCEPTION, 0, 0);
}
}
}
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
// delete frame
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP = EBP;
else
#endif
SP = BP;
// restore frame pointer
#if BX_CPU_LEVEL >= 3
if (i->os32L()) {
EBP = pop_32();
}
else
#endif
{
BP = pop_16();
}
BX_CPU_THIS_PTR speculative_rsp = 0;
}
#endif