Bochs/bochs/cpu/cpu.cc
2014-10-12 18:59:10 +00:00

765 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2013 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#define InstrumentICACHE 0
#if InstrumentICACHE
static unsigned iCacheLookups=0;
static unsigned iCacheMisses=0;
#define InstrICache_StatsMask 0xffffff
#define InstrICache_Stats() {\
if ((iCacheLookups & InstrICache_StatsMask) == 0) { \
BX_INFO(("ICACHE lookups: %u, misses: %u, hit rate = %6.2f%% ", \
iCacheLookups, \
iCacheMisses, \
(iCacheLookups-iCacheMisses) * 100.0f / iCacheLookups)); \
iCacheLookups = iCacheMisses = 0; \
} \
}
#define InstrICache_Increment(v) (v)++
#else
#define InstrICache_Stats()
#define InstrICache_Increment(v)
#endif
void BX_CPU_C::cpu_loop(void)
{
#if BX_DEBUGGER
BX_CPU_THIS_PTR break_point = 0;
BX_CPU_THIS_PTR magic_break = 0;
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
#endif
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) {
// can get here only from exception function or VMEXIT
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);
#if BX_DEBUGGER || BX_GDBSTUB
if (dbg_instruction_epilog()) return;
#endif
#if BX_GDBSTUB
if (bx_dbg.gdbstub_enabled) return;
#endif
}
// If the exception() routine has encountered a nasty fault scenario,
// the debugger may request that control is returned to it so that
// the situation may be examined.
#if BX_DEBUGGER
if (bx_guard.interrupt_requested) return;
#endif
// We get here either by a normal function call, or by a longjmp
// back from an exception() call. In either case, commit the
// new EIP/ESP, and set up other environmental fields. This code
// mirrors similar code below, after the interrupt() call.
BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP
BX_CPU_THIS_PTR speculative_rsp = 0;
while (1) {
// check on events which occurred for previous instructions (traps)
// and ones which are asynchronous to the CPU (hardware interrupts)
if (BX_CPU_THIS_PTR async_event) {
if (handleAsyncEvent()) {
// If request to return to caller ASAP.
return;
}
}
bxICacheEntry_c *entry = getICacheEntry();
bxInstruction_c *i = entry->i;
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
for(;;) {
// want to allow changing of the instruction inside instrumentation callback
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
RIP += i->ilen();
// when handlers chaining is enabled this single call will execute entire trace
BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);
if (BX_CPU_THIS_PTR async_event) break;
i = getICacheEntry()->i;
}
#else // BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS == 0
bxInstruction_c *last = i + (entry->tlen);
for(;;) {
#if BX_DEBUGGER
if (BX_CPU_THIS_PTR trace)
debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip);
#endif
// want to allow changing of the instruction inside instrumentation callback
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
RIP += i->ilen();
BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);
// note instructions generating exceptions never reach this point
#if BX_DEBUGGER || BX_GDBSTUB
if (dbg_instruction_epilog()) return;
#endif
if (BX_CPU_THIS_PTR async_event) break;
if (++i == last) {
entry = getICacheEntry();
i = entry->i;
last = i + (entry->tlen);
}
}
#endif
// clear stop trace magic indication that probably was set by repeat or branch32/64
BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
} // while (1)
}
#if BX_SUPPORT_SMP
void BX_CPU_C::cpu_run_trace(void)
{
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) {
// can get here only from exception function or VMEXIT
BX_CPU_THIS_PTR icount++;
return;
}
// check on events which occurred for previous instructions (traps)
// and ones which are asynchronous to the CPU (hardware interrupts)
if (BX_CPU_THIS_PTR async_event) {
if (handleAsyncEvent()) {
// If request to return to caller ASAP.
return;
}
}
bxICacheEntry_c *entry = getICacheEntry();
bxInstruction_c *i = entry->i;
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
// want to allow changing of the instruction inside instrumentation callback
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
RIP += i->ilen();
// when handlers chaining is enabled this single call will execute entire trace
BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
if (BX_CPU_THIS_PTR async_event) {
// clear stop trace magic indication that probably was set by repeat or branch32/64
BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
}
#else
bxInstruction_c *last = i + (entry->tlen);
for(;;) {
// want to allow changing of the instruction inside instrumentation callback
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
RIP += i->ilen();
BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
BX_CPU_THIS_PTR icount++;
if (BX_CPU_THIS_PTR async_event) {
// clear stop trace magic indication that probably was set by repeat or branch32/64
BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
break;
}
if (++i == last) break;
}
#endif // BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
}
#endif
bxICacheEntry_c* BX_CPU_C::getICacheEntry(void)
{
bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
prefetch();
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
}
InstrICache_Increment(iCacheLookups);
InstrICache_Stats();
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + eipBiased;
bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.find_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask);
if (entry == NULL)
{
// iCache miss. No validated instruction with matching fetch parameters
// is in the iCache.
InstrICache_Increment(iCacheMisses);
entry = serveICacheMiss(entry, (Bit32u) eipBiased, pAddr);
}
return entry;
}
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS && BX_ENABLE_TRACE_LINKING
// The function is called after taken branch instructions and tries to link the branch to the next trace
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::linkTrace(bxInstruction_c *i)
{
#if BX_SUPPORT_SMP
if (BX_SMP_PROCESSORS > 1)
return;
#endif
if (BX_CPU_THIS_PTR async_event) return;
Bit32u delta = (Bit32u) (BX_CPU_THIS_PTR icount - BX_CPU_THIS_PTR icount_last_sync);
if(delta >= bx_pc_system.getNumCpuTicksLeftNextEvent())
return;
bxInstruction_c *next = i->getNextTrace(BX_CPU_THIS_PTR iCache.traceLinkTimeStamp);
if (next) {
bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
prefetch();
}
BX_EXECUTE_INSTRUCTION(next);
return;
}
bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
prefetch();
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
}
InstrICache_Increment(iCacheLookups);
InstrICache_Stats();
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + eipBiased;
bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.find_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask);
if (entry != NULL) // link traces - handle only hit cases
{
i->setNextTrace(entry->i, BX_CPU_THIS_PTR iCache.traceLinkTimeStamp);
i = entry->i;
BX_EXECUTE_INSTRUCTION(i);
}
}
#endif
#define BX_REPEAT_TIME_UPDATE_INTERVAL (BX_MAX_TRACE_LENGTH-1)
void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat(bxInstruction_c *i, BxRepIterationPtr_tR execute)
{
// non repeated instruction
if (! i->repUsedL()) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
return;
}
#if BX_X86_DEBUGGER
BX_CPU_THIS_PTR in_repeat = 0;
#endif
#if BX_SUPPORT_X86_64
if (i->as64L()) {
while(1) {
if (RCX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX --;
}
if (RCX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
else
#endif
if (i->as32L()) {
while(1) {
if (ECX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX = ECX - 1;
}
if (ECX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
else // 16bit addrsize
{
while(1) {
if (CX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
CX --;
}
if (CX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
#if BX_X86_DEBUGGER
BX_CPU_THIS_PTR in_repeat = 1;
#endif
RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP
// assert magic async_event to stop trace execution
BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;
}
void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat_ZF(bxInstruction_c *i, BxRepIterationPtr_tR execute)
{
unsigned rep = i->lockRepUsedValue();
// non repeated instruction
if (rep < 2) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
return;
}
#if BX_X86_DEBUGGER
BX_CPU_THIS_PTR in_repeat = 0;
#endif
if (rep == 3) { /* repeat prefix 0xF3 */
#if BX_SUPPORT_X86_64
if (i->as64L()) {
while(1) {
if (RCX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX --;
}
if (! get_ZF() || RCX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
else
#endif
if (i->as32L()) {
while(1) {
if (ECX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX = ECX - 1;
}
if (! get_ZF() || ECX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
else // 16bit addrsize
{
while(1) {
if (CX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
CX --;
}
if (! get_ZF() || CX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
}
else { /* repeat prefix 0xF2 */
#if BX_SUPPORT_X86_64
if (i->as64L()) {
while(1) {
if (RCX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX --;
}
if (get_ZF() || RCX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
else
#endif
if (i->as32L()) {
while(1) {
if (ECX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX = ECX - 1;
}
if (get_ZF() || ECX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
else // 16bit addrsize
{
while(1) {
if (CX != 0) {
BX_CPU_CALL_REP_ITERATION(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
CX --;
}
if (get_ZF() || CX == 0) return;
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
BX_CPU_THIS_PTR icount++;
BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
}
}
}
#if BX_X86_DEBUGGER
BX_CPU_THIS_PTR in_repeat = 1;
#endif
RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP
// assert magic async_event to stop trace execution
BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;
}
// boundaries of consideration:
//
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
// * A20 boundary: 1024k (1Megabyte)
// * page boundary: 4k
// * ROM boundary: 2k (dont care since we are only reading)
// * segment boundary: any
void BX_CPU_C::prefetch(void)
{
bx_address laddr;
unsigned pageOffset;
#if BX_SUPPORT_X86_64
if (long64_mode()) {
if (! IsCanonical(RIP)) {
BX_ERROR(("prefetch: #GP(0): RIP crossed canonical boundary"));
exception(BX_GP_EXCEPTION, 0);
}
// linear address is equal to RIP in 64-bit long mode
pageOffset = PAGE_OFFSET(EIP);
laddr = RIP;
// Calculate RIP at the beginning of the page.
BX_CPU_THIS_PTR eipPageBias = pageOffset - RIP;
BX_CPU_THIS_PTR eipPageWindowSize = 4096;
}
else
#endif
{
#if BX_CPU_LEVEL >= 5
if (USER_PL && BX_CPU_THIS_PTR get_VIP() && BX_CPU_THIS_PTR get_VIF()) {
if (BX_CPU_THIS_PTR cr4.get_PVI() | (v8086_mode() && BX_CPU_THIS_PTR cr4.get_VME())) {
BX_ERROR(("prefetch: inconsistent VME state"));
exception(BX_GP_EXCEPTION, 0);
}
}
#endif
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RIP); /* avoid 32-bit EIP wrap */
laddr = get_laddr32(BX_SEG_REG_CS, EIP);
pageOffset = PAGE_OFFSET(laddr);
// Calculate RIP at the beginning of the page.
BX_CPU_THIS_PTR eipPageBias = (bx_address) pageOffset - EIP;
Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
if (EIP > limit) {
BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", EIP, limit));
exception(BX_GP_EXCEPTION, 0);
}
BX_CPU_THIS_PTR eipPageWindowSize = 4096;
if (limit + BX_CPU_THIS_PTR eipPageBias < 4096) {
BX_CPU_THIS_PTR eipPageWindowSize = (Bit32u)(limit + BX_CPU_THIS_PTR eipPageBias + 1);
}
}
#if BX_X86_DEBUGGER
if (hwbreakpoint_check(laddr, BX_HWDebugInstruction, BX_HWDebugInstruction)) {
signal_event(BX_EVENT_CODE_BREAKPOINT_ASSIST);
if (! interrupts_inhibited(BX_INHIBIT_DEBUG)) {
// The next instruction could already hit a code breakpoint but
// async_event won't take effect immediatelly.
// Check if the next executing instruction hits code breakpoint
// check only if not fetching page cross instruction
// this check is 32-bit wrap safe as well
if (EIP == (Bit32u) BX_CPU_THIS_PTR prev_rip) {
Bit32u dr6_bits = code_breakpoint_match(laddr);
if (dr6_bits & BX_DEBUG_TRAP_HIT) {
BX_ERROR(("#DB: x86 code breakpoint catched"));
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
exception(BX_DB_EXCEPTION, 0);
}
}
}
}
else {
clear_event(BX_EVENT_CODE_BREAKPOINT_ASSIST);
}
#endif
BX_CPU_THIS_PTR clear_RF();
bx_address lpf = LPFOf(laddr);
unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index];
Bit8u *fetchPtr = 0;
if ((tlbEntry->lpf == lpf) && (tlbEntry->accessBits & (0x10 << USER_PL)) != 0) {
BX_CPU_THIS_PTR pAddrFetchPage = tlbEntry->ppf;
fetchPtr = (Bit8u*) tlbEntry->hostPageAddr;
}
else {
bx_phy_address pAddr = translate_linear(tlbEntry, laddr, USER_PL, BX_EXECUTE);
BX_CPU_THIS_PTR pAddrFetchPage = PPFOf(pAddr);
}
if (fetchPtr) {
BX_CPU_THIS_PTR eipFetchPtr = fetchPtr;
}
else {
BX_CPU_THIS_PTR eipFetchPtr = (const Bit8u*) getHostMemAddr(BX_CPU_THIS_PTR pAddrFetchPage, BX_EXECUTE);
// Sanity checks
if (! BX_CPU_THIS_PTR eipFetchPtr) {
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + pageOffset;
if (pAddr >= BX_MEM(0)->get_memory_len()) {
BX_PANIC(("prefetch: running in bogus memory, pAddr=0x" FMT_PHY_ADDRX, pAddr));
}
else {
BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x" FMT_PHY_ADDRX, pAddr));
}
}
}
}
#if BX_DEBUGGER || BX_GDBSTUB
bx_bool BX_CPU_C::dbg_instruction_epilog(void)
{
#if BX_DEBUGGER
bx_address debug_eip = RIP;
Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = debug_eip;
BX_CPU_THIS_PTR guard_found.laddr = get_laddr(BX_SEG_REG_CS, debug_eip);
BX_CPU_THIS_PTR guard_found.code_32_64 = BX_CPU_THIS_PTR fetchModeMask;
//
// Take care of break point conditions generated during instruction execution
//
// Check if we hit read/write or time breakpoint
if (BX_CPU_THIS_PTR break_point) {
Bit64u tt = bx_pc_system.time_ticks();
switch (BX_CPU_THIS_PTR break_point) {
case BREAK_POINT_TIME:
BX_INFO(("[" FMT_LL "d] Caught time breakpoint", tt));
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
return(1); // on a breakpoint
case BREAK_POINT_READ:
BX_INFO(("[" FMT_LL "d] Caught read watch point", tt));
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
return(1); // on a breakpoint
case BREAK_POINT_WRITE:
BX_INFO(("[" FMT_LL "d] Caught write watch point", tt));
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
return(1); // on a breakpoint
default:
BX_PANIC(("Weird break point condition"));
}
}
if (BX_CPU_THIS_PTR magic_break) {
BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
return(1); // on a breakpoint
}
// see if debugger requesting icount guard
if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
if (get_icount() >= BX_CPU_THIS_PTR guard_found.icount_max) {
return(1);
}
}
// convenient point to see if user requested debug break or typed Ctrl-C
if (bx_guard.interrupt_requested) {
return(1);
}
// support for 'show' command in debugger
extern unsigned dbg_show_mask;
if(dbg_show_mask) {
int rv = bx_dbg_show_symbolic();
if (rv) return(rv);
}
// Just committed an instruction, before fetching a new one
// see if debugger is looking for iaddr breakpoint of any type
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if (BX_DBG_MAX_VIR_BPOINTS > 0)
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
for (unsigned n=0; n<bx_guard.iaddr.num_virtual; n++) {
if (bx_guard.iaddr.vir[n].enabled &&
(bx_guard.iaddr.vir[n].cs == cs) &&
(bx_guard.iaddr.vir[n].eip == debug_eip))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
BX_CPU_THIS_PTR guard_found.iaddr_index = n;
return(1); // on a breakpoint
}
}
}
#endif
#if (BX_DBG_MAX_LIN_BPOINTS > 0)
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
for (unsigned n=0; n<bx_guard.iaddr.num_linear; n++) {
if (bx_guard.iaddr.lin[n].enabled &&
(bx_guard.iaddr.lin[n].addr == BX_CPU_THIS_PTR guard_found.laddr))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
BX_CPU_THIS_PTR guard_found.iaddr_index = n;
return(1); // on a breakpoint
}
}
}
#endif
#if (BX_DBG_MAX_PHY_BPOINTS > 0)
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
bx_phy_address phy;
bx_bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr, &phy);
if (valid) {
for (unsigned n=0; n<bx_guard.iaddr.num_physical; n++) {
if (bx_guard.iaddr.phy[n].enabled && (bx_guard.iaddr.phy[n].addr == phy))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
BX_CPU_THIS_PTR guard_found.iaddr_index = n;
return(1); // on a breakpoint
}
}
}
}
#endif
}
#endif
#if BX_GDBSTUB
if (bx_dbg.gdbstub_enabled) {
unsigned reason = bx_gdbstub_check(EIP);
if (reason != GDBSTUB_STOP_NO_REASON) return(1);
}
#endif
return(0);
}
#endif // BX_DEBUGGER || BX_GDBSTUB