Bochs/bochs/memory/misc_mem.cc
2014-04-20 12:50:05 +00:00

943 lines
30 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2013 The Bochs Project
//
// I/O memory handlers API Copyright (C) 2003 by Frank Cornelis
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "param_names.h"
#include "cpu/cpu.h"
#include "iodev/iodev.h"
#define LOG_THIS BX_MEM(0)->
// alignment of memory vector, must be a power of 2
#define BX_MEM_VECTOR_ALIGN 4096
#define BX_MEM_HANDLERS ((BX_CONST64(1) << BX_PHY_ADDRESS_WIDTH) >> 20) /* one per megabyte */
#if BX_LARGE_RAMFILE
Bit8u* const BX_MEM_C::swapped_out = ((Bit8u*)NULL - sizeof(Bit8u));
#endif
BX_MEM_C::BX_MEM_C()
{
put("memory", "MEM0");
vector = NULL;
actual_vector = NULL;
blocks = NULL;
len = 0;
used_blocks = 0;
memory_handlers = NULL;
#if BX_LARGE_RAMFILE
next_swapout_idx = 0;
overflow_file = NULL;
#endif
}
Bit8u* BX_MEM_C::alloc_vector_aligned(Bit32u bytes, Bit32u alignment)
{
Bit64u test_mask = alignment - 1;
BX_MEM_THIS actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)];
if (BX_MEM_THIS actual_vector == 0) {
BX_PANIC(("alloc_vector_aligned: unable to allocate host RAM !"));
return 0;
}
// round address forward to nearest multiple of alignment. Alignment
// MUST BE a power of two for this to work.
Bit64u masked = ((Bit64u)(BX_MEM_THIS actual_vector + test_mask)) & ~test_mask;
Bit8u *vector = (Bit8u *) masked;
// sanity check: no lost bits during pointer conversion
assert(sizeof(masked) >= sizeof(vector));
// sanity check: after realignment, everything fits in allocated space
assert(vector+bytes <= BX_MEM_THIS actual_vector+bytes+test_mask);
return vector;
}
BX_MEM_C::~BX_MEM_C()
{
#if BX_LARGE_RAMFILE
if (overflow_file)
fclose(BX_MEM_THIS overflow_file);
#endif
cleanup_memory();
}
void BX_MEM_C::init_memory(Bit64u guest, Bit64u host)
{
unsigned i, idx;
BX_DEBUG(("Init $Id$"));
// accept only memory size which is multiply of 1M
BX_ASSERT((host & 0xfffff) == 0);
BX_ASSERT((guest & 0xfffff) == 0);
if (BX_MEM_THIS actual_vector != NULL) {
BX_INFO(("freeing existing memory vector"));
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
BX_MEM_THIS blocks = NULL;
}
BX_MEM_THIS vector = alloc_vector_aligned(host + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
BX_INFO(("allocated memory at %p. after alignment, vector=%p",
BX_MEM_THIS actual_vector, BX_MEM_THIS vector));
BX_MEM_THIS len = guest;
BX_MEM_THIS allocated = host;
BX_MEM_THIS rom = &BX_MEM_THIS vector[host];
BX_MEM_THIS bogus = &BX_MEM_THIS vector[host + BIOSROMSZ + EXROMSIZE];
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096);
// block must be large enough to fit num_blocks in 32-bit
BX_ASSERT((BX_MEM_THIS len / BX_MEM_BLOCK_LEN) <= 0xffffffff);
Bit32u num_blocks = (Bit32u)(BX_MEM_THIS len / BX_MEM_BLOCK_LEN);
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0))));
BX_INFO(("mem block size = 0x%08x, blocks=%u", BX_MEM_BLOCK_LEN, num_blocks));
BX_MEM_THIS blocks = new Bit8u* [num_blocks];
if (0) {
// all guest memory is allocated, just map it
for (idx = 0; idx < num_blocks; idx++) {
BX_MEM_THIS blocks[idx] = BX_MEM_THIS vector + (idx * BX_MEM_BLOCK_LEN);
}
BX_MEM_THIS used_blocks = num_blocks;
}
else {
// host cannot allocate all requested guest memory
for (idx = 0; idx < num_blocks; idx++) {
BX_MEM_THIS blocks[idx] = NULL;
}
BX_MEM_THIS used_blocks = 0;
}
BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[BX_MEM_HANDLERS];
for (idx = 0; idx < BX_MEM_HANDLERS; idx++)
BX_MEM_THIS memory_handlers[idx] = NULL;
BX_MEM_THIS pci_enabled = SIM->get_param_bool(BXPN_PCI_ENABLED)->get();
BX_MEM_THIS bios_write_enabled = 0;
BX_MEM_THIS smram_available = 0;
BX_MEM_THIS smram_enable = 0;
BX_MEM_THIS smram_restricted = 0;
for (i = 0; i < 65; i++)
BX_MEM_THIS rom_present[i] = 0;
for (i = 0; i <= BX_MEM_AREA_F0000; i++) {
BX_MEM_THIS memory_type[i][0] = 0;
BX_MEM_THIS memory_type[i][1] = 0;
}
BX_MEM_THIS register_state();
}
#if BX_LARGE_RAMFILE
void BX_MEM_C::read_block(Bit32u block)
{
const Bit64u block_address = ((Bit64u)block)*BX_MEM_BLOCK_LEN;
if (fseeko64(BX_MEM_THIS overflow_file, block_address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x"FMT_LL"x in memory overflow file!", block_address));
// We could legitimately get an EOF condition if we are reading the last bit of memory.ram
if ((fread(BX_MEM_THIS blocks[block], BX_MEM_BLOCK_LEN, 1, BX_MEM_THIS overflow_file) != 1) &&
(!feof(BX_MEM_THIS overflow_file)))
BX_PANIC(("FATAL ERROR: Could not read from 0x"FMT_LL"x in memory overflow file!", block_address));
}
#endif
void BX_MEM_C::allocate_block(Bit32u block)
{
const Bit32u max_blocks = BX_MEM_THIS allocated / BX_MEM_BLOCK_LEN;
#if BX_LARGE_RAMFILE
/*
* Match block to vector address
* First, see if there is any spare host memory blocks we can still freely allocate
*/
if (BX_MEM_THIS used_blocks >= max_blocks) {
Bit32u original_replacement_block = BX_MEM_THIS next_swapout_idx;
// Find a block to replace
bx_bool used_for_tlb;
Bit8u *buffer;
do {
do {
// Wrap if necessary
if (++(BX_MEM_THIS next_swapout_idx)==((BX_MEM_THIS len)/BX_MEM_BLOCK_LEN))
BX_MEM_THIS next_swapout_idx = 0;
if (BX_MEM_THIS next_swapout_idx == original_replacement_block)
BX_PANIC(("FATAL ERROR: Insufficient working RAM, all blocks are currently used for TLB entries!"));
buffer = BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx];
} while ((!buffer) || (buffer == BX_MEM_C::swapped_out));
used_for_tlb = false;
// tlb buffer check loop
const Bit8u* buffer_end = buffer+BX_MEM_BLOCK_LEN;
// Don't replace it if any CPU is using it as a TLB entry
for (int i=0; i<BX_SMP_PROCESSORS && !used_for_tlb;i++)
used_for_tlb = BX_CPU(i)->check_addr_in_tlb_buffers(buffer, buffer_end);
} while (used_for_tlb);
// Flush the block to be replaced
bx_phy_address address = ((bx_phy_address)BX_MEM_THIS next_swapout_idx)*BX_MEM_BLOCK_LEN;
// Create overflow file if it does not currently exist.
if (!BX_MEM_THIS overflow_file) {
BX_MEM_THIS overflow_file = tmpfile64();
if (!BX_MEM_THIS overflow_file)
BX_PANIC(("Unable to allocate memory overflow file"));
}
// Write swapped out block
if (fseeko64(BX_MEM_THIS overflow_file, address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_PHY_ADDRX " in overflow file!", address));
if (1 != fwrite (BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx], BX_MEM_BLOCK_LEN, 1, BX_MEM_THIS overflow_file))
BX_PANIC(("FATAL ERROR: Could not write at 0x" FMT_PHY_ADDRX " in overflow file!", address));
// Mark swapped out block
BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx] = BX_MEM_C::swapped_out;
BX_MEM_THIS blocks[block] = buffer;
read_block(block);
BX_DEBUG(("allocate_block: block=0x%x, replaced 0x%x", block, BX_MEM_THIS next_swapout_idx));
}
else {
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks++ * BX_MEM_BLOCK_LEN);
BX_DEBUG(("allocate_block: block=0x%x used 0x%x of 0x%x",
block, BX_MEM_THIS used_blocks, max_blocks));
}
#else
// Legacy default allocator
if (BX_MEM_THIS used_blocks >= max_blocks) {
BX_PANIC(("FATAL ERROR: all available memory is already allocated !"));
}
else {
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks * BX_MEM_BLOCK_LEN);
BX_MEM_THIS used_blocks++;
}
BX_DEBUG(("allocate_block: used_blocks=0x%x of 0x%x", BX_MEM_THIS used_blocks, max_blocks));
#endif
}
#if BX_LARGE_RAMFILE
// The blocks in RAM must also be flushed to the save file.
void ramfile_save_handler(void *devptr, FILE *fp)
{
for (Bit32u idx = 0; idx < (BX_MEM(0)->len / BX_MEM_BLOCK_LEN); idx++) {
if ((BX_MEM(0)->blocks[idx]) && (BX_MEM(0)->blocks[idx] != BX_MEM(0)->swapped_out))
{
bx_phy_address address = ((bx_phy_address)idx)*BX_MEM_BLOCK_LEN;
if (fseeko64(fp, address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_PHY_ADDRX " in overflow file!", address));
if (1 != fwrite (BX_MEM(0)->blocks[idx], BX_MEM_BLOCK_LEN, 1, fp))
BX_PANIC(("FATAL ERROR: Could not write at 0x" FMT_PHY_ADDRX " in overflow file!", address));
}
}
}
#endif
// Note: This must be called before the memory file save handler is called.
Bit64s memory_param_save_handler(void *devptr, bx_param_c *param)
{
const char *pname = param->get_name();
if (! strncmp(pname, "blk", 3)) {
Bit32u blk_index = atoi(pname + 3);
if (! BX_MEM(0)->blocks[blk_index])
return -1;
#if BX_LARGE_RAMFILE
// If swapped out, will be saved by common handler.
if (BX_MEM(0)->blocks[blk_index] == BX_MEM(0)->swapped_out)
return -2;
#endif
// Return the block offset into the array
Bit32u val = (Bit32u) (BX_MEM(0)->blocks[blk_index] - BX_MEM(0)->vector);
if ((val & (BX_MEM_BLOCK_LEN-1)) == 0)
return val / BX_MEM_BLOCK_LEN;
}
return -1;
}
void memory_param_restore_handler(void *devptr, bx_param_c *param, Bit64s val)
{
const char *pname = param->get_name();
if (! strncmp(pname, "blk", 3)) {
Bit32u blk_index = atoi(pname + 3);
#if BX_LARGE_RAMFILE
if ((Bit32s) val == -2) {
BX_MEM(0)->blocks[blk_index] = BX_MEM(0)->swapped_out;
return;
}
#endif
if((Bit32s) val < 0) {
BX_MEM(0)->blocks[blk_index] = NULL;
return;
}
BX_MEM(0)->blocks[blk_index] = BX_MEM(0)->vector + val * BX_MEM_BLOCK_LEN;
#if BX_LARGE_RAMFILE
BX_MEM(0)->read_block(blk_index);
#endif
}
}
void BX_MEM_C::register_state()
{
char param_name[15];
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "memory", "Memory State");
Bit32u num_blocks = BX_MEM_THIS len / BX_MEM_BLOCK_LEN;
#if BX_LARGE_RAMFILE
bx_shadow_filedata_c *ramfile = new bx_shadow_filedata_c(list, "ram", &(BX_MEM_THIS overflow_file));
ramfile->set_sr_handlers(this, ramfile_save_handler, (filedata_restore_handler)NULL);
#else
new bx_shadow_data_c(list, "ram", BX_MEM_THIS vector, BX_MEM_THIS allocated);
#endif
BXRS_DEC_PARAM_FIELD(list, len, BX_MEM_THIS len);
BXRS_DEC_PARAM_FIELD(list, allocated, BX_MEM_THIS allocated);
BXRS_DEC_PARAM_FIELD(list, used_blocks, BX_MEM_THIS used_blocks);
bx_list_c *mapping = new bx_list_c(list, "mapping");
for (Bit32u blk=0; blk < num_blocks; blk++) {
sprintf(param_name, "blk%d", blk);
bx_param_num_c *param = new bx_param_num_c(mapping, param_name, "", "", 0, BX_MAX_BIT32U, 0);
param->set_base(BASE_DEC);
param->set_sr_handlers(this, memory_param_save_handler, memory_param_restore_handler);
}
bx_list_c *memtype = new bx_list_c(list, "memtype");
for (int i = 0; i <= BX_MEM_AREA_F0000; i++) {
sprintf(param_name, "%d_r", i);
new bx_shadow_bool_c(memtype, param_name, &BX_MEM_THIS memory_type[i][0]);
sprintf(param_name, "%d_w", i);
new bx_shadow_bool_c(memtype, param_name, &BX_MEM_THIS memory_type[i][1]);
}
}
void BX_MEM_C::cleanup_memory()
{
unsigned idx;
if (BX_MEM_THIS vector != NULL) {
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
BX_MEM_THIS rom = NULL;
BX_MEM_THIS bogus = NULL;
delete [] BX_MEM_THIS blocks;
BX_MEM_THIS blocks = 0;
BX_MEM_THIS used_blocks = 0;
if (BX_MEM_THIS memory_handlers != NULL) {
for (idx = 0; idx < BX_MEM_HANDLERS; idx++) {
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler) {
prev = memory_handler;
memory_handler = memory_handler->next;
delete prev;
}
}
delete [] BX_MEM_THIS memory_handlers;
BX_MEM_THIS memory_handlers = NULL;
}
}
}
//
// Values for type:
// 0 : System Bios
// 1 : VGA Bios
// 2 : Optional ROM Bios
//
void BX_MEM_C::load_ROM(const char *path, bx_phy_address romaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret, i, start_idx, end_idx;
unsigned long size, max_size, offset;
bx_bool is_bochs_bios = 0;
if (*path == '\0') {
if (type == 2) {
BX_PANIC(("ROM: Optional ROM image undefined"));
}
else if (type == 1) {
BX_PANIC(("ROM: VGA BIOS image undefined"));
}
else {
BX_PANIC(("ROM: System BIOS image undefined"));
}
return;
}
// read in ROM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
if (type < 2) {
BX_PANIC(("ROM: couldn't open ROM image file '%s'.", path));
}
else {
BX_ERROR(("ROM: couldn't open ROM image file '%s'.", path));
}
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
if (type < 2) {
BX_PANIC(("ROM: couldn't stat ROM image file '%s'.", path));
}
else {
BX_ERROR(("ROM: couldn't stat ROM image file '%s'.", path));
}
return;
}
size = (unsigned long)stat_buf.st_size;
if (type > 0) {
max_size = 0x20000;
} else {
max_size = BIOSROMSZ;
}
if (size > max_size) {
close(fd);
BX_PANIC(("ROM: ROM image too large"));
return;
}
if (type == 0) {
if (romaddress > 0) {
if ((romaddress + size) != 0x100000 && (romaddress + size)) {
close(fd);
BX_PANIC(("ROM: System BIOS must end at 0xfffff"));
return;
}
} else {
romaddress = -size;
}
offset = romaddress & BIOS_MASK;
if ((romaddress & 0xf0000) < 0xf0000) {
BX_MEM_THIS rom_present[64] = 1;
}
is_bochs_bios = (strstr(path, "BIOS-bochs-latest") != NULL);
} else {
if ((size % 512) != 0) {
close(fd);
BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size));
return;
}
if ((romaddress % 2048) != 0) {
close(fd);
BX_PANIC(("ROM: ROM image must start at a 2k boundary"));
return;
}
if ((romaddress < 0xc0000) ||
(((romaddress + size - 1) > 0xdffff) && (romaddress < 0xe0000))) {
close(fd);
BX_PANIC(("ROM: ROM address space out of range"));
return;
}
if (romaddress < 0xe0000) {
offset = (romaddress & EXROM_MASK) + BIOSROMSZ;
start_idx = (((Bit32u)romaddress - 0xc0000) >> 11);
end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0);
} else {
offset = romaddress & BIOS_MASK;
start_idx = 64;
end_idx = 64;
}
for (i = start_idx; i < end_idx; i++) {
if (BX_MEM_THIS rom_present[i]) {
close(fd);
BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000));
return;
} else {
BX_MEM_THIS rom_present[i] = 1;
}
}
}
while (size > 0) {
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size);
if (ret <= 0) {
BX_PANIC(("ROM: read failed on BIOS image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
offset -= (unsigned long)stat_buf.st_size;
if (((romaddress & 0xfffff) != 0xe0000) ||
((BX_MEM_THIS rom[offset] == 0x55) && (BX_MEM_THIS rom[offset+1] == 0xaa))) {
Bit8u checksum = 0;
for (i = 0; i < stat_buf.st_size; i++) {
checksum += BX_MEM_THIS rom[offset + i];
}
if (checksum != 0) {
if (type == 1) {
BX_PANIC(("ROM: checksum error in VGABIOS image: '%s'", path));
} else if (is_bochs_bios) {
BX_ERROR(("ROM: checksum error in BIOS image: '%s'", path));
}
}
}
BX_INFO(("rom at 0x%05x/%u ('%s')",
(unsigned) romaddress,
(unsigned) stat_buf.st_size,
path));
}
void BX_MEM_C::load_RAM(const char *path, bx_phy_address ramaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret;
Bit32u size, offset;
if (*path == '\0') {
BX_PANIC(("RAM: Optional RAM image undefined"));
return;
}
// read in RAM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
BX_PANIC(("RAM: couldn't open RAM image file '%s'.", path));
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
BX_PANIC(("RAM: couldn't stat RAM image file '%s'.", path));
return;
}
size = (unsigned long)stat_buf.st_size;
offset = ramaddress;
while (size > 0) {
ret = read(fd, (bx_ptr_t) BX_MEM_THIS get_vector(offset), size);
if (ret <= 0) {
BX_PANIC(("RAM: read failed on RAM image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
BX_INFO(("ram at 0x%05x/%u ('%s')",
(unsigned) ramaddress,
(unsigned) stat_buf.st_size,
path));
}
#if (BX_DEBUGGER || BX_DISASM || BX_GDBSTUB)
bx_bool BX_MEM_C::dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf)
{
bx_bool ret = 1;
for (; len>0; len--) {
// Reading standard PCI/ISA Video Mem / SMMRAM
if (addr >= 0x000a0000 && addr < 0x000c0000) {
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
*buf = *(BX_MEM_THIS get_vector(addr));
else
*buf = DEV_vga_mem_read(addr);
}
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && (addr >= 0x000c0000 && addr < 0x00100000)) {
unsigned area = (unsigned)(addr >> 14) & 0x0f;
if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000;
if (BX_MEM_THIS memory_type[area][0] == 0) {
// Read from ROM
if ((addr & 0xfffe0000) == 0x000e0000) {
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
*buf = BX_MEM_THIS rom[BIOS_MAP_LAST128K(addr)];
} else {
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
}
} else {
// Read from ShadowRAM
*buf = *(BX_MEM_THIS get_vector(addr));
}
}
#endif // #if BX_SUPPORT_PCI
else if (addr < BX_MEM_THIS len)
{
if (addr < 0x000c0000 || addr >= 0x00100000) {
*buf = *(BX_MEM_THIS get_vector(addr));
}
// must be in C0000 - FFFFF range
else if ((addr & 0xfffe0000) == 0x000e0000) {
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
*buf = BX_MEM_THIS rom[BIOS_MAP_LAST128K(addr)];
}
else {
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
}
}
#if BX_PHY_ADDRESS_LONG
else if (addr > BX_CONST64(0xffffffff)) {
*buf = 0xff;
ret = 0; // error, beyond limits of memory
}
#endif
else if (addr >= (bx_phy_address)~BIOS_MASK)
{
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
}
else
{
*buf = 0xff;
ret = 0; // error, beyond limits of memory
}
buf++;
addr++;
}
return ret;
}
#endif
#if BX_DEBUGGER || BX_GDBSTUB
bx_bool BX_MEM_C::dbg_set_mem(bx_phy_address addr, unsigned len, Bit8u *buf)
{
if ((addr + len - 1) > BX_MEM_THIS len) {
return(0); // error, beyond limits of memory
}
for (; len>0; len--) {
// Write to standard PCI/ISA Video Mem / SMMRAM
if (addr >= 0x000a0000 && addr < 0x000c0000) {
if (BX_MEM_THIS smram_enable)
*(BX_MEM_THIS get_vector(addr)) = *buf;
else
DEV_vga_mem_write(addr, *buf);
}
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && (addr >= 0x000c0000 && addr < 0x00100000)) {
unsigned area = (unsigned)(addr >> 14) & 0x0f;
if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000;
if (BX_MEM_THIS memory_type[area][1] == 1) {
// Write to ShadowRAM
*(BX_MEM_THIS get_vector(addr)) = *buf;
} else {
// Ignore write to ROM
}
}
#endif // #if BX_SUPPORT_PCI
else if ((addr < 0x000c0000 || addr >= 0x00100000) && (addr < (bx_phy_address)(~BIOS_MASK)))
{
*(BX_MEM_THIS get_vector(addr)) = *buf;
}
buf++;
addr++;
}
return(1);
}
bx_bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc)
{
*crc = 0;
if (addr1 > addr2)
return(0);
if (addr2 >= BX_MEM_THIS len)
return(0); // error, specified address past last phy mem addr
unsigned len = 1 + addr2 - addr1;
// do not cross 4K boundary
while(1) {
unsigned remainsInPage = 0x1000 - (addr1 & 0xfff);
unsigned access_length = (len < remainsInPage) ? len : remainsInPage;
*crc = crc32(BX_MEM_THIS get_vector(addr1), access_length);
addr1 += access_length;
len -= access_length;
}
return(1);
}
#endif
//
// Return a host address corresponding to the guest physical memory
// address (with A20 already applied), given that the calling
// code will perform an 'op' operation. This address will be
// used for direct access to guest memory.
// Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }.
//
// The other assumption is that the calling code _only_ accesses memory
// directly within the page that encompasses the address requested.
//
//
// Memory map inside the 1st megabyte:
//
// 0x00000 - 0x7ffff DOS area (512K)
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
//
Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address addr, unsigned rw)
{
bx_phy_address a20addr = A20ADDR(addr);
bx_bool is_bios = (a20addr >= (bx_phy_address)~BIOS_MASK);
#if BX_PHY_ADDRESS_LONG
if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0;
#endif
bx_bool write = rw & 1;
// allow direct access to SMRAM memory space for code and veto data
if ((cpu != NULL) && (rw == BX_EXECUTE)) {
// reading from SMRAM memory space
if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && (BX_MEM_THIS smram_available))
{
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
return BX_MEM_THIS get_vector(a20addr);
}
}
#if BX_SUPPORT_MONITOR_MWAIT
if (write && BX_MEM_THIS is_monitor(a20addr & ~((bx_phy_address)(0xfff)), 0xfff)) {
// Vetoed! Write monitored page !
return(NULL);
}
#endif
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20];
while (memory_handler) {
if (memory_handler->begin <= a20addr &&
memory_handler->end >= a20addr) {
if (memory_handler->da_handler)
return memory_handler->da_handler(a20addr, rw, memory_handler->param);
else
return(NULL); // Vetoed! memory handler for i/o apic, vram, mmio and PCI PnP
}
memory_handler = memory_handler->next;
}
if (! write) {
if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000))
return(NULL); // Vetoed! Mem mapped IO (VGA)
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000)) {
unsigned area = (unsigned)(a20addr >> 14) & 0x0f;
if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000;
if (BX_MEM_THIS memory_type[area][0] == 0) {
// Read from ROM
if ((a20addr & 0xfffe0000) == 0x000e0000) {
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
return (Bit8u *) &BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)];
} else {
return (Bit8u *) &BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ];
}
} else {
// Read from ShadowRAM
return BX_MEM_THIS get_vector(a20addr);
}
}
#endif
else if(a20addr < BX_MEM_THIS len && ! is_bios)
{
if (a20addr < 0x000c0000 || a20addr >= 0x00100000) {
return BX_MEM_THIS get_vector(a20addr);
}
// must be in C0000 - FFFFF range
else if ((a20addr & 0xfffe0000) == 0x000e0000) {
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
return (Bit8u *) &BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)];
}
else {
return((Bit8u *) &BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ]);
}
}
#if BX_PHY_ADDRESS_LONG
else if (a20addr > BX_CONST64(0xffffffff)) {
// Error, requested addr is out of bounds.
return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff];
}
#endif
else if (a20addr >= (bx_phy_address)~BIOS_MASK)
{
return (Bit8u *) &BX_MEM_THIS rom[a20addr & BIOS_MASK];
}
else
{
// Error, requested addr is out of bounds.
return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff];
}
}
else
{ // op == {BX_WRITE, BX_RW}
if (a20addr >= BX_MEM_THIS len || is_bios)
return(NULL); // Error, requested addr is out of bounds.
else if (a20addr >= 0x000a0000 && a20addr < 0x000c0000)
return(NULL); // Vetoed! Mem mapped IO (VGA)
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000))
{
// Veto direct writes to this area. Otherwise, there is a chance
// for Guest2HostTLB and memory consistency problems, for example
// when some 16K block marked as write-only using PAM registers.
return(NULL);
}
#endif
else
{
if (a20addr < 0x000c0000 || a20addr >= 0x00100000) {
return BX_MEM_THIS get_vector(a20addr);
}
else {
return(NULL); // Vetoed! ROMs
}
}
}
}
/*
* One needs to provide both a read_handler and a write_handler.
*/
bx_bool
BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
memory_handler_t write_handler, memory_direct_access_handler_t da_handler,
bx_phy_address begin_addr, bx_phy_address end_addr)
{
if (end_addr < begin_addr)
return 0;
if (!read_handler || !write_handler) // allow NULL fetch handler
return 0;
BX_INFO(("Register memory access handlers: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
for (Bit32u page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) {
Bit16u bitmap = 0xffff;
if (begin_addr > (page_idx << 20)) {
bitmap &= (0xffff << ((begin_addr >> 16) & 0xf));
}
if (end_addr < ((page_idx + 1) << 20)) {
bitmap &= (0xffff >> (0x0f - ((end_addr >> 16) & 0xf)));
}
if (BX_MEM_THIS memory_handlers[page_idx] != NULL) {
if ((bitmap & BX_MEM_THIS memory_handlers[page_idx]->bitmap) != 0) {
BX_ERROR(("Register failed: overlapping memory handlers!"));
return 0;
} else {
bitmap |= BX_MEM_THIS memory_handlers[page_idx]->bitmap;
}
}
struct memory_handler_struct *memory_handler = new struct memory_handler_struct;
memory_handler->next = BX_MEM_THIS memory_handlers[page_idx];
BX_MEM_THIS memory_handlers[page_idx] = memory_handler;
memory_handler->read_handler = read_handler;
memory_handler->write_handler = write_handler;
memory_handler->da_handler = da_handler;
memory_handler->param = param;
memory_handler->begin = begin_addr;
memory_handler->end = end_addr;
memory_handler->bitmap = bitmap;
}
return 1;
}
bx_bool
BX_MEM_C::unregisterMemoryHandlers(void *param, bx_phy_address begin_addr, bx_phy_address end_addr)
{
bx_bool ret = 1;
BX_INFO(("Memory access handlers unregistered: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
for (Bit32u page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) {
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[page_idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler &&
memory_handler->param != param &&
memory_handler->begin != begin_addr &&
memory_handler->end != end_addr)
{
prev = memory_handler;
memory_handler = memory_handler->next;
}
if (!memory_handler) {
ret = 0; // we should have found it
continue; // anyway, try the other pages
}
if (prev)
prev->next = memory_handler->next;
else
BX_MEM_THIS memory_handlers[page_idx] = memory_handler->next;
delete memory_handler;
}
return ret;
}
void BX_MEM_C::enable_smram(bx_bool enable, bx_bool restricted)
{
BX_MEM_THIS smram_available = 1;
BX_MEM_THIS smram_enable = (enable > 0);
BX_MEM_THIS smram_restricted = (restricted > 0);
}
void BX_MEM_C::disable_smram(void)
{
BX_MEM_THIS smram_available = 0;
BX_MEM_THIS smram_enable = 0;
BX_MEM_THIS smram_restricted = 0;
}
// check if SMRAM is aavailable for CPU data accesses
bx_bool BX_MEM_C::is_smram_accessible(void)
{
return(BX_MEM_THIS smram_available) &&
(BX_MEM_THIS smram_enable || !BX_MEM_THIS smram_restricted);
}
void BX_MEM_C::set_memory_type(memory_area_t area, bx_bool rw, bx_bool dram)
{
if (area <= BX_MEM_AREA_F0000) {
BX_MEM_THIS memory_type[area][rw] = dram;
}
}
void BX_MEM_C::set_bios_write(bx_bool enabled)
{
BX_MEM_THIS bios_write_enabled = enabled;
}
#if BX_SUPPORT_MONITOR_MWAIT
//
// MONITOR/MWAIT - x86arch way to optimize idle loops in CPU
//
bx_bool BX_MEM_C::is_monitor(bx_phy_address begin_addr, unsigned len)
{
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
if (BX_CPU(i)->is_monitor(begin_addr, len))
return 1;
}
return 0; // // this is NOT monitored page
}
void BX_MEM_C::check_monitor(bx_phy_address begin_addr, unsigned len)
{
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
BX_CPU(i)->check_monitor(begin_addr, len);
}
}
#endif