Bochs/bochs/pc_system.cc
Bryce Denney cec9135e9f - Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a
"bx_bool" which is always defined as Bit32u on all platforms.  In Carbon
  specific code, Boolean is still used because the Carbon header files
  define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
  The bug was that some code in Bochs depends on Boolean to be a
  32 bit value.  (This should be fixed, but I don't know all the places
  where it needs to be fixed yet.)  Because Carbon defined Boolean as
  an unsigned char, Bochs just followed along and used the unsigned char
  definition to avoid compile problems.  This exposed the dependency
  on 32 bit Boolean on MacOS X only and led to major simulation problems,
  that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
  our own type.  I chose bx_bool for several reasons.
  1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
     platforms, which makes it much less likely to have more platform-specific
     simulation differences in the future.  (I spent hours on a borrowed
     MacOSX machine chasing bug 618388 before discovering that different sized
     Booleans were the problem, and I don't want to repeat that.)
  2. We still have at least one dependency on 32 bit Booleans which must be
     fixed some time, but I don't want to risk introducing new bugs into the
     simulation just before the 2.0 release.

Modified Files:
    bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
    pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
    cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
    cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
    cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
    cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
    cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
    cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
    cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
    cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
    cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
    disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
    docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
    gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
    gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
    gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
    gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
    gui/x.cc instrument/example0/instrument.cc
    instrument/example0/instrument.h
    instrument/example1/instrument.cc
    instrument/example1/instrument.h
    instrument/stubs/instrument.cc instrument/stubs/instrument.h
    iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
    iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
    iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
    iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
    iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
    iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
    iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
    iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
    iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
    iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
    iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 11:44:41 +00:00

540 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: pc_system.cc,v 1.31 2002-10-25 11:44:33 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS bx_pc_system.
#ifdef WIN32
#ifndef __MINGW32__
// #include <winsock2.h> // +++
#include <winsock.h>
#endif
#endif
#if BX_SHOW_IPS
unsigned long ips_count=0;
#endif
#if defined(PROVIDE_M_IPS)
double m_ips; // Millions of Instructions Per Second
#endif
// Option for turning off BX_TIMER_DEBUG?
// Check out m_ips and ips
#define SpewPeriodicTimerInfo 0
#define MinAllowableTimerPeriod 1
#if SpewPeriodicTimerInfo
// If debugging, set the heartbeat to 5M cycles. Each heartbeat
// spews the active timer info.
const Bit64u bx_pc_system_c::NullTimerInterval = 5000000;
#else
// This must be the maximum 32-bit unsigned int value, NOT (Bit64u) -1.
const Bit64u bx_pc_system_c::NullTimerInterval = 0xffffffff;
#endif
// constructor
bx_pc_system_c::bx_pc_system_c(void)
{
this->put("SYS");
// Timer[0] is the null timer. It is initialized as a special
// case here. It should never be turned off or modified, and its
// duration should always remain the same.
ticksTotal = 0; // Reset ticks since emulator started.
timer[0].period = NullTimerInterval;
timer[0].timeToFire = ticksTotal + NullTimerInterval;
timer[0].active = 1;
timer[0].continuous = 1;
timer[0].funct = nullTimer;
timer[0].this_ptr = this;
currCountdown = NullTimerInterval;
currCountdownPeriod = NullTimerInterval;
numTimers = 1; // So far, only the nullTimer.
}
void
bx_pc_system_c::init_ips(Bit32u ips)
{
HRQ = 0;
enable_a20 = 1;
//set_INTR (0);
#if BX_CPU_LEVEL < 2
a20_mask = 0xfffff;
#elif BX_CPU_LEVEL == 2
a20_mask = 0xffffff;
#else /* 386+ */
a20_mask = 0xffffffff;
#endif
// parameter 'ips' is the processor speed in Instructions-Per-Second
m_ips = double(ips) / 1000000.0L;
BX_DEBUG(("ips = %u", (unsigned) ips));
}
void
bx_pc_system_c::set_HRQ(bx_bool val)
{
HRQ = val;
if (val)
BX_CPU(0)->async_event = 1;
}
#if (BX_NUM_SIMULATORS < 2)
void
bx_pc_system_c::set_INTR(bx_bool value)
{
if (bx_dbg.interrupts)
BX_INFO(("pc_system: Setting INTR=%d on bootstrap processor %d", (int)value, BX_BOOTSTRAP_PROCESSOR));
//INTR = value;
BX_CPU(BX_BOOTSTRAP_PROCESSOR)->set_INTR(value);
}
#endif
//
// Read from the IO memory address space
//
Bit32u
bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
{
Bit32u ret;
ret = bx_devices.inp(addr, io_len);
return( ret );
}
//
// Write to the IO memory address space.
//
void
bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
{
bx_devices.outp(addr, value, io_len);
}
void
bx_pc_system_c::set_enable_a20(Bit8u value)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("set_enable_a20() called: 8086 emulation"));
#else
#if BX_SUPPORT_A20
unsigned old_enable_a20 = enable_a20;
if (value) {
enable_a20 = 1;
#if BX_CPU_LEVEL == 2
a20_mask = 0xffffff; /* 286: enable all 24 address lines */
#else /* 386+ */
a20_mask = 0xffffffff; /* 386: enable all 32 address lines */
#endif
}
else {
enable_a20 = 0;
a20_mask = 0xffefffff; /* mask off A20 address line */
}
BX_DBG_A20_REPORT(value);
BX_DEBUG(("A20: set() = %u", (unsigned) enable_a20));
// If there has been a transition, we need to notify the CPUs so
// they can potentially invalidate certain cache info based on
// A20-line-applied physical addresses.
if (old_enable_a20 != enable_a20) {
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
BX_CPU(i)->pagingA20Changed();
}
#else
BX_DEBUG(("set_enable_a20: ignoring: SUPPORT_A20 = 0"));
#endif // #if BX_SUPPORT_A20
#endif
}
bx_bool
bx_pc_system_c::get_enable_a20(void)
{
#if BX_SUPPORT_A20
if (bx_dbg.a20)
BX_INFO(("A20: get() = %u", (unsigned) enable_a20));
if (enable_a20) return(1);
else return(0);
#else
BX_INFO(("get_enable_a20: ignoring: SUPPORT_A20 = 0"));
return(1);
#endif // #if BX_SUPPORT_A20
}
int
bx_pc_system_c::ResetSignal( PCS_OP operation )
{
UNUSED( operation );
// Reset the processor.
BX_ERROR(( "# bx_pc_system_c::ResetSignal() called" ));
for (int i=0; i<BX_SMP_PROCESSORS; i++)
BX_CPU(i)->reset(BX_RESET_SOFTWARE);
DEV_reset_devices(BX_RESET_SOFTWARE);
return(0);
}
Bit8u
bx_pc_system_c::IAC(void)
{
return( DEV_pic_iac() );
}
void
bx_pc_system_c::exit(void)
{
if (DEV_hd_present())
DEV_hd_close_harddrive();
BX_INFO(("Last time is %u", (unsigned) DEV_cmos_get_timeval()));
if (bx_gui) bx_gui->exit();
}
// ================================================
// Bochs internal timer delivery framework features
// ================================================
int
bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *),
Bit32u useconds, bx_bool continuous, bx_bool active, const char *id)
{
Bit64u ticks;
// Convert useconds to number of ticks.
ticks = (Bit64u) (double(useconds) * m_ips);
return register_timer_ticks(this_ptr, funct, ticks, continuous, active, id);
}
int
bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct,
Bit64u ticks, bx_bool continuous, bx_bool active, const char *id)
{
unsigned i;
#if BX_TIMER_DEBUG
if (numTimers >= BX_MAX_TIMERS) {
BX_PANIC(("register_timer: too many registered timers."));
}
if (this_ptr == NULL)
BX_PANIC(("register_timer_ticks: this_ptr is NULL"));
if (funct == NULL)
BX_PANIC(("register_timer_ticks: funct is NULL"));
#endif
// If the timer frequency is rediculously low, make it more sane.
// This happens when 'ips' is too low.
if (ticks < MinAllowableTimerPeriod) {
//BX_INFO(("register_timer_ticks: adjusting ticks of %llu to min of %u",
// ticks, MinAllowableTimerPeriod));
ticks = MinAllowableTimerPeriod;
}
for (i=0; i < numTimers; i++) {
if (timer[i].inUse == 0)
break;
}
timer[i].inUse = 1;
timer[i].period = ticks;
timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) +
ticks;
timer[i].active = active;
timer[i].continuous = continuous;
timer[i].funct = funct;
timer[i].this_ptr = this_ptr;
strncpy(timer[i].id, id, BxMaxTimerIDLen);
timer[i].id[BxMaxTimerIDLen-1] = 0; // Null terminate if not already.
if (active) {
if (ticks < Bit64u(currCountdown)) {
// This new timer needs to fire before the current countdown.
// Skew the current countdown and countdown period to be smaller
// by the delta.
currCountdownPeriod -= (currCountdown - Bit32u(ticks));
currCountdown = Bit32u(ticks);
}
}
// If we didn't find a free slot, increment the bound, numTimers.
if (i==numTimers)
numTimers++; // One new timer installed.
// Return timer id.
return(i);
}
void
bx_pc_system_c::countdownEvent(void)
{
unsigned i;
Bit64u minTimeToFire;
bx_bool triggered[BX_MAX_TIMERS];
// The countdown decremented to 0. We need to service all the active
// timers, and invoke callbacks from those timers which have fired.
#if BX_TIMER_DEBUG
if (currCountdown != 0)
BX_PANIC(("countdownEvent: ticks!=0"));
#endif
// Increment global ticks counter by number of ticks which have
// elapsed since the last update.
ticksTotal += Bit64u(currCountdownPeriod);
minTimeToFire = (Bit64u) -1;
for (i=0; i < numTimers; i++) {
triggered[i] = 0; // Reset triggered flag.
if (timer[i].active) {
#if BX_TIMER_DEBUG
if (ticksTotal > timer[i].timeToFire)
BX_PANIC(("countdownEvent: ticksTotal > timeToFire[%u], D %llu", i,
timer[i].timeToFire-ticksTotal));
#endif
if (ticksTotal == timer[i].timeToFire) {
// This timer is ready to fire.
triggered[i] = 1;
if (timer[i].continuous==0) {
// If triggered timer is one-shot, deactive.
timer[i].active = 0;
}
else {
// Continuous timer, increment time-to-fire by period.
timer[i].timeToFire += timer[i].period;
if (timer[i].timeToFire < minTimeToFire)
minTimeToFire = timer[i].timeToFire;
}
}
else {
// This timer is not ready to fire yet.
if (timer[i].timeToFire < minTimeToFire)
minTimeToFire = timer[i].timeToFire;
}
}
}
// Calculate next countdown period. We need to do this before calling
// any of the callbacks, as they may call timer features, which need
// to be advanced to the next countdown cycle.
currCountdown = currCountdownPeriod =
Bit32u(minTimeToFire - ticksTotal);
for (i=0; i < numTimers; i++) {
// Call requested timer function. It may request a different
// timer period or deactivate etc.
if (triggered[i]) {
timer[i].funct(timer[i].this_ptr);
}
}
}
void
bx_pc_system_c::nullTimer(void* this_ptr)
{
// This function is always inserted in timer[0]. It is sort of
// a heartbeat timer. It ensures that at least one timer is
// always active to make the timer logic more simple, and has
// a duration of less than the maximum 32-bit integer, so that
// a 32-bit size can be used for the hot countdown timer. The
// rest of the timer info can be 64-bits. This is also a good
// place for some logic to report actual emulated
// instructions-per-second (IPS) data when measured relative to
// the host computer's wall clock.
UNUSED(this_ptr);
#if SpewPeriodicTimerInfo
BX_INFO(("==================================="));
for (unsigned i=0; i < bx_pc_system.numTimers; i++) {
if (bx_pc_system.timer[i].active) {
BX_INFO(("BxTimer(%s): period=%llu, continuous=%u",
bx_pc_system.timer[i].id, bx_pc_system.timer[i].period,
bx_pc_system.timer[i].continuous));
}
}
#endif
}
#if BX_DEBUGGER
void
bx_pc_system_c::timebp_handler(void* this_ptr)
{
BX_CPU(0)->break_point = BREAK_POINT_TIME;
BX_DEBUG(( "Time breakpoint triggered" ));
if (timebp_queue_size > 1) {
Bit64s new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1);
}
timebp_queue_size--;
for (int i = 0; i < timebp_queue_size; i++)
timebp_queue[i] = timebp_queue[i+1];
}
#endif // BX_DEBUGGER
Bit64u
bx_pc_system_c::time_usec() {
return (Bit64u) (((double)(Bit64s)time_ticks()) / m_ips );
}
void
bx_pc_system_c::start_timers(void)
{
}
void
bx_pc_system_c::activate_timer_ticks(unsigned i, Bit64u ticks, bx_bool continuous)
{
#if BX_TIMER_DEBUG
if (i >= numTimers)
BX_PANIC(("activate_timer_ticks: timer %u OOB", i));
if (timer[i].period < MinAllowableTimerPeriod)
BX_PANIC(("activate_timer_ticks: timer[%u].period of %llu < min of %u",
i, timer[i].period, MinAllowableTimerPeriod));
#endif
// If the timer frequency is rediculously low, make it more sane.
// This happens when 'ips' is too low.
if (ticks < MinAllowableTimerPeriod) {
//BX_INFO(("activate_timer_ticks: adjusting ticks of %llu to min of %u",
// ticks, MinAllowableTimerPeriod));
ticks = MinAllowableTimerPeriod;
}
timer[i].period = ticks;
timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) +
ticks;
timer[i].active = 1;
timer[i].continuous = continuous;
if (ticks < Bit64u(currCountdown)) {
// This new timer needs to fire before the current countdown.
// Skew the current countdown and countdown period to be smaller
// by the delta.
currCountdownPeriod -= (currCountdown - Bit32u(ticks));
currCountdown = Bit32u(ticks);
}
}
void
bx_pc_system_c::activate_timer(unsigned i, Bit32u useconds, bx_bool continuous)
{
Bit64u ticks;
#if BX_TIMER_DEBUG
if (i >= numTimers)
BX_PANIC(("activate_timer: timer %u OOB", i));
#endif
// if useconds = 0, use default stored in period field
// else set new period from useconds
if (useconds==0) {
ticks = timer[i].period;
}
else {
// convert useconds to number of ticks
ticks = (Bit64u) (double(useconds) * m_ips);
// If the timer frequency is rediculously low, make it more sane.
// This happens when 'ips' is too low.
if (ticks < MinAllowableTimerPeriod) {
//BX_INFO(("activate_timer: adjusting ticks of %llu to min of %u",
// ticks, MinAllowableTimerPeriod));
ticks = MinAllowableTimerPeriod;
}
timer[i].period = ticks;
}
activate_timer_ticks(i, ticks, continuous);
}
void
bx_pc_system_c::deactivate_timer( unsigned i )
{
#if BX_TIMER_DEBUG
if (i >= numTimers)
BX_PANIC(("deactivate_timer: timer %u OOB", i));
#endif
timer[i].active = 0;
}
unsigned
bx_pc_system_c::unregisterTimer(int timerIndex)
{
unsigned i = (unsigned) timerIndex;
#if BX_TIMER_DEBUG
if (i >= numTimers)
BX_PANIC(("unregisterTimer: timer %u OOB", i));
if (i == 0)
BX_PANIC(("unregisterTimer: timer 0 is the nullTimer!"));
if (timer[i].inUse == 0)
BX_PANIC(("unregisterTimer: timer %u is not in-use!", i));
#endif
if (timer[i].active) {
BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[i].id));
return(0); // Fail.
}
// Reset timer fields for good measure.
timer[i].inUse = 0; // No longer registered.
timer[i].period = Bit64s(-1); // Max value (invalid)
timer[i].timeToFire = Bit64s(-1); // Max value (invalid)
timer[i].continuous = 0;
timer[i].funct = NULL;
timer[i].this_ptr = NULL;
memset(timer[i].id, 0, BxMaxTimerIDLen);
return(1); // OK
}