Bochs/bochs/cpu/instr.h
Stanislav Shwartsman 1e2e3c8b0e forgot to merge file
2011-08-21 14:38:33 +00:00

349 lines
10 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008-2011 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#ifndef BX_INSTR_H
#define BX_INSTR_H
class bxInstruction_c;
typedef void BX_INSF_TYPE;
#if BX_DISASM
// print the instruction that is about to be executed
#define BX_DEBUG_DISASM_INSTRUCTION() \
if (BX_CPU_THIS_PTR trace) { debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip); }
#else
#define BX_DEBUG_DISASM_INSTRUCTION() /* do nothing */
#endif
#define BX_NEXT_TRACE(i) { return; }
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
#define BX_NEXT_INSTR(i) { \
BX_CPU_THIS_PTR prev_rip = RIP; /* commit new RIP */ \
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i); \
BX_TICK1_IF_SINGLE_PROCESSOR(); \
if (BX_CPU_THIS_PTR async_event) return; \
++i; \
BX_DEBUG_DISASM_INSTRUCTION(); \
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); \
RIP += i->ilen(); \
return BX_CPU_CALL_METHOD(i->execute, (i)); \
}
#else
#define BX_NEXT_INSTR(i) { return; }
#endif
// <TAG-TYPE-EXECUTEPTR-START>
#if BX_USE_CPU_SMF
typedef BX_INSF_TYPE (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *);
typedef bx_address (BX_CPP_AttrRegparmN(1) *BxResolvePtr_tR)(bxInstruction_c *);
typedef void (BX_CPP_AttrRegparmN(1) *BxRepIterationPtr_tR)(bxInstruction_c *);
#else
typedef BX_INSF_TYPE (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
typedef bx_address (BX_CPU_C::*BxResolvePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
typedef void (BX_CPU_C::*BxRepIterationPtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#endif
// <TAG-TYPE-EXECUTEPTR-END>
extern bx_address bx_asize_mask[];
const char *get_bx_opcode_name(Bit16u ia_opcode);
// <TAG-CLASS-INSTRUCTION-START>
class bxInstruction_c {
public:
// Function pointers; a function to resolve the modRM address
// given the current state of the CPU and the instruction data,
// and a function to execute the instruction after resolving
// the memory address (if any).
BxExecutePtr_tR execute;
BxExecutePtr_tR execute2;
BxResolvePtr_tR ResolveModrm;
struct {
// 15.12 AVX vl (0=no VL, 1=128 bit, 2=256 bit)
// 11..0 opcode
Bit16u ia_opcode;
// 7...4 (unused)
// 3...0 ilen (0..15)
Bit8u ilen;
// 7...6 repUsed (0=none, 2=0xF2, 3=0xF3)
// 5...5 extend8bit
// 4...4 mod==c0 (modrm)
// 3...3 os64
// 2...2 os32
// 1...1 as64
// 0...0 as32
Bit8u metaInfo1;
} metaInfo;
#define BX_INSTR_METADATA_SEG 0
#define BX_INSTR_METADATA_B1 1
#define BX_INSTR_METADATA_NNN 2
#define BX_INSTR_METADATA_RM 3
#define BX_INSTR_METADATA_BASE 4
#define BX_INSTR_METADATA_INDEX 5
#define BX_INSTR_METADATA_SCALE 6
#define BX_INSTR_METADATA_MODRM 7 /* modrm for FPU only */
#define BX_INSTR_METADATA_VVV 7
// using 5-bit field for registers (16 regs in 64-bit, RIP, NIL)
Bit8u metaData[8];
union {
// Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
struct {
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit16u displ16u; // for 16-bit modrm forms
Bit32u displ32u; // for 32-bit modrm forms
Bit16u Iw2;
Bit8u Ib2;
};
} modRMForm;
#if BX_SUPPORT_X86_64
struct {
Bit64u Iq; // for MOV Rx,imm64
} IqForm;
#endif
};
#ifdef BX_INSTR_STORE_OPCODE_BYTES
Bit8u opcode_bytes[16];
BX_CPP_INLINE const Bit8u* get_opcode_bytes(void) const {
return opcode_bytes;
}
BX_CPP_INLINE void set_opcode_bytes(const Bit8u *opcode) {
memcpy(opcode_bytes, opcode, ilen());
}
#endif
BX_CPP_INLINE unsigned seg(void) const {
return metaData[BX_INSTR_METADATA_SEG];
}
BX_CPP_INLINE void setSeg(unsigned val) {
metaData[BX_INSTR_METADATA_SEG] = val;
}
BX_CPP_INLINE unsigned b1(void) const {
return metaData[BX_INSTR_METADATA_B1];
}
BX_CPP_INLINE void setB1(unsigned b1) {
metaData[BX_INSTR_METADATA_B1] = b1 & 0xff;
}
BX_CPP_INLINE void setModRM(unsigned modrm) {
metaData[BX_INSTR_METADATA_MODRM] = modrm;
}
BX_CPP_INLINE unsigned modrm() const {
return metaData[BX_INSTR_METADATA_MODRM];
}
BX_CPP_INLINE void setNnn(unsigned nnn) {
metaData[BX_INSTR_METADATA_NNN] = nnn;
}
BX_CPP_INLINE unsigned nnn() const {
return metaData[BX_INSTR_METADATA_NNN];
}
BX_CPP_INLINE void setRm(unsigned rm) {
metaData[BX_INSTR_METADATA_RM] = rm;
}
BX_CPP_INLINE unsigned rm() const {
return metaData[BX_INSTR_METADATA_RM];
}
BX_CPP_INLINE void setSibScale(unsigned scale) {
metaData[BX_INSTR_METADATA_SCALE] = scale;
}
BX_CPP_INLINE unsigned sibScale() const {
return metaData[BX_INSTR_METADATA_SCALE];
}
BX_CPP_INLINE void setSibIndex(unsigned index) {
metaData[BX_INSTR_METADATA_INDEX] = index;
}
BX_CPP_INLINE unsigned sibIndex() const {
return metaData[BX_INSTR_METADATA_INDEX];
}
BX_CPP_INLINE void setSibBase(unsigned base) {
metaData[BX_INSTR_METADATA_BASE] = base;
}
BX_CPP_INLINE unsigned sibBase() const {
return metaData[BX_INSTR_METADATA_BASE];
}
BX_CPP_INLINE Bit32s displ32s() const { return (Bit32s) modRMForm.displ32u; }
BX_CPP_INLINE Bit16s displ16s() const { return (Bit16s) modRMForm.displ16u; }
BX_CPP_INLINE Bit32u Id() const { return modRMForm.Id; }
BX_CPP_INLINE Bit16u Iw() const { return modRMForm.Iw; }
BX_CPP_INLINE Bit8u Ib() const { return modRMForm.Ib; }
BX_CPP_INLINE Bit16u Iw2() const { return modRMForm.Iw2; }
BX_CPP_INLINE Bit8u Ib2() const { return modRMForm.Ib2; }
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u Iq() const { return IqForm.Iq; }
#endif
// Info in the metaInfo field.
// Note: the 'L' at the end of certain flags, means the value returned
// is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you
// want a bx_bool value, use os32B() etc. This makes for smaller
// code, when a strict 0 or 1 is not necessary.
BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64)
{
metaInfo.metaInfo1 = (os32<<2) | (os64<<3) | (as32<<0) | (as64<<1);
}
BX_CPP_INLINE unsigned os32L(void) const {
return metaInfo.metaInfo1 & (1<<2);
}
BX_CPP_INLINE void setOs32B(unsigned bit) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<2)) | (bit<<2);
}
BX_CPP_INLINE void assertOs32(void) {
metaInfo.metaInfo1 |= (1<<2);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned os64L(void) const {
return metaInfo.metaInfo1 & (1<<3);
}
BX_CPP_INLINE void assertOs64(void) {
metaInfo.metaInfo1 |= (1<<3);
}
#else
BX_CPP_INLINE unsigned os64L(void) const { return 0; }
#endif
BX_CPP_INLINE unsigned as32L(void) const {
return metaInfo.metaInfo1 & 0x1;
}
BX_CPP_INLINE void setAs32B(unsigned bit) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~0x1) | (bit);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned as64L(void) const {
return metaInfo.metaInfo1 & (1<<1);
}
BX_CPP_INLINE void clearAs64(void) {
metaInfo.metaInfo1 &= ~(1<<1);
}
#else
BX_CPP_INLINE unsigned as64L(void) const { return 0; }
#endif
BX_CPP_INLINE unsigned asize(void) const {
return metaInfo.metaInfo1 & 0x3;
}
BX_CPP_INLINE bx_address asize_mask(void) const {
return bx_asize_mask[asize()];
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned extend8bitL(void) const {
return metaInfo.metaInfo1 & (1<<5);
}
BX_CPP_INLINE void assertExtend8bit(void) {
metaInfo.metaInfo1 |= (1<<5);
}
#endif
BX_CPP_INLINE unsigned ilen(void) const {
return metaInfo.ilen;
}
BX_CPP_INLINE void setILen(unsigned ilen) {
metaInfo.ilen = ilen;
}
BX_CPP_INLINE unsigned getIaOpcode(void) const {
return metaInfo.ia_opcode & 0xfff;
}
BX_CPP_INLINE void setIaOpcode(Bit16u op) {
metaInfo.ia_opcode = (metaInfo.ia_opcode & 0xf000) | op;
}
BX_CPP_INLINE const char* getIaOpcodeName(void) const {
return get_bx_opcode_name(getIaOpcode());
}
BX_CPP_INLINE unsigned repUsedL(void) const {
return metaInfo.metaInfo1 >> 6;
}
BX_CPP_INLINE unsigned repUsedValue(void) const {
return metaInfo.metaInfo1 >> 6;
}
BX_CPP_INLINE void setRepUsed(unsigned value) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & 0x3f) | (value << 6);
}
BX_CPP_INLINE unsigned getVL(void) const {
#if BX_SUPPORT_AVX
return metaInfo.ia_opcode >> 12;
#else
return 0;
#endif
}
BX_CPP_INLINE void setVL(unsigned value) {
metaInfo.ia_opcode = (metaInfo.ia_opcode & 0xfff) | (value << 12);
}
BX_CPP_INLINE void setVvv(unsigned vvv) {
metaData[BX_INSTR_METADATA_VVV] = vvv;
}
BX_CPP_INLINE unsigned vvv() const {
return metaData[BX_INSTR_METADATA_VVV];
}
BX_CPP_INLINE unsigned modC0() const
{
// This is a cheaper way to test for modRM instructions where
// the mod field is 0xc0. FetchDecode flags this condition since
// it is quite common to be tested for.
return metaInfo.metaInfo1 & (1<<4);
}
BX_CPP_INLINE unsigned assertModC0()
{
return metaInfo.metaInfo1 |= (1<<4);
}
};
// <TAG-CLASS-INSTRUCTION-END>
enum {
#define bx_define_opcode(a, b, c, d, e) a,
#include "ia_opcodes.h"
BX_IA_LAST
};
#undef bx_define_opcode
#endif