Bochs/bochs/cpu/apic.cc
2007-11-30 17:59:10 +00:00

996 lines
28 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: apic.cc,v 1.104 2007-11-30 17:59:10 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002 Zwane Mwaikambo, Stanislav Shwartsman
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#include "iodev/iodev.h"
#if BX_SUPPORT_APIC
#define LOG_THIS this->
#define APIC_BROADCAST_PHYSICAL_DESTINATION_MODE (APIC_MAX_ID)
#define BX_LAPIC_FIRST_VECTOR 0x10
#define BX_LAPIC_LAST_VECTOR 0xfe
///////////// APIC BUS /////////////
int apic_bus_deliver_interrupt(Bit8u vector, Bit8u dest, Bit8u delivery_mode, Bit8u dest_mode, bx_bool level, bx_bool trig_mode)
{
if(delivery_mode == APIC_DM_LOWPRI)
{
if(dest_mode == 0) {
// I/O subsytem initiated interrupt with lowest priority delivery
// mode is not supported in physical destination mode
// BX_ERROR(("Ignoring lowest priority interrupt in physical dest mode !"));
return 0;
}
else {
return apic_bus_deliver_lowest_priority(vector, dest, trig_mode, 0);
}
}
// determine destination local apics and deliver
if(dest_mode == 0) {
if(dest == APIC_BROADCAST_PHYSICAL_DESTINATION_MODE)
{
return apic_bus_broadcast_interrupt(vector, delivery_mode, trig_mode, APIC_MAX_ID);
}
else {
// the destination is single agent
for (unsigned i=0;i<BX_NUM_LOCAL_APICS;i++)
{
if(BX_CPU_APIC(i)->get_id() == dest) {
BX_CPU_APIC(i)->deliver(vector, delivery_mode, trig_mode);
return 1;
}
}
return 0;
}
}
else {
// logical destination mode
if(dest == 0) return 0;
bx_bool interrupt_delivered = 0;
for (int i=0; i<BX_NUM_LOCAL_APICS; i++) {
if(BX_CPU_APIC(i)->match_logical_addr(dest)) {
BX_CPU_APIC(i)->deliver(vector, delivery_mode, trig_mode);
interrupt_delivered = 1;
}
}
return interrupt_delivered;
}
}
int apic_bus_deliver_lowest_priority(Bit8u vector, Bit8u dest, bx_bool trig_mode, bx_bool broadcast)
{
int i;
#ifndef BX_IMPLEMENT_XAPIC
// search for if focus processor exists
for (i=0; i<BX_NUM_LOCAL_APICS; i++) {
if(BX_CPU_APIC(i)->is_focus(vector)) {
BX_CPU_APIC(i)->deliver(vector, APIC_DM_LOWPRI, trig_mode);
return 1;
}
}
#endif
// focus processor not found, looking for lowest priority agent
int lowest_priority_agent = -1, lowest_priority = 0x100;
for (i=0; i<BX_NUM_LOCAL_APICS; i++) {
if(broadcast || BX_CPU_APIC(i)->match_logical_addr(dest)) {
#ifndef BX_IMPLEMENT_XAPIC
int priority = BX_CPU_APIC(i)->get_apr();
#else
int priority = BX_CPU_APIC(i)->get_tpr();
#endif
if(priority < lowest_priority) {
lowest_priority = priority;
lowest_priority_agent = i;
}
}
}
if(lowest_priority_agent >= 0)
{
BX_CPU_APIC(lowest_priority_agent)->deliver(vector, APIC_DM_LOWPRI, trig_mode);
return 1;
}
return 0;
}
int apic_bus_broadcast_interrupt(Bit8u vector, Bit8u delivery_mode, bx_bool trig_mode, int exclude_cpu)
{
if(delivery_mode == APIC_DM_LOWPRI)
{
return apic_bus_deliver_lowest_priority(vector, 0 /* doesn't matter */, trig_mode, 1);
}
// deliver to all bus agents except 'exclude_cpu'
for (int i=0; i<BX_NUM_LOCAL_APICS; i++) {
if(i == exclude_cpu) continue;
BX_CPU_APIC(i)->deliver(vector, delivery_mode, trig_mode);
}
return 1;
}
static void apic_bus_broadcast_eoi(Bit8u vector)
{
bx_devices.ioapic->receive_eoi(vector);
}
#endif
// available even if APIC is not compiled in
void apic_bus_deliver_smi(void)
{
BX_CPU(0)->deliver_SMI();
}
#if BX_SUPPORT_APIC
////////////////////////////////////
bx_generic_apic_c::bx_generic_apic_c(bx_phy_address base)
{
put("APIC?");
settype(APICLOG);
id = APIC_UNKNOWN_ID;
set_base(base);
}
void bx_generic_apic_c::set_base(bx_phy_address newbase)
{
newbase &= (~0xfff);
base_addr = newbase;
if (id != APIC_UNKNOWN_ID)
BX_INFO(("relocate APIC id=%d to 0x%08x", id, newbase));
}
void bx_generic_apic_c::set_id(Bit8u newid)
{
BX_INFO(("set APIC ID to %d", newid));
id = newid;
}
bx_bool bx_generic_apic_c::is_selected(bx_phy_address addr, unsigned len)
{
if((addr & ~0xfff) == get_base()) {
if((addr & 0xf) != 0)
BX_INFO(("warning: misaligned APIC access. addr=0x%08x, len=%d", addr, len));
return 1;
}
return 0;
}
void bx_generic_apic_c::read(bx_phy_address addr, void *data, unsigned len)
{
if((addr & ~0x3) != ((addr+len-1) & ~0x3)) {
BX_PANIC(("APIC read at address 0x%08x spans 32-bit boundary !", addr));
return;
}
Bit32u value;
read_aligned(addr & ~0x3, &value);
if(len == 4) { // must be 32-bit aligned
*((Bit32u *)data) = value;
return;
}
// handle partial read, independent of endian-ness
value >>= (addr&3)*8;
if (len == 1)
*((Bit8u *) data) = value & 0xff;
else if (len == 2)
*((Bit16u *)data) = value & 0xffff;
else
BX_PANIC(("Unsupported APIC read at address 0x%08x, len=%d", addr, len));
}
void bx_generic_apic_c::write(bx_phy_address addr, void *data, unsigned len)
{
if((addr & ~0x3) != ((addr+len-1) & ~0x3)) {
BX_PANIC(("APIC write at address 0x%08x spans 32-bit boundary !", addr));
return;
}
bx_phy_address addr_aligned = addr & ~0x3;
if(len == 4) { // must be 32-bit aligned
write_aligned(addr_aligned, (Bit32u*) data);
return;
}
// partial write to the apic register, need to update some bytes
// and do not touch the others, i.e. to do RMW operation
Bit32u value;
read_aligned(addr_aligned, &value); // apic read has no side effects
// handle partial write, independent of endian-ness
unsigned shift = (addr&3)*8;
if (len == 1) {
value &= ~(0xff << shift);
value |= (*((Bit8u *) data) << shift);
}
else if (len == 2) {
value &= ~(0xffff << shift);
value |= (*((Bit16u *)data) << shift);
}
else {
BX_PANIC(("Unsupported APIC write at address 0x%08x, len=%d", addr, len));
}
write_aligned(addr_aligned, &value);
}
bx_local_apic_c::bx_local_apic_c(BX_CPU_C *mycpu)
: bx_generic_apic_c(BX_LAPIC_BASE_ADDR), cpu(mycpu), cpu_id(cpu->which_cpu())
{
// KPL: Register a non-active timer for use when the timer is started.
timer_handle = bx_pc_system.register_timer_ticks(this,
BX_CPU(0)->local_apic.periodic_smf, 0, 0, 0, "lapic");
timer_active = 0;
reset();
INTR = 0;
}
void bx_local_apic_c::reset()
{
/* same as INIT but also sets arbitration ID and APIC ID */
init();
}
void bx_local_apic_c::init()
{
int i;
bx_generic_apic_c::init();
BX_INFO(("local apic in %s initializing",
(cpu && cpu->name) ? cpu->name : "?"));
// default address for a local APIC, can be moved
base_addr = BX_LAPIC_BASE_ADDR;
error_status = shadow_error_status = 0;
log_dest = 0;
dest_format = 0xf;
icr_hi = 0;
icr_lo = 0;
log_dest = 0;
task_priority = 0;
for(i=0; i<BX_LAPIC_MAX_INTS; i++) {
irr[i] = isr[i] = tmr[i] = 0;
}
timer_divconf = 0;
timer_divide_factor = 1;
timer_initial = 0;
timer_current = 0;
if(timer_active) {
bx_pc_system.deactivate_timer(timer_handle);
timer_active = 0;
}
for(i=0; i<APIC_LVT_ENTRIES; i++) {
lvt[i] = 0x10000; // all LVT are masked
}
spurious_vector = 0xff; // software disabled(bit 8)
software_enabled = 0;
focus_disable = 0;
}
void bx_local_apic_c::set_id(Bit8u newid)
{
bx_generic_apic_c::set_id(newid);
sprintf(cpu->name, "CPU apicid=%02x",(Bit32u)id);
if(id < APIC_MAX_ID) {
char buffer[16];
sprintf(buffer, "APIC%x", id);
put(buffer);
settype(CPU0LOG + id);
sprintf(buffer, "CPU%x", id);
cpu->put(buffer);
} else {
BX_INFO(("naming convention for apics requires id=0-%d only", APIC_MAX_ID));
}
if(BX_CPU_LEVEL<2)
BX_INFO(("8086"));
else
BX_INFO(("80%d86", BX_CPU_LEVEL));
}
// APIC write: 4 byte write to 16-byte aligned APIC address
void bx_local_apic_c::write_aligned(bx_phy_address addr, Bit32u *data)
{
BX_DEBUG(("%s: LAPIC write 0x%08x to address %08x", cpu->name, *data, addr));
BX_ASSERT((addr & 0xf) == 0);
addr &= 0xff0;
Bit32u value = *data;
switch(addr) {
case 0x20: // local APIC id
id = (value>>24) & APIC_ID_MASK;
break;
case 0x80: // task priority
set_tpr(value & 0xff);
break;
case 0xb0: // EOI
receive_EOI(value);
break;
case 0xd0: // logical destination
log_dest = (value >> 24) & APIC_ID_MASK;
BX_DEBUG(("set logical destination to %02x", log_dest));
break;
case 0xe0: // destination format
dest_format = (value >> 28) & 0xf;
BX_DEBUG(("set destination format to %02x", dest_format));
break;
case 0xf0: // spurious interrupt vector
write_spurious_interrupt_register(value);
break;
case 0x280: // error status reg
// Here's what the IA-devguide-3 says on p.7-45:
// The ESR is a read/write register and is reset after being written to
// by the processor. A write to the ESR must be done just prior to
// reading the ESR to allow the register to be updated.
error_status = shadow_error_status;
shadow_error_status = 0;
break;
case 0x300: // interrupt command reg 0-31
icr_lo = value & ~(1<<12); // force delivery status bit = 0(idle)
send_ipi();
break;
case 0x310: // interrupt command reg 31-63
icr_hi = value & 0xff000000;
break;
case 0x320: // LVT Timer Reg
lvt[APIC_LVT_TIMER] = value & 0x300ff;
if(! software_enabled) lvt[APIC_LVT_TIMER] |= 0x10000;
break;
case 0x330: // LVT Thermal Monitor
lvt[APIC_LVT_THERMAL] = value & 0x107ff;
if(! software_enabled) lvt[APIC_LVT_THERMAL] |= 0x10000;
break;
case 0x340: // LVT Performance Counter
lvt[APIC_LVT_PERFORM] = value & 0x107ff;
if(! software_enabled) lvt[APIC_LVT_PERFORM] |= 0x10000;
break;
case 0x350: // LVT LINT0 Reg
lvt[APIC_LVT_LINT0] = value & 0x1a7ff;
if(! software_enabled) lvt[APIC_LVT_LINT0] |= 0x10000;
break;
case 0x360: // LVT Lint1 Reg
lvt[APIC_LVT_LINT1] = value & 0x1a7ff;
if(! software_enabled) lvt[APIC_LVT_LINT1] |= 0x10000;
break;
case 0x370: // LVT Error Reg
lvt[APIC_LVT_ERROR] = value & 0x100ff;
if(! software_enabled) lvt[APIC_LVT_ERROR] |= 0x10000;
break;
case 0x380: // initial count for timer
set_initial_timer_count(value);
break;
case 0x3e0: // timer divide configuration
// only bits 3, 1, and 0 are writable
timer_divconf = value & 0xb;
set_divide_configuration(timer_divconf);
break;
/* all read-only registers go here */
case 0x30: // local APIC version
case 0x90: // arbitration priority
case 0xa0: // processor priority
// ISRs not writable
case 0x100: case 0x110: case 0x120: case 0x130:
case 0x140: case 0x150: case 0x160: case 0x170:
// TMRs not writable
case 0x180: case 0x190: case 0x1a0: case 0x1b0:
case 0x1c0: case 0x1d0: case 0x1e0: case 0x1f0:
// IRRs not writable
case 0x200: case 0x210: case 0x220: case 0x230:
case 0x240: case 0x250: case 0x260: case 0x270:
// current count for timer
case 0x390:
// all read-only registers should fall into this line
BX_INFO(("warning: write to read-only APIC register 0x%02x", addr));
break;
default:
shadow_error_status |= APIC_ERR_ILLEGAL_ADDR;
// but for now I want to know about it in case I missed some.
BX_PANIC(("APIC register %08x not implemented", addr));
}
}
void bx_local_apic_c::send_ipi(void)
{
int dest = (icr_hi >> 24) & 0xff;
int dest_shorthand = (icr_lo >> 18) & 3;
int trig_mode = (icr_lo >> 15) & 1;
int level = (icr_lo >> 14) & 1;
int dest_mode = (icr_lo >> 11) & 1;
int delivery_mode = (icr_lo >> 8) & 7;
int vector = (icr_lo & 0xff);
int accepted = 0;
if(delivery_mode == APIC_DM_INIT)
{
if(level == 0 && trig_mode == 1) {
// special mode in local apic. See "INIT Level Deassert" in the
// Intel Soft. Devel. Guide Vol 3, page 7-34. This magic code
// causes all APICs(regardless of dest address) to set their
// arbitration ID to their APIC ID. Not supported by Pentium 4
// and Intel Xeon processors.
return; // we not model APIC bus arbitration ID anyway
}
}
switch(dest_shorthand) {
case 0: // no shorthand, use real destination value
accepted = apic_bus_deliver_interrupt(vector, dest, delivery_mode, dest_mode, level, trig_mode);
break;
case 1: // self
trigger_irq(vector, trig_mode);
accepted = 1;
break;
case 2: // all including self
accepted = apic_bus_broadcast_interrupt(vector, delivery_mode, trig_mode, APIC_MAX_ID);
break;
case 3: // all but self
accepted = apic_bus_broadcast_interrupt(vector, delivery_mode, trig_mode, get_id());
break;
default:
BX_PANIC(("Invalid desination shorthand %#x\n", dest_shorthand));
}
if(! accepted) {
BX_DEBUG(("An IPI wasn't accepted, raise APIC_ERR_TX_ACCEPT_ERR"));
shadow_error_status |= APIC_ERR_TX_ACCEPT_ERR;
}
}
void bx_local_apic_c::write_spurious_interrupt_register(Bit32u value)
{
BX_DEBUG(("write %08x to spurious interrupt register", value));
#ifdef BX_IMPLEMENT_XAPIC
spurious_vector = value & 0xff;
#else
// bits 0-3 of the spurious vector hardwired to '1
spurious_vector = (value & 0xf0) | 0xf;
#endif
software_enabled = (value >> 8) & 1;
focus_disable = (value >> 9) & 1;
if(! software_enabled) {
for(unsigned i=0; i<APIC_LVT_ENTRIES; i++) {
lvt[i] |= 0x10000; // all LVT are masked
}
}
}
void bx_local_apic_c::receive_EOI(Bit32u value)
{
BX_DEBUG(("%s: Wrote 0x%x to EOI", cpu->name, value));
int vec = highest_priority_int(isr);
if(vec < 0) {
BX_DEBUG(("EOI written without any bit in ISR"));
} else {
if((Bit32u) vec != spurious_vector) {
BX_DEBUG(("%s: local apic received EOI, hopefully for vector 0x%02x", cpu->name, vec));
isr[vec] = 0;
if(tmr[vec]) {
apic_bus_broadcast_eoi(vec);
tmr[vec] = 0;
}
service_local_apic();
}
}
if(bx_dbg.apic)
print_status();
}
void bx_local_apic_c::startup_msg(Bit32u vector)
{
if(cpu->debug_trap & BX_DEBUG_TRAP_SPECIAL) {
cpu->debug_trap &= ~BX_DEBUG_TRAP_SPECIAL;
cpu->eip_reg.dword.eip = 0;
cpu->load_seg_reg(&cpu->sregs[BX_SEG_REG_CS], vector*0x100);
BX_INFO(("%s started up at %04X:%08X by APIC", cpu->name, vector*0x100, cpu->eip_reg.dword.eip));
} else {
BX_INFO(("%s started up by APIC, but was not halted at the time", cpu->name));
}
}
// APIC read: 4 byte read from 16-byte aligned APIC address
void bx_local_apic_c::read_aligned(bx_phy_address addr, Bit32u *data)
{
BX_DEBUG(("%s: LAPIC read from address %08x", cpu->name, addr));
BX_ASSERT((addr & 0xf) == 0);
*data = 0; // default value for unimplemented registers
bx_phy_address addr2 = addr & 0xff0;
switch(addr2) {
case 0x20: // local APIC id
*data = (id) << 24; break;
case 0x30: // local APIC version
*data = BX_LAPIC_VERSION_ID; break;
case 0x80: // task priority
*data = task_priority & 0xff; break;
case 0x90: // arbitration priority
*data = get_apr(); break;
case 0xa0: // processor priority
*data = get_ppr(); break;
case 0xb0: // EOI
/*
* Read-modify-write operations should operate without generating
* exceptions, and are used by some operating systems to EOI.
* The results of reads should be ignored by the OS.
*/
break;
case 0xd0: // logical destination
*data = (log_dest & APIC_ID_MASK) << 24; break;
case 0xe0: // destination format
*data = ((dest_format & 0xf) << 24) | 0x0fffffff; break;
case 0xf0: // spurious interrupt vector
{
Bit32u reg = spurious_vector;
if(software_enabled) reg |= 0x100;
if(focus_disable) reg |= 0x200;
*data = reg;
}
break;
case 0x100: case 0x110:
case 0x120: case 0x130:
case 0x140: case 0x150:
case 0x160: case 0x170:
{
unsigned index = (addr2 - 0x100) << 1;
Bit32u value = 0, mask = 1;
for(int i=0;i<32;i++) {
if(isr[index+i]) value |= mask;
mask <<= 1;
}
*data = value;
}
break;
case 0x180: case 0x190:
case 0x1a0: case 0x1b0:
case 0x1c0: case 0x1d0:
case 0x1e0: case 0x1f0:
{
unsigned index = (addr2 - 0x180) << 1;
Bit32u value = 0, mask = 1;
for(int i=0;i<32;i++) {
if(tmr[index+i]) value |= mask;
mask <<= 1;
}
*data = value;
}
break;
case 0x200: case 0x210:
case 0x220: case 0x230:
case 0x240: case 0x250:
case 0x260: case 0x270:
{
unsigned index = (addr2 - 0x200) << 1;
Bit32u value = 0, mask = 1;
for(int i=0;i<32;i++) {
if(irr[index+i]) value |= mask;
mask <<= 1;
}
*data = value;
}
break;
case 0x280: // error status reg
*data = error_status; break;
case 0x300: // interrupt command reg 0-31
*data = icr_lo; break;
case 0x310: // interrupt command reg 31-63
*data = icr_hi; break;
case 0x320: // LVT Timer Reg
case 0x330: // LVT Thermal Monitor
case 0x340: // LVT Performance Counter
case 0x350: // LVT LINT0 Reg
case 0x360: // LVT Lint1 Reg
case 0x370: // LVT Error Reg
{
int index = (addr2 - 0x320) >> 4;
*data = lvt[index];
break;
}
case 0x380: // initial count for timer
*data = timer_initial;
break;
case 0x390: // current count for timer
if(timer_active==0) {
*data = timer_current;
} else {
Bit64u delta64;
Bit32u delta32;
delta64 = (bx_pc_system.time_ticks() - ticksInitial) / timer_divide_factor;
delta32 = (Bit32u) delta64;
if(delta32 > timer_initial)
BX_PANIC(("APIC: R(curr timer count): delta < initial"));
timer_current = timer_initial - delta32;
*data = timer_current;
}
break;
case 0x3e0: // timer divide configuration
*data = timer_divconf;
break;
default:
BX_INFO(("APIC register %08x not implemented", addr));
}
BX_DEBUG(("%s: read from APIC address %08x = %08x", cpu->name, addr, *data));
}
int bx_local_apic_c::highest_priority_int(Bit8u *array)
{
for(int i=BX_LAPIC_LAST_VECTOR; i>=BX_LAPIC_FIRST_VECTOR; i--)
if(array[i]) return i;
return -1;
}
void bx_local_apic_c::service_local_apic(void)
{
if(bx_dbg.apic) {
BX_INFO(("service_local_apic()"));
print_status();
}
if(INTR) return; // INTR already up; do nothing
// find first interrupt in irr.
int first_irr = highest_priority_int(irr);
if (first_irr < 0) return; // no interrupts, leave INTR=0
int first_isr = highest_priority_int(isr);
if (first_isr >= 0 && first_irr <= first_isr) {
BX_DEBUG(("local apic(%s): not delivering int 0x%02x because int 0x%02x is in service", cpu->name, first_irr, first_isr));
return;
}
if(((Bit32u)(first_irr) & 0xf0) <= (task_priority & 0xf0)) {
BX_DEBUG(("local apic(%s): not delivering int 0x%02X because task_priority is 0x%02X", cpu->name, first_irr, task_priority));
return;
}
// interrupt has appeared in irr. Raise INTR. When the CPU
// acknowledges, we will run highest_priority_int again and
// return it.
BX_DEBUG(("service_local_apic(): setting INTR=1 for vector 0x%02x", first_irr));
INTR = 1;
cpu->async_event = 1;
}
bx_bool bx_local_apic_c::deliver(Bit8u vector, Bit8u delivery_mode, Bit8u trig_mode)
{
switch(delivery_mode) {
case APIC_DM_FIXED:
case APIC_DM_LOWPRI:
BX_DEBUG(("Deliver lowest priority of fixed interrupt vector %02x", vector));
trigger_irq(vector, trig_mode);
break;
case APIC_DM_SMI:
BX_PANIC(("Delivery of SMI still not implemented !"));
cpu->deliver_SMI();
return 1;
case APIC_DM_NMI:
BX_PANIC(("Delivery of NMI still not implemented !"));
cpu->deliver_NMI();
return 1;
case APIC_DM_INIT:
BX_DEBUG(("Deliver INIT IPI"));
init();
break;
case APIC_DM_SIPI:
BX_DEBUG(("Deliver Start Up IPI"));
startup_msg(vector);
break;
case APIC_DM_EXTINT:
BX_DEBUG(("Deliver EXTINT vector %02x", vector));
trigger_irq(vector, trig_mode, 1);
break;
default:
return 0;
}
return 1;
}
void bx_local_apic_c::trigger_irq(unsigned vector, unsigned trigger_mode, bx_bool bypass_irr_isr)
{
BX_DEBUG(("Local apic on %s: trigger interrupt vector=0x%x", cpu->name, vector));
if(vector > BX_LAPIC_LAST_VECTOR || vector < BX_LAPIC_FIRST_VECTOR) {
shadow_error_status |= APIC_ERR_RX_ILLEGAL_VEC;
BX_INFO(("bogus vector %#x, ignoring ...", vector));
return;
}
BX_DEBUG(("triggered vector %#02x", vector));
if(bypass_irr_isr) {
goto service_vector;
}
if(irr[vector] != 0) {
BX_DEBUG(("triggered vector %#02x not accepted", vector));
return;
}
service_vector:
irr[vector] = 1;
tmr[vector] = trigger_mode; // set for level triggered
service_local_apic();
}
void bx_local_apic_c::untrigger_irq(unsigned vector, unsigned trigger_mode)
{
BX_DEBUG(("Local apic on %s: untrigger interrupt vector=0x%x", cpu->name, vector));
// hardware says "no more". clear the bit. If the CPU hasn't yet
// acknowledged the interrupt, it will never be serviced.
BX_ASSERT(irr[vector] == 1);
irr[vector] = 0;
if(bx_dbg.apic) print_status();
}
Bit8u bx_local_apic_c::acknowledge_int(void)
{
// CPU calls this when it is ready to service one interrupt
if(!INTR)
BX_PANIC(("%s: acknowledged an interrupt, but INTR=0", cpu->name));
BX_ASSERT(INTR);
int vector = highest_priority_int(irr);
if (vector < 0) goto spurious;
if((vector & 0xf0) <= get_ppr()) goto spurious;
BX_ASSERT(irr[vector] == 1);
BX_DEBUG(("%s: acknowledge_int returning vector 0x%x", cpu->name, vector));
irr[vector] = 0;
isr[vector] = 1;
if(bx_dbg.apic) {
BX_INFO(("Status after setting isr:"));
print_status();
}
INTR = 0;
cpu->async_event = 1;
service_local_apic(); // will set INTR again if another is ready
return vector;
spurious:
INTR = 0;
cpu->async_event = 1;
return spurious_vector;
}
void bx_local_apic_c::print_status(void)
{
BX_INFO(("%s local apic: status is {:", cpu->name));
for(int vec=0; vec<BX_LAPIC_MAX_INTS; vec++) {
if(irr[vec] || isr[vec]) {
BX_INFO(("vec 0x%x: irr=%d, isr=%d", vec,(int)irr[vec],(int)isr[vec]));
}
}
BX_INFO(("}"));
}
bx_bool bx_local_apic_c::match_logical_addr(Bit8u address)
{
if(dest_format != 0xf) {
BX_PANIC(("bx_local_apic_c::match_logical_addr: cluster model addressing not implemented"));
}
bx_bool match = ((address & log_dest) != 0);
BX_DEBUG(("%s: comparing MDA %02x to my LDR %02x -> %s", cpu->name,
address, log_dest, match? "Match" : "Not a match"));
return match;
}
Bit8u bx_local_apic_c::get_ppr(void)
{
int ppr = highest_priority_int(isr);
if((ppr < 0) || ((task_priority & 0xF0) >= ((Bit32u) ppr & 0xF0)))
ppr = task_priority;
else
ppr &= 0xF0;
return ppr;
}
Bit8u bx_local_apic_c::get_tpr(void)
{
return task_priority;
}
void bx_local_apic_c::set_tpr(Bit8u priority)
{
if(priority < task_priority) {
task_priority = priority;
service_local_apic();
} else {
task_priority = priority;
}
}
Bit8u bx_local_apic_c::get_apr(void)
{
Bit32u tpr = (task_priority >> 4) & 0xf;
Bit32u isrv = (highest_priority_int(isr) >> 4) & 0xf;
Bit32u irrv = (highest_priority_int(irr) >> 4) & 0xf;
Bit8u apr;
if(isrv < 0) isrv = 0;
if(irrv < 0) irrv = 0;
if((tpr >= irrv) && (tpr > isrv)) {
apr = task_priority & 0xff;
}
else {
apr = ((tpr & isrv) > irrv) ?(tpr & isrv) : irrv;
apr <<= 4;
}
BX_DEBUG(("apr = %d\n", apr));
return(Bit8u) apr;
}
bx_bool bx_local_apic_c::is_focus(Bit8u vector)
{
if(focus_disable) return 0;
return(irr[vector] || isr[vector]) ? 1 : 0;
}
void bx_local_apic_c::periodic_smf(void *this_ptr)
{
bx_local_apic_c *class_ptr = (bx_local_apic_c *) this_ptr;
class_ptr->periodic();
}
void bx_local_apic_c::periodic(void)
{
if(!timer_active) {
BX_ERROR(("%s: bx_local_apic_c::periodic called, timer_active==0", cpu->name));
return;
}
// timer reached zero since the last call to periodic.
Bit32u timervec = lvt[APIC_LVT_TIMER];
if(timervec & 0x20000) {
// Periodic mode.
// If timer is not masked, trigger interrupt.
if((timervec & 0x10000)==0) {
trigger_irq(timervec & 0xff, APIC_EDGE_TRIGGERED);
}
else {
BX_DEBUG(("%s: local apic timer LVT masked", cpu->name));
}
// Reload timer values.
timer_current = timer_initial;
ticksInitial = bx_pc_system.time_ticks(); // Take a reading.
BX_DEBUG(("%s: local apic timer(periodic) triggered int, reset counter to 0x%08x", cpu->name, timer_current));
}
else {
// one-shot mode
timer_current = 0;
// If timer is not masked, trigger interrupt.
if((timervec & 0x10000)==0) {
trigger_irq(timervec & 0xff, APIC_EDGE_TRIGGERED);
}
else {
BX_DEBUG(("%s: local apic timer LVT masked", cpu->name));
}
timer_active = 0;
BX_DEBUG(("%s: local apic timer(one-shot) triggered int", cpu->name));
bx_pc_system.deactivate_timer(timer_handle);
}
}
void bx_local_apic_c::set_divide_configuration(Bit32u value)
{
BX_ASSERT(value == (value & 0x0b));
// move bit 3 down to bit 0.
value = ((value & 8) >> 1) | (value & 3);
BX_ASSERT(value >= 0 && value <= 7);
timer_divide_factor = (value==7)? 1 : (2 << value);
BX_INFO(("%s: set timer divide factor to %d", cpu->name, timer_divide_factor));
}
void bx_local_apic_c::set_initial_timer_count(Bit32u value)
{
// If active before, deactive the current timer before changing it.
if(timer_active) {
bx_pc_system.deactivate_timer(timer_handle);
timer_active = 0;
}
timer_initial = value;
timer_current = 0;
if(timer_initial != 0) // terminate the counting if timer_initial = 0
{
// This should trigger the counter to start. If already started,
// restart from the new start value.
BX_DEBUG(("APIC: Initial Timer Count Register = %u", value));
timer_current = timer_initial;
timer_active = 1;
Bit32u timervec = lvt[APIC_LVT_TIMER];
bx_bool continuous = (timervec & 0x20000) > 0;
ticksInitial = bx_pc_system.time_ticks(); // Take a reading.
bx_pc_system.activate_timer_ticks(timer_handle,
Bit64u(timer_initial) * Bit64u(timer_divide_factor), continuous);
}
}
void bx_local_apic_c::register_state(bx_param_c *parent)
{
unsigned i;
char name[6];
bx_list_c *lapic = new bx_list_c(parent, "local_apic", 25);
BXRS_HEX_PARAM_SIMPLE(lapic, base_addr);
BXRS_HEX_PARAM_SIMPLE(lapic, id);
BXRS_HEX_PARAM_SIMPLE(lapic, spurious_vector);
BXRS_PARAM_BOOL(lapic, software_enabled, software_enabled);
BXRS_PARAM_BOOL(lapic, focus_disable, focus_disable);
BXRS_HEX_PARAM_SIMPLE(lapic, task_priority);
BXRS_HEX_PARAM_SIMPLE(lapic, spurious_vector);
BXRS_HEX_PARAM_SIMPLE(lapic, log_dest);
BXRS_HEX_PARAM_SIMPLE(lapic, dest_format);
bx_list_c *ISR = new bx_list_c(lapic, "isr", BX_LAPIC_MAX_INTS);
bx_list_c *TMR = new bx_list_c(lapic, "tmr", BX_LAPIC_MAX_INTS);
bx_list_c *IRR = new bx_list_c(lapic, "irr", BX_LAPIC_MAX_INTS);
for (i=0; i<BX_LAPIC_MAX_INTS; i++) {
sprintf(name, "0x%02x", i);
new bx_shadow_num_c(ISR, name, &isr[i]);
new bx_shadow_num_c(TMR, name, &tmr[i]);
new bx_shadow_num_c(IRR, name, &irr[i]);
}
BXRS_HEX_PARAM_SIMPLE(lapic, error_status);
BXRS_HEX_PARAM_SIMPLE(lapic, shadow_error_status);
BXRS_HEX_PARAM_SIMPLE(lapic, icr_hi);
BXRS_HEX_PARAM_SIMPLE(lapic, icr_lo);
bx_list_c *LVT = new bx_list_c(lapic, "lvt", APIC_LVT_ENTRIES);
for (i=0; i<APIC_LVT_ENTRIES; i++) {
sprintf(name, "%d", i);
new bx_shadow_num_c(LVT, name, &lvt[i], BASE_HEX);
}
BXRS_HEX_PARAM_SIMPLE(lapic, timer_initial);
BXRS_HEX_PARAM_SIMPLE(lapic, timer_current);
BXRS_HEX_PARAM_SIMPLE(lapic, timer_divconf);
BXRS_DEC_PARAM_SIMPLE(lapic, timer_divide_factor);
BXRS_PARAM_BOOL(lapic, timer_active, timer_active);
BXRS_HEX_PARAM_SIMPLE(lapic, ticksInitial);
BXRS_PARAM_BOOL(lapic, INTR, INTR);
}
#endif /* if BX_SUPPORT_APIC */