2280 lines
72 KiB
C++
2280 lines
72 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: proc_ctrl.cc,v 1.98 2005-03-03 20:24:52 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
|
|
#if BX_SUPPORT_X86_64==0
|
|
// Make life easier for merging code.
|
|
#define RAX EAX
|
|
#define RBX EBX
|
|
#define RCX ECX
|
|
#define RDX EDX
|
|
#endif
|
|
|
|
|
|
void BX_CPU_C::UndefinedOpcode(bxInstruction_c *i)
|
|
{
|
|
BX_DEBUG(("UndefinedOpcode: %02x causes exception 6", (unsigned) i->b1()));
|
|
exception(BX_UD_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
void BX_CPU_C::NOP(bxInstruction_c *i)
|
|
{
|
|
// No operation.
|
|
}
|
|
|
|
void BX_CPU_C::PREFETCH(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_3DNOW || BX_SUPPORT_SSE >= 1
|
|
BX_INSTR_PREFETCH_HINT(BX_CPU_ID, i->nnn(), i->seg(), RMAddr(i));
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::HLT(bxInstruction_c *i)
|
|
{
|
|
// hack to panic if HLT comes from BIOS
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value == 0xf000)
|
|
BX_PANIC(("HALT instruction encountered in the BIOS ROM"));
|
|
|
|
if (CPL!=0) {
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (! BX_CPU_THIS_PTR get_IF ()) {
|
|
BX_PANIC(("WARNING: HLT instruction with IF=0!"));
|
|
}
|
|
|
|
// stops instruction execution and places the processor in a
|
|
// HALT state. An enabled interrupt, NMI, or reset will resume
|
|
// execution. If interrupt (including NMI) is used to resume
|
|
// execution after HLT, the saved CS:eIP points to instruction
|
|
// following HLT.
|
|
|
|
// artificial trap bit, why use another variable.
|
|
BX_CPU_THIS_PTR debug_trap |= 0x80000000; // artificial trap
|
|
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
|
|
// Execution of this instruction completes. The processor
|
|
// will remain in a halt state until one of the above conditions
|
|
// is met.
|
|
|
|
#if BX_USE_IDLE_HACK
|
|
bx_gui->sim_is_idle ();
|
|
#endif /* BX_USE_IDLE_HACK */
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::CLTS(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("CLTS: not implemented for < 286"));
|
|
#else
|
|
|
|
// #GP(0) if CPL is not 0
|
|
if ((v8086_mode() || protected_mode()) && CPL!=0) {
|
|
BX_INFO(("CLTS: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
BX_CPU_THIS_PTR cr0.ts = 0;
|
|
BX_CPU_THIS_PTR cr0.val32 &= ~0x08;
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::INVD(bxInstruction_c *i)
|
|
{
|
|
BX_INFO(("---------------"));
|
|
BX_INFO(("- INVD called -"));
|
|
BX_INFO(("---------------"));
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
invalidate_prefetch_q();
|
|
|
|
// protected or v8086 mode
|
|
if (BX_CPU_THIS_PTR cr0.pe) {
|
|
if (CPL!=0) {
|
|
BX_INFO(("INVD: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
}
|
|
BX_INSTR_CACHE_CNTRL(BX_CPU_ID, BX_INSTR_INVD);
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::WBINVD(bxInstruction_c *i)
|
|
{
|
|
BX_INFO(("WBINVD: (ignoring)"));
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
invalidate_prefetch_q();
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe) {
|
|
if (CPL!=0) {
|
|
BX_INFO(("WBINVD: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
}
|
|
BX_INSTR_CACHE_CNTRL(BX_CPU_ID, BX_INSTR_WBINVD);
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::MOV_DdRd(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_DdRd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_DdRd: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* NOTES:
|
|
* 32bit operands always used
|
|
* r/m field specifies general register
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_DdRd(): rm field not a register!"));
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_INFO(("MOV_DdRd: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
val_32 = BX_READ_32BIT_REG(i->rm());
|
|
if (bx_dbg.dreg)
|
|
BX_INFO(("MOV_DdRd: DR[%u]=%08xh unhandled",
|
|
(unsigned) i->nnn(), (unsigned) val_32));
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // DR0
|
|
BX_CPU_THIS_PTR dr0 = val_32;
|
|
break;
|
|
case 1: // DR1
|
|
BX_CPU_THIS_PTR dr1 = val_32;
|
|
break;
|
|
case 2: // DR2
|
|
BX_CPU_THIS_PTR dr2 = val_32;
|
|
break;
|
|
case 3: // DR3
|
|
BX_CPU_THIS_PTR dr3 = val_32;
|
|
break;
|
|
|
|
case 4: // DR4
|
|
case 6: // DR6
|
|
// DR4 aliased to DR6 by default. With Debug Extensions on,
|
|
// access to DR4 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ((i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE())) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_DdRd: access to DR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
#if BX_CPU_LEVEL <= 4
|
|
// On 386/486 bit12 is settable
|
|
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
|
|
(val_32 & 0x0000f00f);
|
|
#else
|
|
// On Pentium+, bit12 is always zero
|
|
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
|
|
(val_32 & 0x0000e00f);
|
|
#endif
|
|
break;
|
|
|
|
case 5: // DR5
|
|
case 7: // DR7
|
|
// Note: 486+ ignore GE and LE flags. On the 386, exact
|
|
// data breakpoint matching does not occur unless it is enabled
|
|
// by setting the LE and/or GE flags.
|
|
|
|
// DR5 aliased to DR7 by default. With Debug Extensions on,
|
|
// access to DR5 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ((i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE())) {
|
|
// Debug extensions (CR4.DE) on
|
|
BX_INFO(("MOV_DdRd: access to DR5 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
// Some sanity checks...
|
|
if ( val_32 & 0x00002000 ) {
|
|
BX_INFO(("MOV_DdRd: GD bit not supported yet"));
|
|
// Note: processor clears GD upon entering debug exception
|
|
// handler, to allow access to the debug registers
|
|
}
|
|
if ( (((val_32>>16) & 3)==2) ||
|
|
(((val_32>>20) & 3)==2) ||
|
|
(((val_32>>24) & 3)==2) ||
|
|
(((val_32>>28) & 3)==2) ) {
|
|
// IO breakpoints (10b) are not yet supported.
|
|
BX_PANIC(("MOV_DdRd: write of %08x contains IO breakpoint", val_32));
|
|
}
|
|
if ( (((val_32>>18) & 3)==2) ||
|
|
(((val_32>>22) & 3)==2) ||
|
|
(((val_32>>26) & 3)==2) ||
|
|
(((val_32>>30) & 3)==2) ) {
|
|
// LEN0..3 contains undefined length specifier (10b)
|
|
BX_PANIC(("MOV_DdRd: write of %08x contains undefined LENx", val_32));
|
|
}
|
|
if ( ((((val_32>>16) & 3)==0) && (((val_32>>18) & 3)!=0)) ||
|
|
((((val_32>>20) & 3)==0) && (((val_32>>22) & 3)!=0)) ||
|
|
((((val_32>>24) & 3)==0) && (((val_32>>26) & 3)!=0)) ||
|
|
((((val_32>>28) & 3)==0) && (((val_32>>30) & 3)!=0)) )
|
|
{
|
|
// Instruction breakpoint with LENx not 00b (1-byte length)
|
|
BX_PANIC(("MOV_DdRd: write of %08x, R/W=00b LEN!=00b", val_32));
|
|
}
|
|
#if BX_CPU_LEVEL <= 4
|
|
// 386/486: you can play with all the bits except b10 is always 1
|
|
BX_CPU_THIS_PTR dr7 = val_32 | 0x00000400;
|
|
#else
|
|
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
|
|
// Even bits 11,10 are changeable though reserved.
|
|
BX_CPU_THIS_PTR dr7 = (val_32 & 0xffff2fff) | 0x00000400;
|
|
#endif
|
|
// if we have breakpoints enabled then we must check
|
|
// breakpoints condition in cpu loop
|
|
if(BX_CPU_THIS_PTR dr7 & 0xff)
|
|
BX_CPU_THIS_PTR async_event = 1;
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("MOV_DdRd: control register index out of range"));
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::MOV_RdDd(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_RdDd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_RdDd: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_RdDd(): rm field not a register!"));
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && (CPL!=0)) {
|
|
BX_INFO(("MOV_RdDd: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
if (bx_dbg.dreg)
|
|
BX_INFO(("MOV_RdDd: DR%u not implemented yet", i->nnn()));
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // DR0
|
|
val_32 = BX_CPU_THIS_PTR dr0;
|
|
break;
|
|
case 1: // DR1
|
|
val_32 = BX_CPU_THIS_PTR dr1;
|
|
break;
|
|
case 2: // DR2
|
|
val_32 = BX_CPU_THIS_PTR dr2;
|
|
break;
|
|
case 3: // DR3
|
|
val_32 = BX_CPU_THIS_PTR dr3;
|
|
break;
|
|
|
|
case 4: // DR4
|
|
case 6: // DR6
|
|
// DR4 aliased to DR6 by default. With Debug Extensions on,
|
|
// access to DR4 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ( (i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_RdDd: access to DR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
val_32 = BX_CPU_THIS_PTR dr6;
|
|
break;
|
|
|
|
case 5: // DR5
|
|
case 7: // DR7
|
|
// DR5 aliased to DR7 by default. With Debug Extensions on,
|
|
// access to DR5 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ( (i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_RdDd: access to DR5 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
val_32 = BX_CPU_THIS_PTR dr7;
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("MOV_RdDd: control register index out of range"));
|
|
val_32 = 0;
|
|
}
|
|
BX_WRITE_32BIT_REGZ(i->rm(), val_32);
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::MOV_DqRq(bxInstruction_c *i)
|
|
{
|
|
Bit64u val_64;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_DqRq: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* NOTES:
|
|
* 64bit operands always used
|
|
* r/m field specifies general register
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_DqRq(): rm field not a register!"));
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_INFO(("MOV_DqRq: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
val_64 = BX_READ_64BIT_REG(i->rm());
|
|
if (bx_dbg.dreg)
|
|
BX_INFO(("MOV_DqRq: DR[%u]=%08xh unhandled",
|
|
(unsigned) i->nnn(), (unsigned) val_64));
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // DR0
|
|
BX_CPU_THIS_PTR dr0 = val_64;
|
|
break;
|
|
case 1: // DR1
|
|
BX_CPU_THIS_PTR dr1 = val_64;
|
|
break;
|
|
case 2: // DR2
|
|
BX_CPU_THIS_PTR dr2 = val_64;
|
|
break;
|
|
case 3: // DR3
|
|
BX_CPU_THIS_PTR dr3 = val_64;
|
|
break;
|
|
|
|
case 4: // DR4
|
|
case 6: // DR6
|
|
// DR4 aliased to DR6 by default. With Debug Extensions on,
|
|
// access to DR4 causes #UD
|
|
if ( (i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_DqRq: access to DR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
// On Pentium+, bit12 is always zero
|
|
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
|
|
(val_64 & 0x0000e00f);
|
|
break;
|
|
|
|
case 5: // DR5
|
|
case 7: // DR7
|
|
// Note: 486+ ignore GE and LE flags. On the 386, exact
|
|
// data breakpoint matching does not occur unless it is enabled
|
|
// by setting the LE and/or GE flags.
|
|
|
|
// DR5 aliased to DR7 by default. With Debug Extensions on,
|
|
// access to DR5 causes #UD
|
|
if ( (i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
|
|
// Debug extensions (CR4.DE) on
|
|
BX_INFO(("MOV_DqRq: access to DR5 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
|
|
// Some sanity checks...
|
|
if ( val_64 & 0x00002000 ) {
|
|
BX_PANIC(("MOV_DqRq: GD bit not supported yet"));
|
|
// Note: processor clears GD upon entering debug exception
|
|
// handler, to allow access to the debug registers
|
|
}
|
|
if ( (((val_64>>16) & 3)==2) ||
|
|
(((val_64>>20) & 3)==2) ||
|
|
(((val_64>>24) & 3)==2) ||
|
|
(((val_64>>28) & 3)==2) )
|
|
{
|
|
// IO breakpoints (10b) are not yet supported.
|
|
BX_PANIC(("MOV_DqRq: write of %08x:%08x contains IO breakpoint",
|
|
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
|
|
}
|
|
if ( (((val_64>>18) & 3)==2) ||
|
|
(((val_64>>22) & 3)==2) ||
|
|
(((val_64>>26) & 3)==2) ||
|
|
(((val_64>>30) & 3)==2) )
|
|
{
|
|
// LEN0..3 contains undefined length specifier (10b)
|
|
BX_PANIC(("MOV_DqRq: write of %08x:%08x contains undefined LENx",
|
|
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
|
|
}
|
|
if ( ((((val_64>>16) & 3)==0) && (((val_64>>18) & 3)!=0)) ||
|
|
((((val_64>>20) & 3)==0) && (((val_64>>22) & 3)!=0)) ||
|
|
((((val_64>>24) & 3)==0) && (((val_64>>26) & 3)!=0)) ||
|
|
((((val_64>>28) & 3)==0) && (((val_64>>30) & 3)!=0)) )
|
|
{
|
|
// Instruction breakpoint with LENx not 00b (1-byte length)
|
|
BX_PANIC(("MOV_DqRq: write of %08x:%08x , R/W=00b LEN!=00b",
|
|
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
|
|
}
|
|
|
|
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
|
|
// Even bits 11,10 are changeable though reserved.
|
|
BX_CPU_THIS_PTR dr7 = (val_64 & 0xffff2fff) | 0x00000400;
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("MOV_DqRq: control register index out of range"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::MOV_RqDq(bxInstruction_c *i)
|
|
{
|
|
Bit64u val_64;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_RqDq: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_RqDq(): rm field not a register!"));
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && (CPL!=0)) {
|
|
BX_INFO(("MOV_RqDq: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
if (bx_dbg.dreg)
|
|
BX_INFO(("MOV_RqDq: DR%u not implemented yet", i->nnn()));
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // DR0
|
|
val_64 = BX_CPU_THIS_PTR dr0;
|
|
break;
|
|
case 1: // DR1
|
|
val_64 = BX_CPU_THIS_PTR dr1;
|
|
break;
|
|
case 2: // DR2
|
|
val_64 = BX_CPU_THIS_PTR dr2;
|
|
break;
|
|
case 3: // DR3
|
|
val_64 = BX_CPU_THIS_PTR dr3;
|
|
break;
|
|
|
|
case 4: // DR4
|
|
case 6: // DR6
|
|
// DR4 aliased to DR6 by default. With Debug Extensions on,
|
|
// access to DR4 causes #UD
|
|
if ( (i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_RqDq: access to DR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
val_64 = BX_CPU_THIS_PTR dr6;
|
|
break;
|
|
|
|
case 5: // DR5
|
|
case 7: // DR7
|
|
// DR5 aliased to DR7 by default. With Debug Extensions on,
|
|
// access to DR5 causes #UD
|
|
if ( (i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_RqDq: access to DR5 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
val_64 = BX_CPU_THIS_PTR dr7;
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("MOV_RqDq: control register index out of range"));
|
|
val_64 = 0;
|
|
}
|
|
BX_WRITE_64BIT_REG(i->rm(), val_64);
|
|
}
|
|
#endif // #if BX_SUPPORT_X86_64
|
|
|
|
void BX_CPU_C::LMSW_Ew(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("LMSW_Ew(): not supported on 8086!"));
|
|
#else
|
|
Bit16u msw;
|
|
Bit32u cr0;
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
if (protected_mode() || v8086_mode()) {
|
|
if (CPL != 0) {
|
|
BX_INFO(("LMSW: CPL != 0, CPL=%u", (unsigned) CPL));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
}
|
|
|
|
if (i->modC0()) {
|
|
msw = BX_READ_16BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
read_virtual_word(i->seg(), RMAddr(i), &msw);
|
|
}
|
|
|
|
// LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE
|
|
|
|
// LMSW cannot clear PE
|
|
if (BX_CPU_THIS_PTR cr0.pe)
|
|
msw |= 0x0001; // adjust PE bit to current value of 1
|
|
|
|
msw &= 0x000f; // LMSW only affects last 4 flags
|
|
cr0 = (BX_CPU_THIS_PTR cr0.val32 & 0xfffffff0) | msw;
|
|
SetCR0(cr0);
|
|
#endif /* BX_CPU_LEVEL < 2 */
|
|
}
|
|
|
|
void BX_CPU_C::SMSW_Ew(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("SMSW_Ew: not supported yet!"));
|
|
#else
|
|
Bit16u msw;
|
|
|
|
#if BX_CPU_LEVEL == 2
|
|
msw = 0xfff0; /* 80286 init value */
|
|
msw |= (BX_CPU_THIS_PTR cr0.ts << 3) |
|
|
(BX_CPU_THIS_PTR cr0.em << 2) |
|
|
(BX_CPU_THIS_PTR cr0.mp << 1) |
|
|
(BX_CPU_THIS_PTR cr0.pe);
|
|
#else /* 386+ */
|
|
msw = BX_CPU_THIS_PTR cr0.val32 & 0xffff;
|
|
#endif
|
|
|
|
if (i->modC0()) {
|
|
if (i->os32L()) {
|
|
BX_WRITE_32BIT_REGZ(i->rm(), msw); // zeros out high 16bits
|
|
}
|
|
else {
|
|
BX_WRITE_16BIT_REG(i->rm(), msw);
|
|
}
|
|
}
|
|
else {
|
|
write_virtual_word(i->seg(), RMAddr(i), &msw);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::MOV_CdRd(bxInstruction_c *i)
|
|
{
|
|
// mov general register data to control register
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_CdRd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_CdRd: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* NOTES:
|
|
* 32bit operands always used
|
|
* r/m field specifies general register
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_CdRd(): rm field not a register!"));
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_INFO(("MOV_CdRd: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
val_32 = BX_READ_32BIT_REG(i->rm());
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // CR0 (MSW)
|
|
// BX_INFO(("MOV_CdRd:CR0: R32 = %08x @CS:EIP %04x:%04x ",
|
|
// (unsigned) val_32,
|
|
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
// (unsigned) EIP));
|
|
SetCR0(val_32);
|
|
break;
|
|
|
|
case 1: /* CR1 */
|
|
BX_PANIC(("MOV_CdRd: CR1 not implemented yet"));
|
|
break;
|
|
case 2: /* CR2 */
|
|
BX_DEBUG(("MOV_CdRd: CR2 not implemented yet"));
|
|
BX_DEBUG(("MOV_CdRd: CR2 = reg"));
|
|
BX_CPU_THIS_PTR cr2 = val_32;
|
|
break;
|
|
case 3: // CR3
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_CdRd:CR3 = %08x", (unsigned) val_32));
|
|
// Reserved bits take on value of MOV instruction
|
|
CR3_change(val_32);
|
|
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR3, val_32);
|
|
// Reload of CR3 always serializes.
|
|
// invalidate_prefetch_q(); // Already done.
|
|
break;
|
|
case 4: // CR4
|
|
#if BX_CPU_LEVEL == 3
|
|
BX_PANIC(("MOV_CdRd: write to CR4 of 0x%08x on 386", val_32));
|
|
UndefinedOpcode(i);
|
|
#else
|
|
// Protected mode: #GP(0) if attempt to write a 1 to
|
|
// any reserved bit of CR4
|
|
SetCR4(val_32);
|
|
#endif
|
|
break;
|
|
default:
|
|
BX_PANIC(("MOV_CdRd: control register index out of range"));
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::MOV_RdCd(bxInstruction_c *i)
|
|
{
|
|
// mov control register data to register
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_RdCd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_RdCd: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* NOTES:
|
|
* 32bit operands always used
|
|
* r/m field specifies general register
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_RdCd(): rm field not a register!"));
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_INFO(("MOV_RdCd: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // CR0 (MSW)
|
|
val_32 = BX_CPU_THIS_PTR cr0.val32;
|
|
#if 0
|
|
BX_INFO(("MOV_RdCd:CR0: R32 = %08x @CS:EIP %04x:%04x",
|
|
(unsigned) val_32,
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
(unsigned) EIP));
|
|
#endif
|
|
break;
|
|
case 1: /* CR1 */
|
|
BX_PANIC(("MOV_RdCd: CR1 not implemented yet"));
|
|
val_32 = 0;
|
|
break;
|
|
case 2: /* CR2 */
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_RdCd: CR2"));
|
|
val_32 = BX_CPU_THIS_PTR cr2;
|
|
break;
|
|
case 3: // CR3
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_RdCd: reading CR3"));
|
|
val_32 = BX_CPU_THIS_PTR cr3;
|
|
break;
|
|
case 4: // CR4
|
|
#if BX_CPU_LEVEL == 3
|
|
val_32 = 0;
|
|
BX_INFO(("MOV_RdCd: read of CR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
#else
|
|
BX_INFO(("MOV_RdCd: read of CR4"));
|
|
val_32 = BX_CPU_THIS_PTR cr4.getRegister();
|
|
#endif
|
|
break;
|
|
default:
|
|
BX_PANIC(("MOV_RdCd: control register index out of range"));
|
|
val_32 = 0;
|
|
}
|
|
BX_WRITE_32BIT_REGZ(i->rm(), val_32);
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::MOV_CqRq(bxInstruction_c *i)
|
|
{
|
|
// mov general register data to control register
|
|
Bit64u val_64;
|
|
|
|
if (v8086_mode())
|
|
{
|
|
BX_INFO(("MOV_CqRq: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* NOTES:
|
|
* 64bit operands always used
|
|
* r/m field specifies general register
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_CqRq(): rm field not a register!"));
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_INFO(("MOV_CqRq: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
val_64 = BX_READ_64BIT_REG(i->rm());
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // CR0 (MSW)
|
|
// BX_INFO(("MOV_CqRq:CR0: R64 = %08x @CS:EIP %04x:%04x ",
|
|
// (unsigned) val_64,
|
|
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
// (unsigned) EIP));
|
|
SetCR0(val_64);
|
|
break;
|
|
case 1: /* CR1 */
|
|
BX_PANIC(("MOV_CqRq: CR1 not implemented yet"));
|
|
break;
|
|
case 2: /* CR2 */
|
|
BX_DEBUG(("MOV_CqRq: CR2 not implemented yet"));
|
|
BX_DEBUG(("MOV_CqRq: CR2 = reg"));
|
|
BX_CPU_THIS_PTR cr2 = val_64;
|
|
break;
|
|
case 3: // CR3
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_CqRq:CR3 = %08x", (unsigned) val_64));
|
|
// Reserved bits take on value of MOV instruction
|
|
CR3_change(val_64);
|
|
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR3, val_64);
|
|
break;
|
|
case 4: // CR4
|
|
// Protected mode: #GP(0) if attempt to write a 1 to
|
|
// any reserved bit of CR4
|
|
|
|
BX_INFO(("MOV_CqRq: write to CR4 of %08x:%08x",
|
|
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
|
|
|
|
SetCR4(val_64);
|
|
break;
|
|
#if BX_SUPPORT_APIC
|
|
case 7: // CR8
|
|
// CR8 is aliased to APIC->TASK PRIORITY register
|
|
// APIC.TPR[7:4] = CR8[3:0]
|
|
// APIC.TPR[3:0] = 0
|
|
// Reads of CR8 return zero extended APIC.TPR[7:4]
|
|
// Write to CR8 update APIC.TPR[7:4]
|
|
BX_CPU_THIS_PTR local_apic.set_tpr((val_64 & 0xF) << 0x4);
|
|
break;
|
|
#endif
|
|
default:
|
|
BX_PANIC(("MOV_CqRq: control register index out of range"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::MOV_RqCq(bxInstruction_c *i)
|
|
{
|
|
// mov control register data to register
|
|
Bit64u val_64;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_RqCq: v8086 mode causes #GP(0)"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
/* NOTES:
|
|
* 64bit operands always used
|
|
* r/m field specifies general register
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
/* This instruction is always treated as a register-to-register,
|
|
* regardless of the encoding of the MOD field in the MODRM byte.
|
|
*/
|
|
if (!i->modC0())
|
|
BX_INFO(("MOV_RqCq(): rm field not a register!"));
|
|
|
|
/* #GP(0) if CPL is not 0 */
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_INFO(("MOV_RqCq: #GP(0) if CPL is not 0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
switch (i->nnn()) {
|
|
case 0: // CR0 (MSW)
|
|
val_64 = BX_CPU_THIS_PTR cr0.val32;
|
|
#if 0
|
|
BX_INFO(("MOV_RqCq:CR0: R64 = %08x @CS:EIP %04x:%04x",
|
|
(unsigned) val_64,
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
(unsigned) EIP));
|
|
#endif
|
|
break;
|
|
case 1: /* CR1 */
|
|
BX_PANIC(("MOV_RqCq: CR1 not implemented yet"));
|
|
val_64 = 0;
|
|
break;
|
|
case 2: /* CR2 */
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_RqCq: CR2"));
|
|
val_64 = BX_CPU_THIS_PTR cr2;
|
|
break;
|
|
case 3: // CR3
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_RqCq: reading CR3"));
|
|
val_64 = BX_CPU_THIS_PTR cr3;
|
|
break;
|
|
case 4: // CR4
|
|
BX_INFO(("MOV_RqCq: read of CR4"));
|
|
val_64 = BX_CPU_THIS_PTR cr4.getRegister();
|
|
break;
|
|
#if BX_SUPPORT_APIC
|
|
case 7: // CR8
|
|
// CR8 is aliased to APIC->TASK PRIORITY register
|
|
// APIC.TPR[7:4] = CR8[3:0]
|
|
// APIC.TPR[3:0] = 0
|
|
// Reads of CR8 return zero extended APIC.TPR[7:4]
|
|
// Write to CR8 update APIC.TPR[7:4]
|
|
val_64 = (BX_CPU_THIS_PTR local_apic.get_tpr() & 0xF) >> 4;
|
|
break;
|
|
#endif
|
|
default:
|
|
BX_PANIC(("MOV_RqCq: control register index out of range"));
|
|
val_64 = 0;
|
|
}
|
|
|
|
BX_WRITE_64BIT_REG(i->rm(), val_64);
|
|
}
|
|
#endif // #if BX_SUPPORT_X86_64
|
|
|
|
void BX_CPU_C::MOV_TdRd(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL <= 4
|
|
BX_PANIC(("MOV_TdRd: Still not implemented"));
|
|
#else
|
|
// Pentium+ does not have TRx. They were redesigned using the MSRs.
|
|
BX_INFO(("MOV_TdRd: causes #UD"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::MOV_RdTd(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL <= 4
|
|
BX_PANIC(("MOV_RdTd: Still not implemented"));
|
|
#else
|
|
// Pentium+ does not have TRx. They were redesigned using the MSRs.
|
|
BX_INFO(("MOV_RdTd: causes #UD"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
#if BX_CPU_LEVEL == 2
|
|
void BX_CPU_C::LOADALL(bxInstruction_c *i)
|
|
{
|
|
Bit16u msw, tr, flags, ip, ldtr;
|
|
Bit16u ds_raw, ss_raw, cs_raw, es_raw;
|
|
Bit16u di, si, bp, sp, bx, dx, cx, ax;
|
|
Bit16u base_15_0, limit;
|
|
Bit8u base_23_16, access;
|
|
|
|
if (v8086_mode()) BX_PANIC(("proc_ctrl: LOADALL in v8086 mode unsupported"));
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe)
|
|
{
|
|
BX_PANIC(("LOADALL not yet supported for protected mode"));
|
|
}
|
|
|
|
BX_PANIC(("LOADALL: handle CR0.val32"));
|
|
/* MSW */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x806, 2, &msw);
|
|
BX_CPU_THIS_PTR cr0.pe = (msw & 0x01); msw >>= 1;
|
|
BX_CPU_THIS_PTR cr0.mp = (msw & 0x01); msw >>= 1;
|
|
BX_CPU_THIS_PTR cr0.em = (msw & 0x01); msw >>= 1;
|
|
BX_CPU_THIS_PTR cr0.ts = (msw & 0x01);
|
|
|
|
//BX_INFO(("LOADALL: pe=%u, mp=%u, em=%u, ts=%u",
|
|
// (unsigned) BX_CPU_THIS_PTR cr0.pe, (unsigned) BX_CPU_THIS_PTR cr0.mp,
|
|
// (unsigned) BX_CPU_THIS_PTR cr0.em, (unsigned) BX_CPU_THIS_PTR cr0.ts));
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe || BX_CPU_THIS_PTR cr0.mp || BX_CPU_THIS_PTR cr0.em || BX_CPU_THIS_PTR cr0.ts)
|
|
BX_PANIC(("LOADALL set PE, MP, EM or TS bits in MSW!"));
|
|
|
|
/* TR */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x816, 2, &tr);
|
|
BX_CPU_THIS_PTR tr.selector.value = tr;
|
|
BX_CPU_THIS_PTR tr.selector.rpl = (tr & 0x03); tr >>= 2;
|
|
BX_CPU_THIS_PTR tr.selector.ti = (tr & 0x01); tr >>= 1;
|
|
BX_CPU_THIS_PTR tr.selector.index = tr;
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x860, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x862, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x863, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x864, 2, &limit);
|
|
|
|
BX_CPU_THIS_PTR tr.cache.valid =
|
|
BX_CPU_THIS_PTR tr.cache.p = (access & 0x80) >> 7;
|
|
BX_CPU_THIS_PTR tr.cache.dpl = (access & 0x60) >> 5;
|
|
BX_CPU_THIS_PTR tr.cache.segment = (access & 0x10) >> 4;
|
|
// don't allow busy bit in tr.cache.type, so bit 2 is masked away too.
|
|
BX_CPU_THIS_PTR tr.cache.type = (access & 0x0d);
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = limit;
|
|
|
|
if ((BX_CPU_THIS_PTR tr.selector.value & 0xfffc) == 0) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR tr.cache.valid == 0) {
|
|
}
|
|
if (BX_CPU_THIS_PTR tr.cache.u.tss286.limit < 43) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR tr.cache.type != 1) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR tr.cache.segment) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR tr.cache.valid==0)
|
|
{
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.base = 0;
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = 0;
|
|
BX_CPU_THIS_PTR tr.cache.p = 0;
|
|
BX_CPU_THIS_PTR tr.selector.value = 0;
|
|
BX_CPU_THIS_PTR tr.selector.index = 0;
|
|
BX_CPU_THIS_PTR tr.selector.ti = 0;
|
|
BX_CPU_THIS_PTR tr.selector.rpl = 0;
|
|
}
|
|
|
|
/* FLAGS */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x818, 2, &flags);
|
|
write_flags(flags, 1, 1);
|
|
|
|
/* IP */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x81a, 2, &ip);
|
|
IP = ip;
|
|
|
|
/* LDTR */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x81c, 2, &ldtr);
|
|
BX_CPU_THIS_PTR ldtr.selector.value = ldtr;
|
|
BX_CPU_THIS_PTR ldtr.selector.rpl = (ldtr & 0x03); ldtr >>= 2;
|
|
BX_CPU_THIS_PTR ldtr.selector.ti = (ldtr & 0x01); ldtr >>= 1;
|
|
BX_CPU_THIS_PTR ldtr.selector.index = ldtr;
|
|
if ((BX_CPU_THIS_PTR ldtr.selector.value & 0xfffc) == 0)
|
|
{
|
|
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.p = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.segment = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.type = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
|
|
BX_CPU_THIS_PTR ldtr.selector.value = 0;
|
|
BX_CPU_THIS_PTR ldtr.selector.index = 0;
|
|
BX_CPU_THIS_PTR ldtr.selector.ti = 0;
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x854, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x856, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x857, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x858, 2, &limit);
|
|
BX_CPU_THIS_PTR ldtr.cache.valid =
|
|
BX_CPU_THIS_PTR ldtr.cache.p = access >> 7;
|
|
BX_CPU_THIS_PTR ldtr.cache.dpl = (access >> 5) & 0x03;
|
|
BX_CPU_THIS_PTR ldtr.cache.segment = (access >> 4) & 0x01;
|
|
BX_CPU_THIS_PTR ldtr.cache.type = (access & 0x0f);
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = limit;
|
|
|
|
if (access == 0) {
|
|
BX_PANIC(("loadall: LDTR case access byte=0."));
|
|
}
|
|
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
|
|
BX_PANIC(("loadall: ldtr.valid=0"));
|
|
}
|
|
if (BX_CPU_THIS_PTR ldtr.cache.segment) { /* not a system segment */
|
|
BX_INFO((" AR byte = %02x", (unsigned) access));
|
|
BX_PANIC(("loadall: LDTR descriptor cache loaded with non system segment"));
|
|
}
|
|
if (BX_CPU_THIS_PTR ldtr.cache.type != 2) {
|
|
BX_PANIC(("loadall: LDTR.type(%u) != 2", (unsigned) (access & 0x0f)));
|
|
}
|
|
}
|
|
|
|
/* DS */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x81e, 2, &ds_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = ds_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = (ds_raw & 0x03); ds_raw >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (ds_raw & 0x01); ds_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = ds_raw;
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x848, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84a, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84b, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84c, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid =
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (access & 0x01);
|
|
|
|
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment==0)
|
|
{
|
|
BX_PANIC(("loadall: DS invalid"));
|
|
}
|
|
|
|
/* SS */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x820, 2, &ss_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = ss_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = (ss_raw & 0x03); ss_raw >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (ss_raw & 0x01); ss_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = ss_raw;
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x842, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x844, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x845, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x846, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (access & 0x01);
|
|
|
|
if ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment==0)
|
|
{
|
|
BX_PANIC(("loadall: SS invalid"));
|
|
}
|
|
|
|
/* CS */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x822, 2, &cs_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cs_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = (cs_raw & 0x03); cs_raw >>= 2;
|
|
|
|
//BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
|
|
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
|
|
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cs_raw & 0x01); cs_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cs_raw;
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83c, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83e, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83f, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x840, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (access & 0x01);
|
|
|
|
if ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value & 0xfffc) == 0)
|
|
{
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment==0)
|
|
{
|
|
BX_PANIC(("loadall: CS invalid"));
|
|
}
|
|
|
|
/* ES */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x824, 2, &es_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = es_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = (es_raw & 0x03); es_raw >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (es_raw & 0x01); es_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = es_raw;
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x836, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x838, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x839, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83a, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (access & 0x01);
|
|
|
|
#if 0
|
|
BX_INFO(("cs.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl));
|
|
BX_INFO(("ss.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl));
|
|
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].dpl = %02x", (unsigned) BX_CPU_THIS_PTR ds.cache.dpl));
|
|
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].dpl = %02x", (unsigned) BX_CPU_THIS_PTR es.cache.dpl));
|
|
BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
|
|
BX_INFO(("LOADALL: setting ss.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl));
|
|
BX_INFO(("LOADALL: setting ds.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl));
|
|
BX_INFO(("LOADALL: setting es.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl));
|
|
#endif
|
|
|
|
if ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value & 0xfffc) == 0)
|
|
{
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment==0)
|
|
{
|
|
BX_PANIC(("loadall: ES invalid"));
|
|
}
|
|
|
|
/* DI */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x826, 2, &di);
|
|
DI = di;
|
|
|
|
/* SI */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x828, 2, &si);
|
|
SI = si;
|
|
|
|
/* BP */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x82a, 2, &bp);
|
|
BP = bp;
|
|
|
|
/* SP */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x82c, 2, &sp);
|
|
SP = sp;
|
|
|
|
/* BX */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x82e, 2, &bx);
|
|
BX = bx;
|
|
|
|
/* DX */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x830, 2, &dx);
|
|
DX = dx;
|
|
|
|
/* CX */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x832, 2, &cx);
|
|
CX = cx;
|
|
|
|
/* AX */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x834, 2, &ax);
|
|
AX = ax;
|
|
|
|
/* GDTR */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84e, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x850, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x851, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x852, 2, &limit);
|
|
BX_CPU_THIS_PTR gdtr.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR gdtr.limit = limit;
|
|
|
|
#if 0
|
|
if (access)
|
|
BX_INFO(("LOADALL: GDTR access bits not 0 (%02x).",
|
|
(unsigned) access));
|
|
#endif
|
|
|
|
/* IDTR */
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85a, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85c, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85d, 1, &access);
|
|
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85e, 2, &limit);
|
|
BX_CPU_THIS_PTR idtr.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR idtr.limit = limit;
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::SetCR0(Bit32u val_32)
|
|
{
|
|
bx_bool pe = val_32 & 0x01;
|
|
bx_bool nw = (val_32 >> 29) & 0x01;
|
|
bx_bool cd = (val_32 >> 30) & 0x01;
|
|
bx_bool pg = (val_32 >> 31) & 0x01;
|
|
|
|
if (pg && !pe) {
|
|
BX_INFO(("SetCR0: GP(0) when attempt to set CR0.PG with CR0.PE cleared !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
if (nw && !cd) {
|
|
BX_INFO(("SetCR0: GP(0) when attempt to set CR0.NW with CR0.CD cleared !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
// from either MOV_CdRd() or debug functions
|
|
// protection checks made already or forcing from debug
|
|
Bit32u oldCR0 = BX_CPU_THIS_PTR cr0.val32, newCR0;
|
|
|
|
bx_bool prev_pe = BX_CPU_THIS_PTR cr0.pe;
|
|
#if BX_SUPPORT_X86_64
|
|
bx_bool prev_pg = BX_CPU_THIS_PTR cr0.pg;
|
|
#endif
|
|
|
|
BX_CPU_THIS_PTR cr0.pe = pe;
|
|
BX_CPU_THIS_PTR cr0.mp = (val_32 >> 1) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.em = (val_32 >> 2) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.ts = (val_32 >> 3) & 0x01;
|
|
// cr0.et is hardwired to 1
|
|
#if BX_CPU_LEVEL >= 4
|
|
BX_CPU_THIS_PTR cr0.ne = (val_32 >> 5) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.wp = (val_32 >> 16) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.am = (val_32 >> 18) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.nw = nw;
|
|
BX_CPU_THIS_PTR cr0.cd = cd;
|
|
#endif
|
|
BX_CPU_THIS_PTR cr0.pg = pg;
|
|
|
|
// handle reserved bits behaviour
|
|
#if BX_CPU_LEVEL == 3
|
|
newCR0 = val_32 | 0x7ffffff0;
|
|
#elif BX_CPU_LEVEL == 4
|
|
newCR0 = (val_32 | 0x00000010) & 0xe005003f;
|
|
#elif BX_CPU_LEVEL == 5
|
|
newCR0 = val_32 | 0x00000010;
|
|
#elif BX_CPU_LEVEL == 6
|
|
newCR0 = (val_32 | 0x00000010) & 0xe005003f;
|
|
#else
|
|
#error "MOV_CdRd: implement reserved bits behaviour for this CPU_LEVEL"
|
|
#endif
|
|
BX_CPU_THIS_PTR cr0.val32 = newCR0;
|
|
|
|
//if (BX_CPU_THIS_PTR cr0.ts)
|
|
// BX_INFO(("MOV_CdRd:CR0.TS set 0x%x", (unsigned) val_32));
|
|
|
|
if (prev_pe==0 && BX_CPU_THIS_PTR cr0.pe) {
|
|
enter_protected_mode();
|
|
if (BX_CPU_THIS_PTR get_VM()) BX_PANIC(("EFLAGS.VM=1, enter_PM"));
|
|
BX_CPU_THIS_PTR protectedMode = 1;
|
|
BX_CPU_THIS_PTR v8086Mode = 0;
|
|
BX_CPU_THIS_PTR realMode = 0;
|
|
}
|
|
else if (prev_pe==1 && BX_CPU_THIS_PTR cr0.pe==0) {
|
|
enter_real_mode();
|
|
BX_CPU_THIS_PTR protectedMode = 0;
|
|
BX_CPU_THIS_PTR v8086Mode = 0;
|
|
BX_CPU_THIS_PTR realMode = 1;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (prev_pg==0 && BX_CPU_THIS_PTR cr0.pg) {
|
|
if (BX_CPU_THIS_PTR msr.lme) {
|
|
if (!BX_CPU_THIS_PTR cr4.get_PAE()) {
|
|
BX_PANIC(("SetCR0: attempt to enter x86-64 LONG mode without enabling CR4.PAE !!!"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
BX_CPU_THIS_PTR msr.lma = 1;
|
|
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_COMPAT;
|
|
#if BX_EXTERNAL_DEBUGGER
|
|
//trap_debugger(0);
|
|
#endif
|
|
}
|
|
}
|
|
else if (prev_pg==1 && BX_CPU_THIS_PTR cr0.pg==0) {
|
|
if (BX_CPU_THIS_PTR msr.lma) {
|
|
if (BX_CPU_THIS_PTR dword.rip_upper != 0) {
|
|
BX_PANIC(("SetCR0: attempt to leave x86-64 LONG mode with RIP upper != 0 !!!"));
|
|
}
|
|
BX_CPU_THIS_PTR msr.lma = 0;
|
|
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32;
|
|
#if BX_EXTERNAL_DEBUGGER
|
|
//trap_debugger(0);
|
|
#endif
|
|
}
|
|
}
|
|
#endif // #if BX_SUPPORT_X86_64
|
|
|
|
// Give the paging unit a chance to look for changes in bits
|
|
// it cares about, like {PG,PE}, so it can flush cache entries etc.
|
|
pagingCR0Changed(oldCR0, newCR0);
|
|
}
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
void BX_CPU_C::SetCR4(Bit32u val_32)
|
|
{
|
|
Bit32u oldCR4 = BX_CPU_THIS_PTR cr4.getRegister();
|
|
Bit32u allowMask = 0;
|
|
|
|
// CR4 bit definitions from AMD Hammer manual:
|
|
// [63-11] Reserved, Must be Zero
|
|
// [10] OSXMMEXCPT: Operating System Unmasked Exception Support R/W
|
|
// [9] OSFXSR: Operating System FXSAVE/FXRSTOR Support R/W
|
|
// [8] PCE: Performance-Monitoring Counter Enable R/W
|
|
// [7] PGE: Page-Global Enable R/W
|
|
// [6] MCE: Machine Check Enable R/W
|
|
// [5] PAE: Physical-Address Extension R/W
|
|
// [4] PSE: Page Size Extensions R/W
|
|
// [3] DE: Debugging Extensions R/W
|
|
// [2] TSD: Time Stamp Disable R/W
|
|
// [1] PVI: Protected-Mode Virtual Interrupts R/W
|
|
// [0] VME: Virtual-8086 Mode Extensions R/W
|
|
|
|
#if BX_CPU_LEVEL >= 5
|
|
allowMask |= (1<<2); /* TSD */
|
|
#endif
|
|
|
|
allowMask |= (1<<3); /* DE */
|
|
|
|
#if BX_SUPPORT_4MEG_PAGES
|
|
allowMask |= (1<<4);
|
|
#endif
|
|
|
|
#if BX_SupportPAE
|
|
allowMask |= (1<<5);
|
|
#endif
|
|
|
|
#if BX_CPU_LEVEL >= 5
|
|
// NOTE: exception 18 never appears in Bochs
|
|
allowMask |= (1<<6); /* MCE */
|
|
#endif
|
|
|
|
#if BX_SupportGlobalPages
|
|
allowMask |= (1<<7);
|
|
#endif
|
|
|
|
#if BX_CPU_LEVEL >= 6
|
|
allowMask |= (1<<9); /* OSFXSR */
|
|
#endif
|
|
|
|
#if BX_SUPPORT_SSE
|
|
allowMask |= (1<<10); /* OSXMMECPT */
|
|
#endif
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
// need to GPF #0 if LME=1 and PAE=0
|
|
if ((BX_CPU_THIS_PTR msr.lme)
|
|
&& (!(val_32 >> 5) & 1)
|
|
&& (BX_CPU_THIS_PTR cr4.get_PAE()))
|
|
{
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
// Need to GPF if trying to set undefined bits.
|
|
if (val_32 & ~allowMask) {
|
|
BX_INFO(("#GP(0): SetCR4: Write of 0x%08x not supported (allowMask=0x%x)",
|
|
val_32, allowMask));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
val_32 &= allowMask; // Screen out unsupported bits. (not needed, for good measure)
|
|
BX_CPU_THIS_PTR cr4.setRegister(val_32);
|
|
pagingCR4Changed(oldCR4, BX_CPU_THIS_PTR cr4.getRegister());
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::RSM(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 4
|
|
invalidate_prefetch_q();
|
|
|
|
/* If we are not in System Management Mode, then
|
|
* #UD should be generated.
|
|
*
|
|
* Bochs has no SMM.
|
|
*/
|
|
|
|
BX_INFO(("RSM: System Management Mode not implemented yet"));
|
|
#endif
|
|
|
|
UndefinedOpcode(i);
|
|
}
|
|
|
|
void BX_CPU_C::RDPMC(bxInstruction_c *i)
|
|
{
|
|
/* We need to be Pentium with MMX or later */
|
|
#if ((BX_CPU_LEVEL >= 6) || (BX_SUPPORT_MMX && BX_CPU_LEVEL == 5))
|
|
bx_bool pce = BX_CPU_THIS_PTR cr4.get_PCE();
|
|
|
|
if ((pce==1) || (CPL==0) || real_mode())
|
|
{
|
|
/* According to manual, Pentium 4 has 18 counters,
|
|
* previous versions have two. And the P4 also can do
|
|
* short read-out (EDX always 0). Otherwise it is
|
|
* limited to 40 bits.
|
|
*/
|
|
|
|
#if (BX_CPU_LEVEL == 6 && BX_SUPPORT_SSE >= 2) // Pentium 4 processor (see cpuid.cc)
|
|
if ((ECX & 0x7fffffff) >= 18)
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
#else //
|
|
if ((ECX & 0xffffffff) >= 2)
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
#endif
|
|
// Most counters are for hardware specific details, which
|
|
// we anyhow do not emulate (like pipeline stalls etc)
|
|
|
|
// Could be interesting to count number of memory reads,
|
|
// writes. Misaligned etc... But to monitor bochs, this
|
|
// is easier done from the host.
|
|
|
|
EAX = 0;
|
|
EDX = 0; // if P4 and ECX & 0x10000000, then always 0 (short read 32 bits)
|
|
|
|
BX_ERROR(("RDPMC: Performance Counters Support not reasonably implemented yet"));
|
|
} else {
|
|
// not allowed to use RDPMC!
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::RDTSC(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 5
|
|
bx_bool tsd = BX_CPU_THIS_PTR cr4.get_TSD();
|
|
if ((tsd==0) || (tsd==1 && CPL==0)) {
|
|
// return ticks
|
|
Bit64u ticks = bx_pc_system.time_ticks ();
|
|
RAX = (Bit32u) (ticks & 0xffffffff);
|
|
RDX = (Bit32u) ((ticks >> 32) & 0xffffffff);
|
|
//BX_INFO(("RDTSC: returning EDX:EAX = %08x:%08x", EDX, EAX));
|
|
} else {
|
|
// not allowed to use RDTSC!
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
#else
|
|
BX_INFO(("RDTSC: Pentium CPU required"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::RDMSR(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 5
|
|
invalidate_prefetch_q();
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("RDMSR: Invalid in virtual 8086 mode"));
|
|
goto do_exception;
|
|
}
|
|
|
|
if (CPL!= 0) {
|
|
BX_INFO(("RDMSR: CPL != 0"));
|
|
goto do_exception;
|
|
}
|
|
|
|
/* We have the requested MSR register in ECX */
|
|
switch(ECX) {
|
|
|
|
#if BX_SUPPORT_SEP
|
|
case BX_MSR_SYSENTER_CS: { EAX = BX_CPU_THIS_PTR sysenter_cs_msr; EDX = 0; return; }
|
|
case BX_MSR_SYSENTER_ESP: { EAX = BX_CPU_THIS_PTR sysenter_esp_msr; EDX = 0; return; }
|
|
case BX_MSR_SYSENTER_EIP: { EAX = BX_CPU_THIS_PTR sysenter_eip_msr; EDX = 0; return; }
|
|
#endif
|
|
|
|
#if BX_CPU_LEVEL == 5
|
|
/* The following registers are defined for Pentium only */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
/* TODO */
|
|
return;
|
|
|
|
case BX_MSR_TSC:
|
|
RDTSC(i);
|
|
return;
|
|
|
|
case BX_MSR_CESR:
|
|
/* TODO */
|
|
return;
|
|
#else
|
|
/* These are noops on i686... */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
/* do nothing */
|
|
return;
|
|
|
|
case BX_MSR_TSC:
|
|
RDTSC(i);
|
|
return;
|
|
|
|
/* ... And these cause an exception on i686 */
|
|
case BX_MSR_CESR:
|
|
case BX_MSR_CTR0:
|
|
case BX_MSR_CTR1:
|
|
goto do_exception;
|
|
#endif /* BX_CPU_LEVEL == 5 */
|
|
|
|
/* MSR_APICBASE
|
|
0:7 Reserved
|
|
8 This is set if its the BSP
|
|
9:10 Reserved
|
|
11 APIC Global Enable bit (1=enabled 0=disabled)
|
|
12:35 APIC Base Address
|
|
36:63 Reserved
|
|
*/
|
|
case BX_MSR_APICBASE:
|
|
/* we return low 32 bits in EAX, and high in EDX */
|
|
RAX = Bit32u(BX_CPU_THIS_PTR msr.apicbase & 0xffffffff);
|
|
RDX = Bit32u(BX_CPU_THIS_PTR msr.apicbase >> 32);
|
|
BX_INFO(("RDMSR: Read %08x:%08x from MSR_APICBASE", EDX, EAX));
|
|
return;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
case BX_MSR_EFER:
|
|
RAX = (BX_CPU_THIS_PTR msr.sce << 0)
|
|
| (BX_CPU_THIS_PTR msr.lme << 8)
|
|
| (BX_CPU_THIS_PTR msr.lma << 10);
|
|
RDX = 0;
|
|
return;
|
|
|
|
case BX_MSR_STAR:
|
|
RAX = MSR_STAR;
|
|
RDX = MSR_STAR >> 32;
|
|
return;
|
|
|
|
case BX_MSR_LSTAR:
|
|
RAX = MSR_LSTAR;
|
|
RDX = MSR_LSTAR >> 32;
|
|
return;
|
|
|
|
case BX_MSR_CSTAR:
|
|
RAX = MSR_CSTAR;
|
|
RDX = MSR_CSTAR >> 32;
|
|
return;
|
|
|
|
case BX_MSR_FMASK:
|
|
RAX = MSR_FMASK;
|
|
RDX = MSR_FMASK >> 32;
|
|
return;
|
|
|
|
case BX_MSR_FSBASE:
|
|
RAX = MSR_FSBASE;
|
|
RDX = MSR_FSBASE >> 32;
|
|
return;
|
|
|
|
case BX_MSR_GSBASE:
|
|
RAX = MSR_GSBASE;
|
|
RDX = MSR_GSBASE >> 32;
|
|
return;
|
|
|
|
case BX_MSR_KERNELGSBASE:
|
|
RAX = MSR_KERNELGSBASE;
|
|
RDX = MSR_KERNELGSBASE >> 32;
|
|
return;
|
|
#endif // #if BX_SUPPORT_X86_64
|
|
|
|
default:
|
|
BX_ERROR(("RDMSR: Unknown register %#x", ECX));
|
|
#if BX_IGNORE_BAD_MSR
|
|
RAX = 0;
|
|
RDX = 0;
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
do_exception:
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
|
|
#else /* BX_CPU_LEVEL >= 5 */
|
|
BX_INFO(("RDMSR: Pentium CPU required"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::WRMSR(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 5
|
|
invalidate_prefetch_q();
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("WRMSR: Invalid in virtual 8086 mode"));
|
|
goto do_exception;
|
|
}
|
|
|
|
if (CPL!= 0) {
|
|
BX_INFO(("WDMSR: CPL != 0"));
|
|
goto do_exception;
|
|
}
|
|
|
|
/* ECX has the MSR to write to */
|
|
switch(ECX) {
|
|
|
|
#if BX_SUPPORT_SEP
|
|
case BX_MSR_SYSENTER_CS: {
|
|
if (EAX & 3) BX_PANIC (("writing sysenter_cs_msr with non-kernel mode selector %X", EAX)); // not a bug according to book
|
|
BX_CPU_THIS_PTR sysenter_cs_msr = EAX; // ... but very stOOpid
|
|
return;
|
|
}
|
|
case BX_MSR_SYSENTER_ESP: { BX_CPU_THIS_PTR sysenter_esp_msr = EAX; return; }
|
|
case BX_MSR_SYSENTER_EIP: { BX_CPU_THIS_PTR sysenter_eip_msr = EAX; return; }
|
|
#endif
|
|
|
|
#if BX_CPU_LEVEL == 5
|
|
/* The following registers are defined for Pentium only */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
case BX_MSR_TSC:
|
|
case BX_MSR_CESR:
|
|
/* TODO */
|
|
return;
|
|
#else
|
|
/* These are noops on i686... */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
case BX_MSR_TSC:
|
|
/* do nothing */
|
|
return;
|
|
|
|
/* ... And these cause an exception on i686 */
|
|
case BX_MSR_CESR:
|
|
case BX_MSR_CTR0:
|
|
case BX_MSR_CTR1:
|
|
goto do_exception;
|
|
#endif /* BX_CPU_LEVEL == 5 */
|
|
|
|
/* MSR_APICBASE
|
|
0:7 Reserved
|
|
8 This is set if its the BSP
|
|
9:10 Reserved
|
|
11 APIC Global Enable bit (1=enabled 0=disabled)
|
|
12:35 APIC Base Address
|
|
36:63 Reserved
|
|
*/
|
|
#if BX_SUPPORT_APIC
|
|
case BX_MSR_APICBASE:
|
|
if (BX_CPU_THIS_PTR msr.apicbase & 0x800)
|
|
{
|
|
BX_CPU_THIS_PTR msr.apicbase = ((Bit64u) EDX << 32) + EAX;
|
|
BX_INFO(("WRMSR: wrote %08x:%08x to MSR_APICBASE", EDX, EAX));
|
|
BX_CPU_THIS_PTR local_apic.set_base(BX_CPU_THIS_PTR msr.apicbase);
|
|
}
|
|
else {
|
|
BX_INFO(("WRMSR: MSR_APICBASE APIC global enable bit cleared !"));
|
|
}
|
|
return;
|
|
#endif
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
case BX_MSR_EFER:
|
|
// GPF #0 if lme 0->1 and cr0.pg = 1
|
|
// GPF #0 if lme 1->0 and cr0.pg = 1
|
|
if ((BX_CPU_THIS_PTR msr.lme != ((EAX >> 8) & 1))
|
|
&& (BX_CPU_THIS_PTR cr0.pg == 1))
|
|
{
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
BX_CPU_THIS_PTR msr.sce = (EAX >> 0) & 1;
|
|
BX_CPU_THIS_PTR msr.lme = (EAX >> 8) & 1;
|
|
return;
|
|
case BX_MSR_STAR:
|
|
MSR_STAR = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
case BX_MSR_LSTAR:
|
|
MSR_LSTAR = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
case BX_MSR_CSTAR:
|
|
MSR_CSTAR = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
case BX_MSR_FMASK:
|
|
MSR_FMASK = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
case BX_MSR_FSBASE:
|
|
MSR_FSBASE = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
case BX_MSR_GSBASE:
|
|
MSR_GSBASE = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
case BX_MSR_KERNELGSBASE:
|
|
MSR_KERNELGSBASE = ((Bit64u) EDX << 32) + EAX;
|
|
return;
|
|
#endif // #if BX_SUPPORT_X86_64
|
|
|
|
default:
|
|
BX_ERROR(("WRMSR: Unknown register %#x", ECX));
|
|
#if BX_IGNORE_BAD_MSR
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
do_exception:
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
|
|
#else /* BX_CPU_LEVEL >= 5 */
|
|
BX_INFO(("RDMSR: Pentium CPU required"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::SYSENTER (bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_SEP
|
|
if (!protected_mode ()) {
|
|
BX_INFO (("sysenter not from protected mode"));
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
if (BX_CPU_THIS_PTR sysenter_cs_msr == 0) {
|
|
BX_INFO (("sysenter with zero sysenter_cs_msr"));
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
BX_CPU_THIS_PTR set_VM(0); // do this just like the book says to do
|
|
BX_CPU_THIS_PTR set_IF(0);
|
|
BX_CPU_THIS_PTR set_RF(0);
|
|
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = BX_CPU_THIS_PTR sysenter_cs_msr & BX_SELECTOR_RPL_MASK;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = BX_CPU_THIS_PTR sysenter_cs_msr >> 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (BX_CPU_THIS_PTR sysenter_cs_msr >> 2) & 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; // code segment
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; // non-conforming
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; // readable
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; // accessed
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = 0; // base address
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xFFFF; // segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 1; // 4k granularity
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 1; // 32-bit mode
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0; // available for use by system
|
|
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = (BX_CPU_THIS_PTR sysenter_cs_msr + 8) & BX_SELECTOR_RPL_MASK;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = (BX_CPU_THIS_PTR sysenter_cs_msr + 8) >> 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ((BX_CPU_THIS_PTR sysenter_cs_msr + 8) >> 2) & 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0; // data segment
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0; // expand-up
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1; // writeable
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1; // accessed
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = 0; // base address
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xFFFF; // segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 1; // 4k granularity
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 1; // 32-bit mode
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0; // available for use by system
|
|
|
|
// BX_INFO (("sysenter: old eip %X, esp %x, new eip %x, esp %X, edx %X", BX_CPU_THIS_PTR prev_eip, ESP, BX_CPU_THIS_PTR sysenter_eip_msr, BX_CPU_THIS_PTR sysenter_esp_msr, EDX));
|
|
|
|
ESP = BX_CPU_THIS_PTR sysenter_esp_msr;
|
|
EIP = BX_CPU_THIS_PTR sysenter_eip_msr;
|
|
#else
|
|
BX_INFO(("SYSENTER: use --enable-sep to enable SYSENTER/SYSEXIT support"));
|
|
UndefinedOpcode (i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::SYSEXIT (bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_SEP
|
|
if (!protected_mode ()) {
|
|
BX_INFO (("sysexit not from protected mode"));
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
if (BX_CPU_THIS_PTR sysenter_cs_msr == 0) {
|
|
BX_INFO (("sysexit with zero sysenter_cs_msr"));
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
if (CPL != 0) {
|
|
BX_INFO (("sysexit at non-zero cpl %u", CPL));
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = (BX_CPU_THIS_PTR sysenter_cs_msr + 16) | 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = (BX_CPU_THIS_PTR sysenter_cs_msr + 16) >> 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = ((BX_CPU_THIS_PTR sysenter_cs_msr + 16) >> 2) & 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; // code segment
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; // non-conforming
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; // readable
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; // accessed
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = 0; // base address
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xFFFF; // segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 1; // 4k granularity
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 1; // 32-bit mode
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0; // available for use by system
|
|
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = (BX_CPU_THIS_PTR sysenter_cs_msr + 24) | 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = (BX_CPU_THIS_PTR sysenter_cs_msr + 24) >> 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ((BX_CPU_THIS_PTR sysenter_cs_msr + 24) >> 2) & 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 3;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0; // data segment
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0; // expand-up
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1; // writeable
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1; // accessed
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = 0; // base address
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xFFFF; // segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 1; // 4k granularity
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 1; // 32-bit mode
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0; // available for use by system
|
|
|
|
// BX_INFO (("sysexit: old eip %X, esp %x, new eip %x, esp %X, eax %X", BX_CPU_THIS_PTR prev_eip, ESP, EDX, ECX, EAX));
|
|
|
|
ESP = ECX;
|
|
EIP = EDX;
|
|
#else
|
|
BX_INFO(("SYSEXIT: use --enable-sep to enable SYSENTER/SYSEXIT support"));
|
|
UndefinedOpcode (i);
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::SYSCALL(bxInstruction_c *i)
|
|
{
|
|
|
|
/* pseudo code from AMD manual.
|
|
|
|
SYSCALL_START:
|
|
|
|
IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
|
|
EXCEPTION [#UD]
|
|
|
|
IF (LONG_MODE)
|
|
SYSCALL_LONG_MODE
|
|
ELSE // (LEGACY_MODE)
|
|
SYSCALL_LEGACY_MODE
|
|
|
|
|
|
SYSCALL_LONG_MODE:
|
|
|
|
RCX.q = next_RIP
|
|
R11.q = RFLAGS // with rf cleared
|
|
|
|
IF (64BIT_MODE)
|
|
temp_RIP.q = MSR_LSTAR
|
|
ELSE // (COMPATIBILITY_MODE)
|
|
temp_RIP.q = MSR_CSTAR
|
|
|
|
CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
|
|
CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
|
|
CS.base = 0x00000000
|
|
CS.limit = 0xFFFFFFFF
|
|
|
|
SS.sel = MSR_STAR.SYSCALL_CS + 8
|
|
SS.attr = 64-bit stack,dpl0
|
|
SS.base = 0x00000000
|
|
SS.limit = 0xFFFFFFFF
|
|
|
|
RFLAGS = RFLAGS AND ~MSR_SFMASK
|
|
RFLAGS.RF = 0
|
|
|
|
CPL = 0
|
|
|
|
RIP = temp_RIP
|
|
EXIT
|
|
|
|
SYSCALL_LEGACY_MODE:
|
|
|
|
RCX.d = next_RIP
|
|
|
|
temp_RIP.d = MSR_STAR.EIP
|
|
|
|
CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
|
|
CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.
|
|
CS.base = 0x00000000
|
|
CS.limit = 0xFFFFFFFF
|
|
|
|
SS.sel = MSR_STAR.SYSCALL_CS + 8
|
|
SS.attr = 32-bit stack,dpl0
|
|
SS.base = 0x00000000
|
|
SS.limit = 0xFFFFFFFF
|
|
|
|
RFLAGS.VM,IF,RF=0
|
|
|
|
CPL = 0
|
|
|
|
RIP = temp_RIP
|
|
EXIT
|
|
|
|
*/
|
|
|
|
bx_address temp_RIP;
|
|
bx_descriptor_t cs_descriptor,ss_descriptor;
|
|
bx_selector_t cs_selector,ss_selector;
|
|
Bit32u dword1, dword2;
|
|
|
|
if (!BX_CPU_THIS_PTR msr.sce) {
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
if (BX_CPU_THIS_PTR msr.lma)
|
|
{
|
|
RCX = RIP;
|
|
#ifdef __GNUC__
|
|
#warning - PRT: SYSCALL -- do we reset RF/VM before saving to R11?
|
|
#endif
|
|
R11 = read_eflags();
|
|
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
temp_RIP = MSR_LSTAR;
|
|
}
|
|
else {
|
|
temp_RIP = MSR_CSTAR;
|
|
}
|
|
|
|
parse_selector((MSR_STAR >> 32) & 0xFFFC, &cs_selector);
|
|
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &cs_descriptor);
|
|
load_cs(&cs_selector, &cs_descriptor, 0);
|
|
|
|
parse_selector((MSR_STAR >> 32) + 8, &ss_selector);
|
|
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &ss_descriptor);
|
|
load_ss(&ss_selector, &ss_descriptor, 0);
|
|
|
|
write_eflags(read_eflags() & (~MSR_FMASK),1,1,1,0);
|
|
BX_CPU_THIS_PTR clear_RF ();
|
|
RIP = temp_RIP;
|
|
}
|
|
else {
|
|
// legacy mode
|
|
|
|
ECX = EIP;
|
|
|
|
temp_RIP = MSR_STAR & 0xFFFFFFFF;
|
|
|
|
parse_selector((MSR_STAR >> 32) & 0xFFFC, &cs_selector);
|
|
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &cs_descriptor);
|
|
load_cs(&cs_selector, &cs_descriptor, 0);
|
|
|
|
parse_selector((MSR_STAR >> 32) + 8, &ss_selector);
|
|
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &ss_descriptor);
|
|
load_ss(&ss_selector, &ss_descriptor, 0);
|
|
|
|
BX_CPU_THIS_PTR clear_VM ();
|
|
BX_CPU_THIS_PTR clear_IF ();
|
|
BX_CPU_THIS_PTR clear_RF ();
|
|
RIP = temp_RIP;
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SYSRET(bxInstruction_c *i)
|
|
{
|
|
/* from AMD manual
|
|
|
|
SYSRET_START:
|
|
|
|
IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
|
|
EXCEPTION [#UD]
|
|
|
|
IF ((!PROTECTED_MODE) || (CPL != 0))
|
|
EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0
|
|
|
|
IF (64BIT_MODE)
|
|
SYSRET_64BIT_MODE
|
|
ELSE // (!64BIT_MODE)
|
|
SYSRET_NON_64BIT_MODE
|
|
|
|
SYSRET_64BIT_MODE:
|
|
IF (OPERAND_SIZE = 64) // Return to 64-bit mode.
|
|
{
|
|
CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3
|
|
CS.base = 0x00000000
|
|
CS.limit = 0xFFFFFFFF
|
|
CS.attr = 64-bit code,dpl3
|
|
temp_RIP.q = RCX
|
|
}
|
|
ELSE // Return to 32-bit compatibility mode.
|
|
{
|
|
CS.sel = MSR_STAR.SYSRET_CS OR 3
|
|
CS.base = 0x00000000
|
|
CS.limit = 0xFFFFFFFF
|
|
CS.attr = 32-bit code,dpl3
|
|
temp_RIP.d = RCX
|
|
}
|
|
SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
|
|
// SS base, limit, attributes unchanged.
|
|
RFLAGS.q = R11 // RF=0,VM=0
|
|
CPL = 3
|
|
RIP = temp_RIP
|
|
EXIT
|
|
|
|
SYSRET_NON_64BIT_MODE:
|
|
CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
|
|
CS.base = 0x00000000
|
|
CS.limit = 0xFFFFFFFF
|
|
CS.attr = 32-bit code,dpl3
|
|
temp_RIP.d = RCX
|
|
SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed.
|
|
// SS base, limit, attributes unchanged.
|
|
RFLAGS.IF = 1
|
|
CPL = 3
|
|
RIP = temp_RIP
|
|
EXIT
|
|
|
|
*/
|
|
|
|
bx_address temp_RIP;
|
|
bx_descriptor_t cs_descriptor,ss_descriptor;
|
|
bx_selector_t cs_selector,ss_selector;
|
|
Bit32u dword1, dword2;
|
|
|
|
if (!BX_CPU_THIS_PTR msr.sce) {
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
if(real_mode() || CPL != 0) {
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
|
{
|
|
if (i->os64L()) { // Return to 64-bit mode.
|
|
|
|
parse_selector(((MSR_STAR >> 48) + 16) | 3, &cs_selector);
|
|
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &cs_descriptor);
|
|
load_cs(&cs_selector, &cs_descriptor, 3);
|
|
|
|
temp_RIP = RCX;
|
|
}
|
|
else { // Return to 32-bit compatibility mode.
|
|
|
|
parse_selector((MSR_STAR >> 48) | 3, &cs_selector);
|
|
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &cs_descriptor);
|
|
load_cs(&cs_selector, &cs_descriptor, 3);
|
|
|
|
temp_RIP = ECX;
|
|
}
|
|
|
|
parse_selector((MSR_STAR >> 48) + 8, &ss_selector);
|
|
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &ss_descriptor);
|
|
load_ss(&ss_selector, &ss_descriptor, 0);
|
|
|
|
// SS base, limit, attributes unchanged.
|
|
write_eflags(R11,1,1,1,1);
|
|
|
|
RIP = temp_RIP;
|
|
}
|
|
else { // (!64BIT_MODE)
|
|
|
|
parse_selector((MSR_STAR >> 48) + 16, &cs_selector);
|
|
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &cs_descriptor);
|
|
load_cs(&cs_selector, &cs_descriptor, 3);
|
|
|
|
temp_RIP = ECX;
|
|
|
|
parse_selector((MSR_STAR >> 48) + 8, &ss_selector);
|
|
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
|
|
parse_descriptor(dword1, dword2, &ss_descriptor);
|
|
load_ss(&ss_selector, &ss_descriptor, 0);
|
|
|
|
BX_CPU_THIS_PTR assert_IF ();
|
|
|
|
RIP = temp_RIP;
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SWAPGS(bxInstruction_c *i)
|
|
{
|
|
Bit64u temp_GS_base;
|
|
|
|
if(CPL != 0)
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
|
|
temp_GS_base = MSR_GSBASE;
|
|
MSR_GSBASE = MSR_KERNELGSBASE;
|
|
MSR_KERNELGSBASE = temp_GS_base;
|
|
}
|
|
#endif
|
|
|
|
#if BX_X86_DEBUGGER
|
|
Bit32u BX_CPU_C::hwdebug_compare(Bit32u laddr_0, unsigned size,
|
|
unsigned opa, unsigned opb)
|
|
{
|
|
// Support x86 hardware debug facilities (DR0..DR7)
|
|
Bit32u dr7 = BX_CPU_THIS_PTR dr7;
|
|
|
|
bx_bool ibpoint_found = 0;
|
|
Bit32u laddr_n = laddr_0 + (size - 1);
|
|
Bit32u dr0, dr1, dr2, dr3;
|
|
Bit32u dr0_n, dr1_n, dr2_n, dr3_n;
|
|
Bit32u len0, len1, len2, len3;
|
|
static unsigned alignment_mask[4] =
|
|
// 00b=1 01b=2 10b=undef 11b=4
|
|
{ 0xffffffff, 0xfffffffe, 0xffffffff, 0xfffffffc };
|
|
Bit32u dr0_op, dr1_op, dr2_op, dr3_op;
|
|
|
|
len0 = (dr7>>18) & 3;
|
|
len1 = (dr7>>22) & 3;
|
|
len2 = (dr7>>26) & 3;
|
|
len3 = (dr7>>30) & 3;
|
|
|
|
dr0 = BX_CPU_THIS_PTR dr0 & alignment_mask[len0];
|
|
dr1 = BX_CPU_THIS_PTR dr1 & alignment_mask[len1];
|
|
dr2 = BX_CPU_THIS_PTR dr2 & alignment_mask[len2];
|
|
dr3 = BX_CPU_THIS_PTR dr3 & alignment_mask[len3];
|
|
|
|
dr0_n = dr0 + len0;
|
|
dr1_n = dr1 + len1;
|
|
dr2_n = dr2 + len2;
|
|
dr3_n = dr3 + len3;
|
|
|
|
dr0_op = (dr7>>16) & 3;
|
|
dr1_op = (dr7>>20) & 3;
|
|
dr2_op = (dr7>>24) & 3;
|
|
dr3_op = (dr7>>28) & 3;
|
|
|
|
// See if this instruction address matches any breakpoints
|
|
if ( (dr7 & 0x00000003) ) {
|
|
if ( (dr0_op==opa || dr0_op==opb) &&
|
|
(laddr_0 <= dr0_n) &&
|
|
(laddr_n >= dr0) )
|
|
ibpoint_found = 1;
|
|
}
|
|
if ( (dr7 & 0x0000000c) ) {
|
|
if ( (dr1_op==opa || dr1_op==opb) &&
|
|
(laddr_0 <= dr1_n) &&
|
|
(laddr_n >= dr1) )
|
|
ibpoint_found = 1;
|
|
}
|
|
if ( (dr7 & 0x00000030) ) {
|
|
if ( (dr2_op==opa || dr2_op==opb) &&
|
|
(laddr_0 <= dr2_n) &&
|
|
(laddr_n >= dr2) )
|
|
ibpoint_found = 1;
|
|
}
|
|
if ( (dr7 & 0x000000c0) ) {
|
|
if ( (dr3_op==opa || dr3_op==opb) &&
|
|
(laddr_0 <= dr3_n) &&
|
|
(laddr_n >= dr3) )
|
|
ibpoint_found = 1;
|
|
}
|
|
|
|
// If *any* enabled breakpoints matched, then we need to
|
|
// set status bits for *all* breakpoints, even disabled ones,
|
|
// as long as they meet the other breakpoint criteria.
|
|
// This code is similar to that above, only without the
|
|
// breakpoint enabled check. Seems weird to duplicate effort,
|
|
// but its more efficient to do it this way.
|
|
if (ibpoint_found) {
|
|
// dr6_mask is the return value. These bits represent the bits to
|
|
// be OR'd into DR6 as a result of the debug event.
|
|
Bit32u dr6_mask=0;
|
|
if ( (dr0_op==opa || dr0_op==opb) &&
|
|
(laddr_0 <= dr0_n) &&
|
|
(laddr_n >= dr0) )
|
|
dr6_mask |= 0x01;
|
|
if ( (dr1_op==opa || dr1_op==opb) &&
|
|
(laddr_0 <= dr1_n) &&
|
|
(laddr_n >= dr1) )
|
|
dr6_mask |= 0x02;
|
|
if ( (dr2_op==opa || dr2_op==opb) &&
|
|
(laddr_0 <= dr2_n) &&
|
|
(laddr_n >= dr2) )
|
|
dr6_mask |= 0x04;
|
|
if ( (dr3_op==opa || dr3_op==opb) &&
|
|
(laddr_0 <= dr3_n) &&
|
|
(laddr_n >= dr3) )
|
|
dr6_mask |= 0x08;
|
|
return(dr6_mask);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
#endif
|