0730ff4c4a
these are include LOCKed RMW of course and also a lot of others in the future it will be very hard to find all the cases that must be atomic so better to start marking them already now try to mark every RMW case for atomicity requirements no code changes, only comments
277 lines
7.3 KiB
C++
277 lines
7.3 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001-2018 The Bochs Project
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdR(bxInstruction_c *i)
|
|
{
|
|
BX_WRITE_32BIT_REGZ(i->dst(), pop_32());
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdM(bxInstruction_c *i)
|
|
{
|
|
RSP_SPECULATIVE;
|
|
|
|
Bit32u val32 = pop_32();
|
|
|
|
// Note: there is one little weirdism here. It is possible to use
|
|
// ESP in the modrm addressing. If used, the value of ESP after the
|
|
// pop is used to calculate the address.
|
|
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
|
|
|
|
write_virtual_dword_32(i->seg(), eaddr, val32);
|
|
|
|
RSP_COMMIT;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdR(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_READ_32BIT_REG(i->dst()));
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i)
|
|
{
|
|
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
|
|
|
|
Bit32u op1_32 = read_virtual_dword_32(i->seg(), eaddr);
|
|
|
|
push_32(op1_32);
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_Sw(bxInstruction_c *i)
|
|
{
|
|
Bit16u val_16 = BX_CPU_THIS_PTR sregs[i->src()].selector.value;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
stack_write_word((Bit32u) (ESP-4), val_16);
|
|
ESP -= 4;
|
|
}
|
|
else
|
|
{
|
|
stack_write_word((Bit16u) (SP-4), val_16);
|
|
SP -= 4;
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_Sw(bxInstruction_c *i)
|
|
{
|
|
Bit16u selector;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
selector = stack_read_word(ESP);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
|
|
ESP += 4;
|
|
}
|
|
else {
|
|
selector = stack_read_word(SP);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
|
|
SP += 4;
|
|
}
|
|
|
|
if (i->dst() == BX_SEG_REG_SS) {
|
|
// POP SS inhibits interrupts, debug exceptions and single-step
|
|
// trap exceptions until the execution boundary following the
|
|
// next instruction is reached.
|
|
// Same code as MOV_SwEw()
|
|
inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS);
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Id(bxInstruction_c *i)
|
|
{
|
|
push_32(i->Id());
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHA32(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
Bit16u temp_SP = SP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
stack_write_dword((Bit32u) (temp_ESP - 4), EAX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 8), ECX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 12), EDX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 16), EBX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 20), temp_ESP);
|
|
stack_write_dword((Bit32u) (temp_ESP - 24), EBP);
|
|
stack_write_dword((Bit32u) (temp_ESP - 28), ESI);
|
|
stack_write_dword((Bit32u) (temp_ESP - 32), EDI);
|
|
ESP -= 32;
|
|
}
|
|
else
|
|
{
|
|
stack_write_dword((Bit16u) (temp_SP - 4), EAX);
|
|
stack_write_dword((Bit16u) (temp_SP - 8), ECX);
|
|
stack_write_dword((Bit16u) (temp_SP - 12), EDX);
|
|
stack_write_dword((Bit16u) (temp_SP - 16), EBX);
|
|
stack_write_dword((Bit16u) (temp_SP - 20), temp_ESP);
|
|
stack_write_dword((Bit16u) (temp_SP - 24), EBP);
|
|
stack_write_dword((Bit16u) (temp_SP - 28), ESI);
|
|
stack_write_dword((Bit16u) (temp_SP - 32), EDI);
|
|
SP -= 32;
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPA32(bxInstruction_c *i)
|
|
{
|
|
Bit32u edi, esi, ebp, ebx, edx, ecx, eax;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
edi = stack_read_dword((Bit32u) (temp_ESP + 0));
|
|
esi = stack_read_dword((Bit32u) (temp_ESP + 4));
|
|
ebp = stack_read_dword((Bit32u) (temp_ESP + 8));
|
|
stack_read_dword((Bit32u) (temp_ESP + 12));
|
|
ebx = stack_read_dword((Bit32u) (temp_ESP + 16));
|
|
edx = stack_read_dword((Bit32u) (temp_ESP + 20));
|
|
ecx = stack_read_dword((Bit32u) (temp_ESP + 24));
|
|
eax = stack_read_dword((Bit32u) (temp_ESP + 28));
|
|
ESP += 32;
|
|
}
|
|
else
|
|
{
|
|
Bit16u temp_SP = SP;
|
|
edi = stack_read_dword((Bit16u) (temp_SP + 0));
|
|
esi = stack_read_dword((Bit16u) (temp_SP + 4));
|
|
ebp = stack_read_dword((Bit16u) (temp_SP + 8));
|
|
stack_read_dword((Bit16u) (temp_SP + 12));
|
|
ebx = stack_read_dword((Bit16u) (temp_SP + 16));
|
|
edx = stack_read_dword((Bit16u) (temp_SP + 20));
|
|
ecx = stack_read_dword((Bit16u) (temp_SP + 24));
|
|
eax = stack_read_dword((Bit16u) (temp_SP + 28));
|
|
SP += 32;
|
|
}
|
|
|
|
EDI = edi;
|
|
ESI = esi;
|
|
EBP = ebp;
|
|
EBX = ebx;
|
|
EDX = edx;
|
|
ECX = ecx;
|
|
EAX = eax;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i)
|
|
{
|
|
Bit16u imm16 = i->Iw();
|
|
Bit8u level = i->Ib2();
|
|
level &= 0x1F;
|
|
|
|
RSP_SPECULATIVE;
|
|
|
|
push_32(EBP);
|
|
Bit32u frame_ptr32 = ESP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
Bit32u ebp = EBP; // Use temp copy for case of exception.
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
ebp -= 4;
|
|
Bit32u temp32 = stack_read_dword(ebp);
|
|
push_32(temp32);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_32(frame_ptr32);
|
|
}
|
|
|
|
ESP -= imm16;
|
|
|
|
// ENTER finishes with memory write check on the final stack pointer
|
|
// the memory is touched but no write actually occurs
|
|
// emulate it by doing RMW read access from SS:ESP
|
|
read_RMW_virtual_dword_32(BX_SEG_REG_SS, ESP); // no lock, should be touch only
|
|
}
|
|
else {
|
|
Bit16u bp = BP;
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
bp -= 4;
|
|
Bit32u temp32 = stack_read_dword(bp);
|
|
push_32(temp32);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_32(frame_ptr32);
|
|
}
|
|
|
|
SP -= imm16;
|
|
|
|
// ENTER finishes with memory write check on the final stack pointer
|
|
// the memory is touched but no write actually occurs
|
|
// emulate it by doing RMW read access from SS:SP
|
|
read_RMW_virtual_dword_32(BX_SEG_REG_SS, SP); // no lock, should be touch only
|
|
}
|
|
|
|
EBP = frame_ptr32;
|
|
|
|
RSP_COMMIT;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE32(bxInstruction_c *i)
|
|
{
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
|
|
|
Bit32u value32;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
value32 = stack_read_dword(EBP);
|
|
ESP = EBP + 4;
|
|
}
|
|
else {
|
|
value32 = stack_read_dword(BP);
|
|
SP = BP + 4;
|
|
}
|
|
|
|
EBP = value32;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|