Bochs/bochs/cpu/shift32.cc
Stanislav Shwartsman 44eea71f37
implemented SM3 instructions (#84)
add rol/ror methods to scalar_arith.h and use in more places

---------

Co-authored-by: Stanislav Shwartsman <sshwarts@users.sourceforge.net>
2023-10-07 21:34:04 +03:00

623 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "scalar_arith.h"
#include "decoder/ia_opcodes.h"
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EdGdM(bxInstruction_c *i)
{
unsigned count;
unsigned of, cf;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_SHLD_EdGd)
count = CL;
else // BX_IA_SHLD_EdGdIb
count = i->Ib();
count &= 0x1f; // use only 5 LSB's
if (count) {
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
Bit32u result_32 = (op1_32 << count) | (op2_32 >> (32 - count));
write_RMW_linear_dword(result_32);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
cf = (op1_32 >> (32 - count)) & 0x1;
of = cf ^ (result_32 >> 31); // of = cf ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
unsigned count;
unsigned of, cf;
if (i->getIaOpcode() == BX_IA_SHLD_EdGd)
count = CL;
else // BX_IA_SHLD_EdGdIb
count = i->Ib();
count &= 0x1f; // use only 5 LSB's
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
op1_32 = BX_READ_32BIT_REG(i->dst());
op2_32 = BX_READ_32BIT_REG(i->src());
result_32 = (op1_32 << count) | (op2_32 >> (32 - count));
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
cf = (op1_32 >> (32 - count)) & 0x1;
of = cf ^ (result_32 >> 31); // of = cf ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EdGdM(bxInstruction_c *i)
{
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_SHRD_EdGd)
count = CL;
else // BX_IA_SHRD_EdGdIb
count = i->Ib();
count &= 0x1f; // use only 5 LSB's
if (count) {
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
Bit32u result_32 = (op2_32 << (32 - count)) | (op1_32 >> count);
write_RMW_linear_dword(result_32);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
cf = (op1_32 >> (count - 1)) & 0x1;
of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_SHRD_EdGd)
count = CL;
else // BX_IA_SHRD_EdGdIb
count = i->Ib();
count &= 0x1f; // use only 5 LSB's
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
op1_32 = BX_READ_32BIT_REG(i->dst());
op2_32 = BX_READ_32BIT_REG(i->src());
result_32 = (op2_32 << (32 - count)) | (op1_32 >> count);
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
cf = (op1_32 >> (count - 1)) & 0x1;
of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EdM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_ROL_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (count) {
Bit32u result_32 = rol32(op1_32, count);
write_RMW_linear_dword(result_32);
unsigned bit0 = (result_32 & 0x1);
unsigned bit31 = (result_32 >> 31);
// of = cf ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit31, bit0);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EdR(bxInstruction_c *i)
{
Bit32u op1_32, result_32;
unsigned count;
unsigned bit0, bit31;
if (i->getIaOpcode() == BX_IA_ROL_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
op1_32 = BX_READ_32BIT_REG(i->dst());
result_32 = rol32(op1_32, count);
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
bit0 = (result_32 & 0x1);
bit31 = (result_32 >> 31);
// of = cf ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit31, bit0);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EdM(bxInstruction_c *i)
{
unsigned count;
unsigned bit31, bit30;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_ROR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (count) {
Bit32u result_32 = ror32(op1_32, count);
write_RMW_linear_dword(result_32);
bit31 = (result_32 >> 31) & 1;
bit30 = (result_32 >> 30) & 1;
// of = result30 ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit30 ^ bit31, bit31);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EdR(bxInstruction_c *i)
{
Bit32u op1_32, result_32;
unsigned count;
unsigned bit31, bit30;
if (i->getIaOpcode() == BX_IA_ROR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
op1_32 = BX_READ_32BIT_REG(i->dst());
result_32 = ror32(op1_32, count);
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
bit31 = (result_32 >> 31) & 1;
bit30 = (result_32 >> 30) & 1;
// of = result30 ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit30 ^ bit31, bit31);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EdM(bxInstruction_c *i)
{
Bit32u result_32;
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_RCL_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_NEXT_INSTR(i);
}
Bit32u temp_CF = getB_CF();
if (count==1) {
result_32 = (op1_32 << 1) | temp_CF;
}
else {
result_32 = (op1_32 << count) | (temp_CF << (count - 1)) |
(op1_32 >> (33 - count));
}
write_RMW_linear_dword(result_32);
cf = (op1_32 >> (32 - count)) & 0x1;
of = cf ^ (result_32 >> 31); // of = cf ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EdR(bxInstruction_c *i)
{
Bit32u result_32;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_RCL_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32u temp_CF = getB_CF();
if (count==1) {
result_32 = (op1_32 << 1) | temp_CF;
}
else {
result_32 = (op1_32 << count) | (temp_CF << (count - 1)) |
(op1_32 >> (33 - count));
}
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
cf = (op1_32 >> (32 - count)) & 0x1;
of = cf ^ (result_32 >> 31); // of = cf ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EdM(bxInstruction_c *i)
{
Bit32u result_32;
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_RCR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_NEXT_INSTR(i);
}
Bit32u temp_CF = getB_CF();
if (count==1) {
result_32 = (op1_32 >> 1) | (temp_CF << 31);
}
else {
result_32 = (op1_32 >> count) | (temp_CF << (32 - count)) |
(op1_32 << (33 - count));
}
write_RMW_linear_dword(result_32);
cf = (op1_32 >> (count - 1)) & 0x1;
of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EdR(bxInstruction_c *i)
{
Bit32u result_32;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_RCR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32u temp_CF = getB_CF();
if (count==1) {
result_32 = (op1_32 >> 1) | (temp_CF << 31);
}
else {
result_32 = (op1_32 >> count) | (temp_CF << (32 - count)) |
(op1_32 << (33 - count));
}
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
cf = (op1_32 >> (count - 1)) & 0x1;
of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EdM(bxInstruction_c *i)
{
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_SHL_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (count) {
/* count < 32, since only lower 5 bits used */
Bit32u result_32 = (op1_32 << count);
write_RMW_linear_dword(result_32);
cf = (op1_32 >> (32 - count)) & 0x1;
of = cf ^ (result_32 >> 31);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EdR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_SHL_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
/* count < 32, since only lower 5 bits used */
Bit32u result_32 = (op1_32 << count);
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
unsigned cf = (op1_32 >> (32 - count)) & 0x1;
unsigned of = cf ^ (result_32 >> 31);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EdM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_SHR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (count) {
Bit32u result_32 = (op1_32 >> count);
write_RMW_linear_dword(result_32);
unsigned cf = (op1_32 >> (count - 1)) & 0x1;
// note, that of == result31 if count == 1 and
// of == 0 if count >= 2
unsigned of = ((result_32 << 1) ^ result_32) >> 31;
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EdR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_SHR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32u result_32 = (op1_32 >> count);
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
unsigned cf = (op1_32 >> (count - 1)) & 0x1;
// note, that of == result31 if count == 1 and
// of == 0 if count >= 2
unsigned of = ((result_32 << 1) ^ result_32) >> 31;
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EdM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
if (i->getIaOpcode() == BX_IA_SAR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (count) {
/* count < 32, since only lower 5 bits used */
Bit32u result_32 = ((Bit32s) op1_32) >> count;
write_RMW_linear_dword(result_32);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
unsigned cf = (op1_32 >> (count - 1)) & 1;
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(0, cf); /* signed overflow cannot happen in SAR instruction */
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EdR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_SAR_Ed)
count = CL;
else
count = i->Ib();
count &= 0x1f;
if (!count) {
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
}
else {
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
/* count < 32, since only lower 5 bits used */
Bit32u result_32 = ((Bit32s) op1_32) >> count;
BX_WRITE_32BIT_REGZ(i->dst(), result_32);
SET_FLAGS_OSZAPC_LOGIC_32(result_32);
unsigned cf = (op1_32 >> (count - 1)) & 1;
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(0, cf); /* signed overflow cannot happen in SAR instruction */
}
BX_NEXT_INSTR(i);
}