Bochs/bochs/cpu/segment_ctrl_pro.cc
Bryce Denney cec9135e9f - Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a
"bx_bool" which is always defined as Bit32u on all platforms.  In Carbon
  specific code, Boolean is still used because the Carbon header files
  define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
  The bug was that some code in Bochs depends on Boolean to be a
  32 bit value.  (This should be fixed, but I don't know all the places
  where it needs to be fixed yet.)  Because Carbon defined Boolean as
  an unsigned char, Bochs just followed along and used the unsigned char
  definition to avoid compile problems.  This exposed the dependency
  on 32 bit Boolean on MacOS X only and led to major simulation problems,
  that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
  our own type.  I chose bx_bool for several reasons.
  1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
     platforms, which makes it much less likely to have more platform-specific
     simulation differences in the future.  (I spent hours on a borrowed
     MacOSX machine chasing bug 618388 before discovering that different sized
     Booleans were the problem, and I don't want to repeat that.)
  2. We still have at least one dependency on 32 bit Booleans which must be
     fixed some time, but I don't want to risk introducing new bugs into the
     simulation just before the 2.0 release.

Modified Files:
    bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
    pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
    cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
    cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
    cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
    cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
    cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
    cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
    cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
    cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
    cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
    disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
    docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
    gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
    gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
    gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
    gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
    gui/x.cc instrument/example0/instrument.cc
    instrument/example0/instrument.h
    instrument/example1/instrument.cc
    instrument/example1/instrument.h
    instrument/stubs/instrument.cc instrument/stubs/instrument.h
    iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
    iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
    iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
    iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
    iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
    iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
    iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
    iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
    iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
    iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
    iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 11:44:41 +00:00

650 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: segment_ctrl_pro.cc,v 1.23 2002-10-25 11:44:35 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value)
{
#if BX_CPU_LEVEL >= 3
if (v8086_mode()) {
/* ??? don't need to set all these fields */
seg->selector.value = new_value;
seg->selector.rpl = 3;
seg->cache.valid = 1;
seg->cache.p = 1;
seg->cache.dpl = 3;
seg->cache.segment = 1; /* regular segment */
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) {
seg->cache.u.segment.executable = 1; /* code segment */
#if BX_SupportICache
BX_CPU_THIS_PTR iCache.fetchModeMask =
BX_CPU_THIS_PTR iCache.createFetchModeMask(BX_CPU_THIS);
#endif
}
else
seg->cache.u.segment.executable = 0; /* data segment */
seg->cache.u.segment.c_ed = 0; /* expand up */
seg->cache.u.segment.r_w = 1; /* writeable */
seg->cache.u.segment.a = 1; /* accessed */
seg->cache.u.segment.base = new_value << 4;
seg->cache.u.segment.limit = 0xffff;
seg->cache.u.segment.limit_scaled = 0xffff;
seg->cache.u.segment.g = 0; /* byte granular */
seg->cache.u.segment.d_b = 0; /* default 16bit size */
#if BX_SUPPORT_X86_64
seg->cache.u.segment.l = 0; /* default 16bit size */
#endif
seg->cache.u.segment.avl = 0;
return;
}
#endif
#if BX_CPU_LEVEL >= 2
if (protected_mode()) {
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) {
Bit16u index;
Bit8u ti;
Bit8u rpl;
bx_descriptor_t descriptor;
Bit32u dword1, dword2;
if ((new_value & 0xfffc) == 0) { /* null selector */
BX_PANIC(("load_seg_reg: SS: new_value == 0"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
index = new_value >> 3;
ti = (new_value >> 2) & 0x01;
rpl = (new_value & 0x03);
/* examine AR byte of destination selector for legal values: */
if (ti == 0) { /* GDT */
if ((index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
BX_PANIC(("load_seg_reg: GDT: %s: index(%04x*8+7) > limit(%06x)",
BX_CPU_THIS_PTR strseg(seg), (unsigned) index, (unsigned) BX_CPU_THIS_PTR gdtr.limit));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8, 4, 0,
BX_READ, &dword1);
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
BX_READ, &dword2);
}
else { /* LDT */
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) { /* ??? */
BX_ERROR(("load_seg_reg: LDT invalid"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
if ((index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
BX_ERROR(("load_seg_reg ss: LDT: index > limit"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8, 4, 0,
BX_READ, &dword1);
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
BX_READ, &dword2);
}
/* selector's RPL must = CPL, else #GP(selector) */
if (rpl != CPL) {
BX_ERROR(("load_seg_reg(): rpl != CPL"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
parse_descriptor(dword1, dword2, &descriptor);
if (descriptor.valid==0) {
BX_ERROR(("load_seg_reg(): valid bit cleared"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
/* AR byte must indicate a writable data segment else #GP(selector) */
if ( (descriptor.segment==0) ||
descriptor.u.segment.executable ||
descriptor.u.segment.r_w==0 ) {
BX_ERROR(("load_seg_reg(): not writable data segment"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* DPL in the AR byte must equal CPL else #GP(selector) */
if (descriptor.dpl != CPL) {
BX_ERROR(("load_seg_reg(): dpl != CPL"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* segment must be marked PRESENT else #SS(selector) */
if (descriptor.p == 0) {
BX_ERROR(("load_seg_reg(): not present"));
exception(BX_SS_EXCEPTION, new_value & 0xfffc, 0);
}
/* load SS with selector, load SS cache with descriptor */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = new_value;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = index;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ti;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = rpl;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = descriptor;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1;
/* now set accessed bit in descriptor */
dword2 |= 0x0100;
if (ti == 0) { /* GDT */
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
else { /* LDT */
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
return;
}
else if ( (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) ||
(seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES])
#if BX_CPU_LEVEL >= 3
|| (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) ||
(seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS])
#endif
) {
Bit16u index;
Bit8u ti;
Bit8u rpl;
bx_descriptor_t descriptor;
Bit32u dword1, dword2;
if ((new_value & 0xfffc) == 0) { /* null selector */
seg->selector.index = 0;
seg->selector.ti = 0;
seg->selector.rpl = 0;
seg->selector.value = 0;
seg->cache.valid = 0; /* invalidate null selector */
return;
}
index = new_value >> 3;
ti = (new_value >> 2) & 0x01;
rpl = (new_value & 0x03);
/* selector index must be within descriptor limits, else #GP(selector) */
if (ti == 0) { /* GDT */
if ((index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
BX_ERROR(("load_seg_reg: GDT: %s: index(%04x) > limit(%06x)",
BX_CPU_THIS_PTR strseg(seg), (unsigned) index, (unsigned) BX_CPU_THIS_PTR gdtr.limit));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8, 4, 0,
BX_READ, &dword1);
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
BX_READ, &dword2);
}
else { /* LDT */
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
BX_ERROR(("load_seg_reg: LDT invalid"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
if ((index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
BX_ERROR(("load_seg_reg ds,es: LDT: index > limit"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8, 4, 0,
BX_READ, &dword1);
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
BX_READ, &dword2);
}
parse_descriptor(dword1, dword2, &descriptor);
if (descriptor.valid==0) {
BX_ERROR(("load_seg_reg(): valid bit cleared"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
/* AR byte must indicate data or readable code segment else #GP(selector) */
if ( descriptor.segment==0 ||
(descriptor.u.segment.executable==1 &&
descriptor.u.segment.r_w==0) ) {
BX_ERROR(("load_seg_reg(): not data or readable code"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
/* If data or non-conforming code, then both the RPL and the CPL
* must be less than or equal to DPL in AR byte else #GP(selector) */
if ( descriptor.u.segment.executable==0 ||
descriptor.u.segment.c_ed==0 ) {
if ((rpl > descriptor.dpl) || (CPL > descriptor.dpl)) {
BX_ERROR(("load_seg_reg: RPL & CPL must be <= DPL"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
}
/* segment must be marked PRESENT else #NP(selector) */
if (descriptor.p == 0) {
BX_ERROR(("load_seg_reg: segment not present"));
exception(BX_NP_EXCEPTION, new_value & 0xfffc, 0);
return;
}
/* load segment register with selector */
/* load segment register-cache with descriptor */
seg->selector.value = new_value;
seg->selector.index = index;
seg->selector.ti = ti;
seg->selector.rpl = rpl;
seg->cache = descriptor;
seg->cache.valid = 1;
/* now set accessed bit in descriptor */
/* wmr: don't bother if it's already set (thus allowing */
/* GDT to be in read-only pages like real hdwe does) */
if (!(dword2 & 0x0100)) {
dword2 |= 0x0100;
if (ti == 0) { /* GDT */
access_linear(BX_CPU_THIS_PTR gdtr.base + index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
else { /* LDT */
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
}
return;
}
else {
BX_PANIC(("load_seg_reg(): invalid segment register passed!"));
return;
}
}
/* real mode */
/* seg->limit = ; ??? different behaviours depening on seg reg. */
/* something about honoring previous values */
/* ??? */
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = new_value;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; /* regular segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; /* code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; /* expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = new_value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffff;
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* default 16bit size */
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l = 0; /* default 16bit size */
#endif
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
#endif
#if BX_SupportICache
BX_CPU_THIS_PTR iCache.fetchModeMask =
BX_CPU_THIS_PTR iCache.createFetchModeMask(BX_CPU_THIS);
#endif
}
else { /* SS, DS, ES, FS, GS */
seg->selector.value = new_value;
seg->cache.valid = 1;
seg->cache.p = 1; // set this???
seg->cache.u.segment.base = new_value << 4;
seg->cache.segment = 1; /* regular segment */
seg->cache.u.segment.a = 1; /* accessed */
/* set G, D_B, AVL bits here ??? */
}
#else /* 8086 */
seg->selector.value = new_value;
seg->cache.u.segment.base = new_value << 4;
#endif
}
#if BX_SUPPORT_X86_64
void
BX_CPU_C::loadSRegLMNominal(unsigned segI, unsigned selector, bx_address base,
unsigned dpl)
{
bx_segment_reg_t *seg = & BX_CPU_THIS_PTR sregs[segI];
// Load a segment register in long-mode with nominal values,
// so descriptor cache values are compatible with existing checks.
seg->cache.u.segment.base = base;
// (KPL) I doubt we need limit_scaled. If we do, it should be
// of type bx_addr and be maxed to 64bits, not 32.
seg->cache.u.segment.limit_scaled = 0xffffffff;
seg->cache.valid = 1;
seg->cache.dpl = dpl; // (KPL) Not sure if we need this.
seg->selector.value = selector;
}
#endif
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::parse_selector(Bit16u raw_selector, bx_selector_t *selector)
{
selector->value = raw_selector;
selector->index = raw_selector >> 3;
selector->ti = (raw_selector >> 2) & 0x01;
selector->rpl = raw_selector & 0x03;
}
#endif
void
BX_CPU_C::parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp)
{
Bit8u AR_byte;
AR_byte = dword2 >> 8;
temp->p = (AR_byte >> 7) & 0x01;
temp->dpl = (AR_byte >> 5) & 0x03;
temp->segment = (AR_byte >> 4) & 0x01;
temp->type = (AR_byte & 0x0f);
temp->valid = 0; /* start out invalid */
if (temp->segment) { /* data/code segment descriptors */
temp->u.segment.executable = (AR_byte >> 3) & 0x01;
temp->u.segment.c_ed = (AR_byte >> 2) & 0x01;
temp->u.segment.r_w = (AR_byte >> 1) & 0x01;
temp->u.segment.a = (AR_byte >> 0) & 0x01;
temp->u.segment.limit = (dword1 & 0xffff);
temp->u.segment.base = (dword1 >> 16) |
((dword2 & 0xFF) << 16);
#if BX_CPU_LEVEL >= 3
temp->u.segment.limit |= (dword2 & 0x000F0000);
temp->u.segment.g = (dword2 & 0x00800000) > 0;
temp->u.segment.d_b = (dword2 & 0x00400000) > 0;
#if BX_SUPPORT_X86_64
temp->u.segment.l = (dword2 & 0x00200000) > 0;
#endif
temp->u.segment.avl = (dword2 & 0x00100000) > 0;
temp->u.segment.base |= (dword2 & 0xFF000000);
if (temp->u.segment.g) {
if ( (temp->u.segment.executable==0) && (temp->u.segment.c_ed) )
temp->u.segment.limit_scaled = (temp->u.segment.limit << 12);
else
temp->u.segment.limit_scaled = (temp->u.segment.limit << 12) | 0x0fff;
}
else
#endif
temp->u.segment.limit_scaled = temp->u.segment.limit;
temp->valid = 1;
}
else { // system & gate segment descriptors
switch ( temp->type ) {
case 0: // reserved
case 8: // reserved
case 10: // reserved
case 13: // reserved
temp->valid = 0;
break;
case 1: // 286 TSS (available)
case 3: // 286 TSS (busy)
temp->u.tss286.base = (dword1 >> 16) |
((dword2 & 0xff) << 16);
temp->u.tss286.limit = (dword1 & 0xffff);
temp->valid = 1;
break;
case 2: // LDT descriptor
temp->u.ldt.base = (dword1 >> 16) |
((dword2 & 0xFF) << 16);
#if BX_CPU_LEVEL >= 3
temp->u.ldt.base |= (dword2 & 0xff000000);
#endif
temp->u.ldt.limit = (dword1 & 0xffff);
temp->valid = 1;
break;
case 4: // 286 call gate
case 6: // 286 interrupt gate
case 7: // 286 trap gate
/* word count only used for call gate */
temp->u.gate286.word_count = dword2 & 0x1f;
temp->u.gate286.dest_selector = dword1 >> 16;;
temp->u.gate286.dest_offset = dword1 & 0xffff;
temp->valid = 1;
break;
case 5: // 286/386 task gate
temp->u.taskgate.tss_selector = dword1 >> 16;;
temp->valid = 1;
break;
#if BX_CPU_LEVEL >= 3
case 9: // 386 TSS (available)
case 11: // 386 TSS (busy)
temp->u.tss386.base = (dword1 >> 16) |
((dword2 & 0xff) << 16) |
(dword2 & 0xff000000);
temp->u.tss386.limit = (dword1 & 0x0000ffff) |
(dword2 & 0x000f0000);
temp->u.tss386.g = (dword2 & 0x00800000) > 0;
temp->u.tss386.avl = (dword2 & 0x00100000) > 0;
if (temp->u.tss386.g)
temp->u.tss386.limit_scaled = (temp->u.tss386.limit << 12) | 0x0fff;
else
temp->u.tss386.limit_scaled = temp->u.tss386.limit;
temp->valid = 1;
break;
case 12: // 386 call gate
case 14: // 386 interrupt gate
case 15: // 386 trap gate
// word count only used for call gate
temp->u.gate386.dword_count = dword2 & 0x1f;
temp->u.gate386.dest_selector = dword1 >> 16;;
temp->u.gate386.dest_offset = (dword2 & 0xffff0000) |
(dword1 & 0x0000ffff);
temp->valid = 1;
break;
#endif
default: BX_PANIC(("parse_descriptor(): case %d unfinished",
(unsigned) temp->type));
temp->valid = 0;
}
}
}
void
BX_CPU_C::load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor)
{
/* check for null selector, if so invalidate LDTR */
if ( (selector->value & 0xfffc)==0 ) {
BX_CPU_THIS_PTR ldtr.selector = *selector;
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
return;
}
if (!descriptor)
BX_PANIC(("load_ldtr(): descriptor == NULL!"));
BX_CPU_THIS_PTR ldtr.cache = *descriptor; /* whole structure copy */
BX_CPU_THIS_PTR ldtr.selector = *selector;
if (BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit < 7) {
BX_PANIC(("load_ldtr(): ldtr.limit < 7"));
}
BX_CPU_THIS_PTR ldtr.cache.valid = 1;
}
void
BX_CPU_C::load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor,
Bit8u cpl)
{
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = *selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = *descriptor;
/* caller may request different CPL then in selector */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = cpl;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1; /* ??? */
// (BW) Added cpl to the selector value.
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value =
(0xfffc & BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value) | cpl;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.lma) {
if (descriptor->u.segment.l) {
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_64;
loadSRegLMNominal(BX_SEG_REG_CS, selector->value, 0, cpl);
}
else {
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_COMPAT;
}
}
#endif
#if BX_SupportICache
BX_CPU_THIS_PTR iCache.fetchModeMask =
BX_CPU_THIS_PTR iCache.createFetchModeMask(BX_CPU_THIS);
#endif
}
void
BX_CPU_C::load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl)
{
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = *selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = *descriptor;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpl;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
loadSRegLMNominal(BX_SEG_REG_SS, selector->value, 0, cpl);
return;
}
#endif
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 )
BX_PANIC(("load_ss(): null selector passed"));
if ( !BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid ) {
BX_PANIC(("load_ss(): invalid selector/descriptor passed."));
}
}
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::fetch_raw_descriptor(bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, Bit8u exception_no)
{
if (selector->ti == 0) { /* GDT */
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
BX_INFO(("-----------------------------------"));
BX_INFO(("selector->index*8 + 7 = %u", (unsigned) selector->index*8 + 7));
BX_INFO(("gdtr.limit = %u", (unsigned) BX_CPU_THIS_PTR gdtr.limit));
BX_INFO(("fetch_raw_descriptor: GDT: index > limit"));
debug(BX_CPU_THIS_PTR prev_eip);
BX_INFO(("-----------------------------------"));
exception(exception_no, selector->value & 0xfffc, 0);
return;
}
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8, 4, 0,
BX_READ, dword1);
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8 + 4, 4, 0,
BX_READ, dword2);
}
else { /* LDT */
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
BX_PANIC(("fetch_raw_descriptor: LDTR.valid=0"));
}
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
BX_PANIC(("fetch_raw_descriptor: LDT: index (%x)%x > limit (%x)",
(selector->index*8 + 7), selector->index,
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit));
exception(exception_no, selector->value & 0xfffc, 0);
return;
}
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8, 4, 0,
BX_READ, dword1);
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8 + 4, 4, 0,
BX_READ, dword2);
}
}
#endif
bx_bool
BX_CPU_C::fetch_raw_descriptor2(bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2)
{
if (selector->ti == 0) { /* GDT */
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit)
return(0);
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8, 4, 0,
BX_READ, dword1);
access_linear(BX_CPU_THIS_PTR gdtr.base + selector->index*8 + 4, 4, 0,
BX_READ, dword2);
return(1);
}
else { /* LDT */
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit)
return(0);
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8, 4, 0,
BX_READ, dword1);
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8 + 4, 4, 0,
BX_READ, dword2);
return(1);
}
}