Bochs/bochs/cpu/init.cc
Kevin Lawton 93d05990cc Updated CR4 to use the patented Bryce bitfields accessor method for
both cpu32 and cpu64, to make upcoming merging easier, and the
code cleaner.  Compiled for debug as well, and fixed CR4 for that
also.
2002-09-14 19:21:41 +00:00

972 lines
33 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: init.cc,v 1.27 2002-09-14 19:21:40 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
/* the device id and stepping id are loaded into DH & DL upon processor
startup. for device id: 3 = 80386, 4 = 80486. just make up a
number for the stepping (revision) id. */
#define BX_DEVICE_ID 3
#define BX_STEPPING_ID 0
BX_CPU_C::BX_CPU_C()
#if BX_SUPPORT_APIC
: local_apic (this)
#endif
{
// in case of SMF, you cannot reference any member data
// in the constructor because the only access to it is via
// global variables which aren't initialized quite yet.
put("CPU");
settype (CPU0LOG);
}
#if BX_WITH_WX
#define CASE_SEG_REG_GET(x) \
case BXP_CPU_SEG_##x: \
return BX_CPU_THIS_PTR sregs[BX_SEG_REG_##x].selector.value;
#define CASE_SEG_REG_SET(reg, val) \
case BXP_CPU_SEG_##reg: \
BX_CPU_THIS_PTR load_seg_reg (&BX_CPU_THIS_PTR sregs[BX_SEG_REG_##reg],val); \
break;
#define CASE_LAZY_EFLAG_GET(flag) \
case BXP_CPU_EFLAGS_##flag: \
return BX_CPU_THIS_PTR get_##flag ();
#define CASE_LAZY_EFLAG_SET(flag, val) \
case BXP_CPU_EFLAGS_##flag: \
BX_CPU_THIS_PTR set_##flag(val); \
break;
#define CASE_EFLAG_GET(flag) \
case BXP_CPU_EFLAGS_##flag: \
return BX_CPU_THIS_PTR get_##flag ();
#define CASE_EFLAG_SET(flag, val) \
case BXP_CPU_EFLAGS_##flag: \
BX_CPU_THIS_PTR set_##flag(val); \
break;
// implement get/set handler for parameters that need unusual set/get
static Bit32s
cpu_param_handler (bx_param_c *param, int set, Bit32s val)
{
bx_id id = param->get_id ();
if (set) {
switch (id) {
CASE_SEG_REG_SET (CS, val);
CASE_SEG_REG_SET (DS, val);
CASE_SEG_REG_SET (SS, val);
CASE_SEG_REG_SET (ES, val);
CASE_SEG_REG_SET (FS, val);
CASE_SEG_REG_SET (GS, val);
case BXP_CPU_SEG_LDTR:
BX_PANIC(("setting LDTR not implemented"));
break;
case BXP_CPU_SEG_TR:
BX_PANIC(("setting TR not implemented"));
break;
CASE_LAZY_EFLAG_SET (OF, val);
CASE_LAZY_EFLAG_SET (SF, val);
CASE_LAZY_EFLAG_SET (ZF, val);
CASE_LAZY_EFLAG_SET (AF, val);
CASE_LAZY_EFLAG_SET (PF, val);
CASE_LAZY_EFLAG_SET (CF, val);
CASE_EFLAG_SET (ID, val);
//CASE_EFLAG_SET (VIP, val);
//CASE_EFLAG_SET (VIF, val);
CASE_EFLAG_SET (AC, val);
CASE_EFLAG_SET (VM, val);
CASE_EFLAG_SET (RF, val);
CASE_EFLAG_SET (NT, val);
CASE_EFLAG_SET (IOPL, val);
CASE_EFLAG_SET (DF, val);
CASE_EFLAG_SET (IF, val);
CASE_EFLAG_SET (TF, val);
default:
BX_PANIC (("cpu_param_handler set id %d not handled", id));
}
} else {
switch (id) {
CASE_SEG_REG_GET (CS);
CASE_SEG_REG_GET (DS);
CASE_SEG_REG_GET (SS);
CASE_SEG_REG_GET (ES);
CASE_SEG_REG_GET (FS);
CASE_SEG_REG_GET (GS);
case BXP_CPU_SEG_LDTR:
return BX_CPU_THIS_PTR ldtr.selector.value;
break;
case BXP_CPU_SEG_TR:
return BX_CPU_THIS_PTR tr.selector.value;
break;
CASE_LAZY_EFLAG_GET (OF);
CASE_LAZY_EFLAG_GET (SF);
CASE_LAZY_EFLAG_GET (ZF);
CASE_LAZY_EFLAG_GET (AF);
CASE_LAZY_EFLAG_GET (PF);
CASE_LAZY_EFLAG_GET (CF);
CASE_EFLAG_GET (ID);
//CASE_EFLAG_GET (VIP);
//CASE_EFLAG_GET (VIF);
CASE_EFLAG_GET (AC);
CASE_EFLAG_GET (VM);
CASE_EFLAG_GET (RF);
CASE_EFLAG_GET (NT);
CASE_EFLAG_GET (IOPL);
CASE_EFLAG_GET (DF);
CASE_EFLAG_GET (IF);
CASE_EFLAG_GET (TF);
default:
BX_PANIC (("cpu_param_handler get id %d ('%s') not handled", id, param->get_name ()));
}
}
return val;
}
#undef CASE_SEG_REG_GET
#undef CASE_SEG_REG_SET
#endif
void BX_CPU_C::init(BX_MEM_C *addrspace)
{
BX_DEBUG(( "Init $Id: init.cc,v 1.27 2002-09-14 19:21:40 kevinlawton Exp $"));
// BX_CPU_C constructor
BX_CPU_THIS_PTR set_INTR (0);
#if BX_SUPPORT_APIC
local_apic.init ();
#endif
// in SMP mode, the prefix of the CPU will be changed to [CPUn] in
// bx_local_apic_c::set_id as soon as the apic ID is assigned.
/* hack for the following fields. Its easier to decode mod-rm bytes if
you can assume there's always a base & index register used. For
modes which don't really use them, point to an empty (zeroed) register.
*/
empty_register = 0;
// 16bit address mode base register, used for mod-rm decoding
_16bit_base_reg[0] = &gen_reg[BX_16BIT_REG_BX].word.rx;
_16bit_base_reg[1] = &gen_reg[BX_16BIT_REG_BX].word.rx;
_16bit_base_reg[2] = &gen_reg[BX_16BIT_REG_BP].word.rx;
_16bit_base_reg[3] = &gen_reg[BX_16BIT_REG_BP].word.rx;
_16bit_base_reg[4] = (Bit16u*) &empty_register;
_16bit_base_reg[5] = (Bit16u*) &empty_register;
_16bit_base_reg[6] = &gen_reg[BX_16BIT_REG_BP].word.rx;
_16bit_base_reg[7] = &gen_reg[BX_16BIT_REG_BX].word.rx;
// 16bit address mode index register, used for mod-rm decoding
_16bit_index_reg[0] = &gen_reg[BX_16BIT_REG_SI].word.rx;
_16bit_index_reg[1] = &gen_reg[BX_16BIT_REG_DI].word.rx;
_16bit_index_reg[2] = &gen_reg[BX_16BIT_REG_SI].word.rx;
_16bit_index_reg[3] = &gen_reg[BX_16BIT_REG_DI].word.rx;
_16bit_index_reg[4] = &gen_reg[BX_16BIT_REG_SI].word.rx;
_16bit_index_reg[5] = &gen_reg[BX_16BIT_REG_DI].word.rx;
_16bit_index_reg[6] = (Bit16u*) &empty_register;
_16bit_index_reg[7] = (Bit16u*) &empty_register;
// for decoding instructions: access to seg reg's via index number
sreg_mod00_rm16[0] = BX_SEG_REG_DS;
sreg_mod00_rm16[1] = BX_SEG_REG_DS;
sreg_mod00_rm16[2] = BX_SEG_REG_SS;
sreg_mod00_rm16[3] = BX_SEG_REG_SS;
sreg_mod00_rm16[4] = BX_SEG_REG_DS;
sreg_mod00_rm16[5] = BX_SEG_REG_DS;
sreg_mod00_rm16[6] = BX_SEG_REG_DS;
sreg_mod00_rm16[7] = BX_SEG_REG_DS;
sreg_mod01_rm16[0] = BX_SEG_REG_DS;
sreg_mod01_rm16[1] = BX_SEG_REG_DS;
sreg_mod01_rm16[2] = BX_SEG_REG_SS;
sreg_mod01_rm16[3] = BX_SEG_REG_SS;
sreg_mod01_rm16[4] = BX_SEG_REG_DS;
sreg_mod01_rm16[5] = BX_SEG_REG_DS;
sreg_mod01_rm16[6] = BX_SEG_REG_SS;
sreg_mod01_rm16[7] = BX_SEG_REG_DS;
sreg_mod10_rm16[0] = BX_SEG_REG_DS;
sreg_mod10_rm16[1] = BX_SEG_REG_DS;
sreg_mod10_rm16[2] = BX_SEG_REG_SS;
sreg_mod10_rm16[3] = BX_SEG_REG_SS;
sreg_mod10_rm16[4] = BX_SEG_REG_DS;
sreg_mod10_rm16[5] = BX_SEG_REG_DS;
sreg_mod10_rm16[6] = BX_SEG_REG_SS;
sreg_mod10_rm16[7] = BX_SEG_REG_DS;
// the default segment to use for a one-byte modrm with mod==01b
// and rm==i
//
sreg_mod01_rm32[0] = BX_SEG_REG_DS;
sreg_mod01_rm32[1] = BX_SEG_REG_DS;
sreg_mod01_rm32[2] = BX_SEG_REG_DS;
sreg_mod01_rm32[3] = BX_SEG_REG_DS;
sreg_mod01_rm32[4] = BX_SEG_REG_NULL;
// this entry should never be accessed
// (escape to 2-byte)
sreg_mod01_rm32[5] = BX_SEG_REG_SS;
sreg_mod01_rm32[6] = BX_SEG_REG_DS;
sreg_mod01_rm32[7] = BX_SEG_REG_DS;
#if BX_SUPPORT_X86_64
sreg_mod01_rm32[8] = BX_SEG_REG_DS;
sreg_mod01_rm32[9] = BX_SEG_REG_DS;
sreg_mod01_rm32[10] = BX_SEG_REG_DS;
sreg_mod01_rm32[11] = BX_SEG_REG_DS;
sreg_mod01_rm32[12] = BX_SEG_REG_DS;
sreg_mod01_rm32[13] = BX_SEG_REG_DS;
sreg_mod01_rm32[14] = BX_SEG_REG_DS;
sreg_mod01_rm32[15] = BX_SEG_REG_DS;
#endif
// the default segment to use for a one-byte modrm with mod==10b
// and rm==i
//
sreg_mod10_rm32[0] = BX_SEG_REG_DS;
sreg_mod10_rm32[1] = BX_SEG_REG_DS;
sreg_mod10_rm32[2] = BX_SEG_REG_DS;
sreg_mod10_rm32[3] = BX_SEG_REG_DS;
sreg_mod10_rm32[4] = BX_SEG_REG_NULL;
// this entry should never be accessed
// (escape to 2-byte)
sreg_mod10_rm32[5] = BX_SEG_REG_SS;
sreg_mod10_rm32[6] = BX_SEG_REG_DS;
sreg_mod10_rm32[7] = BX_SEG_REG_DS;
#if BX_SUPPORT_X86_64
sreg_mod10_rm32[8] = BX_SEG_REG_DS;
sreg_mod10_rm32[9] = BX_SEG_REG_DS;
sreg_mod10_rm32[10] = BX_SEG_REG_DS;
sreg_mod10_rm32[11] = BX_SEG_REG_DS;
sreg_mod10_rm32[12] = BX_SEG_REG_DS;
sreg_mod10_rm32[13] = BX_SEG_REG_DS;
sreg_mod10_rm32[14] = BX_SEG_REG_DS;
sreg_mod10_rm32[15] = BX_SEG_REG_DS;
#endif
// the default segment to use for a two-byte modrm with mod==00b
// and base==i
//
sreg_mod0_base32[0] = BX_SEG_REG_DS;
sreg_mod0_base32[1] = BX_SEG_REG_DS;
sreg_mod0_base32[2] = BX_SEG_REG_DS;
sreg_mod0_base32[3] = BX_SEG_REG_DS;
sreg_mod0_base32[4] = BX_SEG_REG_SS;
sreg_mod0_base32[5] = BX_SEG_REG_DS;
sreg_mod0_base32[6] = BX_SEG_REG_DS;
sreg_mod0_base32[7] = BX_SEG_REG_DS;
#if BX_SUPPORT_X86_64
sreg_mod0_base32[8] = BX_SEG_REG_DS;
sreg_mod0_base32[9] = BX_SEG_REG_DS;
sreg_mod0_base32[10] = BX_SEG_REG_DS;
sreg_mod0_base32[11] = BX_SEG_REG_DS;
sreg_mod0_base32[12] = BX_SEG_REG_DS;
sreg_mod0_base32[13] = BX_SEG_REG_DS;
sreg_mod0_base32[14] = BX_SEG_REG_DS;
sreg_mod0_base32[15] = BX_SEG_REG_DS;
#endif
// the default segment to use for a two-byte modrm with
// mod==01b or mod==10b and base==i
sreg_mod1or2_base32[0] = BX_SEG_REG_DS;
sreg_mod1or2_base32[1] = BX_SEG_REG_DS;
sreg_mod1or2_base32[2] = BX_SEG_REG_DS;
sreg_mod1or2_base32[3] = BX_SEG_REG_DS;
sreg_mod1or2_base32[4] = BX_SEG_REG_SS;
sreg_mod1or2_base32[5] = BX_SEG_REG_SS;
sreg_mod1or2_base32[6] = BX_SEG_REG_DS;
sreg_mod1or2_base32[7] = BX_SEG_REG_DS;
#if BX_SUPPORT_X86_64
sreg_mod1or2_base32[8] = BX_SEG_REG_DS;
sreg_mod1or2_base32[9] = BX_SEG_REG_DS;
sreg_mod1or2_base32[10] = BX_SEG_REG_DS;
sreg_mod1or2_base32[11] = BX_SEG_REG_DS;
sreg_mod1or2_base32[12] = BX_SEG_REG_DS;
sreg_mod1or2_base32[13] = BX_SEG_REG_DS;
sreg_mod1or2_base32[14] = BX_SEG_REG_DS;
#warning "KPL: The following was 14, I changed to 15. Typo?"
sreg_mod1or2_base32[15] = BX_SEG_REG_DS;
#endif
#if BX_DYNAMIC_TRANSLATION
DTWrite8vShim = NULL;
DTWrite16vShim = NULL;
DTWrite32vShim = NULL;
DTRead8vShim = NULL;
DTRead16vShim = NULL;
DTRead32vShim = NULL;
DTReadRMW8vShim = (BxDTShim_t) DTASReadRMW8vShim;
BX_DEBUG(( "DTReadRMW8vShim is %x", (unsigned) DTReadRMW8vShim ));
BX_DEBUG(( "&DTReadRMW8vShim is %x", (unsigned) &DTReadRMW8vShim ));
DTReadRMW16vShim = NULL;
DTReadRMW32vShim = NULL;
DTWriteRMW8vShim = (BxDTShim_t) DTASWriteRMW8vShim;
DTWriteRMW16vShim = NULL;
DTWriteRMW32vShim = NULL;
DTSetFlagsOSZAPCPtr = (BxDTShim_t) DTASSetFlagsOSZAPC;
DTIndBrHandler = (BxDTShim_t) DTASIndBrHandler;
DTDirBrHandler = (BxDTShim_t) DTASDirBrHandler;
#endif
mem = addrspace;
sprintf (name, "CPU %p", this);
BX_INSTR_INIT();
#if BX_WITH_WX
// Register some of the CPUs variables as shadow parameters so that
// they can be visible in the config interface.
// (Experimental, obviously not a complete list)
bx_param_num_c *param;
const char *fmt16 = "%04X";
const char *fmt32 = "%08X";
Bit32u oldbase = bx_param_num_c::set_default_base (16);
const char *oldfmt = bx_param_num_c::set_default_format (fmt32);
bx_list_c *list = new bx_list_c (BXP_CPU_PARAMETERS, "CPU State", "", 60);
#define DEFPARAM_NORMAL(name,field) \
list->add (new bx_shadow_num_c (BXP_CPU_##name, #name, &(field)))
DEFPARAM_NORMAL (EAX, EAX);
DEFPARAM_NORMAL (EBX, EBX);
DEFPARAM_NORMAL (ECX, ECX);
DEFPARAM_NORMAL (EDX, EDX);
DEFPARAM_NORMAL (ESP, ESP);
DEFPARAM_NORMAL (EBP, EBP);
DEFPARAM_NORMAL (ESI, ESI);
DEFPARAM_NORMAL (EDI, EDI);
DEFPARAM_NORMAL (EIP, EIP);
DEFPARAM_NORMAL (DR0, dr0);
DEFPARAM_NORMAL (DR1, dr1);
DEFPARAM_NORMAL (DR2, dr2);
DEFPARAM_NORMAL (DR3, dr3);
DEFPARAM_NORMAL (DR6, dr6);
DEFPARAM_NORMAL (DR7, dr7);
#if BX_SUPPORT_X86_64==0
#if BX_CPU_LEVEL >= 2
DEFPARAM_NORMAL (CR0, cr0.val32);
DEFPARAM_NORMAL (CR1, cr1);
DEFPARAM_NORMAL (CR2, cr2);
DEFPARAM_NORMAL (CR3, cr3);
#endif
#if BX_CPU_LEVEL >= 4
DEFPARAM_NORMAL (CR4, cr4);
#endif
#endif // #if BX_SUPPORT_X86_64==0
// segment registers require a handler function because they have
// special get/set requirements.
#define DEFPARAM_SEG_REG(x) \
list->add (param = new bx_param_num_c (BXP_CPU_SEG_##x, \
#x, "", 0, 0xffff, 0)); \
param->set_handler (cpu_param_handler); \
param->set_format (fmt16);
#define DEFPARAM_GLOBAL_SEG_REG(name,field) \
list->add (param = new bx_shadow_num_c (BXP_CPU_##name##_BASE, \
#name" base", \
& BX_CPU_THIS_PTR field.base)); \
list->add (param = new bx_shadow_num_c (BXP_CPU_##name##_LIMIT, \
#name" limit", \
& BX_CPU_THIS_PTR field.limit));
DEFPARAM_SEG_REG(CS);
DEFPARAM_SEG_REG(DS);
DEFPARAM_SEG_REG(SS);
DEFPARAM_SEG_REG(ES);
DEFPARAM_SEG_REG(FS);
DEFPARAM_SEG_REG(GS);
DEFPARAM_SEG_REG(LDTR);
DEFPARAM_SEG_REG(TR);
DEFPARAM_GLOBAL_SEG_REG(GDTR, gdtr);
DEFPARAM_GLOBAL_SEG_REG(IDTR, idtr);
#undef DEFPARAM_SEGREG
#if BX_SUPPORT_X86_64==0
list->add (param = new bx_shadow_num_c (BXP_CPU_EFLAGS, "EFLAGS",
&BX_CPU_THIS_PTR eflags.val32));
#endif
// flags implemented in lazy_flags.cc must be done with a handler
// that calls their get function, to force them to be computed.
#define DEFPARAM_EFLAG(name) \
list->add ( \
param = new bx_param_bool_c ( \
BXP_CPU_EFLAGS_##name, \
#name, "", get_##name())); \
param->set_handler (cpu_param_handler);
#define DEFPARAM_LAZY_EFLAG(name) \
list->add ( \
param = new bx_param_bool_c ( \
BXP_CPU_EFLAGS_##name, \
#name, "", get_##name())); \
param->set_handler (cpu_param_handler);
#if BX_CPU_LEVEL >= 4
DEFPARAM_EFLAG(ID);
//DEFPARAM_EFLAG(VIP);
//DEFPARAM_EFLAG(VIF);
DEFPARAM_EFLAG(AC);
#endif
#if BX_CPU_LEVEL >= 3
DEFPARAM_EFLAG(VM);
DEFPARAM_EFLAG(RF);
#endif
#if BX_CPU_LEVEL >= 2
DEFPARAM_EFLAG(NT);
// IOPL is a special case because it is 2 bits wide.
list->add (
param = new bx_shadow_num_c (
BXP_CPU_EFLAGS_IOPL,
"IOPL", "", 0, 3,
&eflags.val32,
12, 13));
#if BX_SUPPORT_X86_64==0
param->set_format ("%d");
#endif
#endif
DEFPARAM_LAZY_EFLAG(OF);
DEFPARAM_EFLAG(DF);
DEFPARAM_EFLAG(IF);
DEFPARAM_EFLAG(TF);
DEFPARAM_LAZY_EFLAG(SF);
DEFPARAM_LAZY_EFLAG(ZF);
DEFPARAM_LAZY_EFLAG(AF);
DEFPARAM_LAZY_EFLAG(PF);
DEFPARAM_LAZY_EFLAG(CF);
// restore defaults
bx_param_num_c::set_default_base (oldbase);
bx_param_num_c::set_default_format (oldfmt);
#endif
}
BX_CPU_C::~BX_CPU_C(void)
{
BX_INSTR_SHUTDOWN();
BX_DEBUG(( "Exit."));
}
void
BX_CPU_C::reset(unsigned source)
{
UNUSED(source); // either BX_RESET_HARDWARE or BX_RESET_SOFTWARE
// general registers
EAX = 0; // processor passed test :-)
EBX = 0; // undefined
ECX = 0; // undefined
EDX = (BX_DEVICE_ID << 8) | BX_STEPPING_ID; // ???
EBP = 0; // undefined
ESI = 0; // undefined
EDI = 0; // undefined
ESP = 0; // undefined
// all status flags at known values, use BX_CPU_THIS_PTR eflags structure
BX_CPU_THIS_PTR lf_flags_status = 0x000000;
// status and control flags register set
BX_CPU_THIS_PTR eflags.val32 = 0x2; // Bit1 is always set
BX_CPU_THIS_PTR clear_IF ();
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR clear_RF ();
BX_CPU_THIS_PTR clear_VM ();
#endif
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR clear_AC ();
#endif
BX_CPU_THIS_PTR inhibit_mask = 0;
BX_CPU_THIS_PTR debug_trap = 0;
/* instruction pointer */
#if BX_CPU_LEVEL < 2
BX_CPU_THIS_PTR prev_eip =
EIP = 0x00000000;
#else /* from 286 up */
BX_CPU_THIS_PTR prev_eip =
#if BX_SUPPORT_X86_64
RIP = 0x0000FFF0;
#else
EIP = 0x0000FFF0;
#endif
#endif
/* CS (Code Segment) and descriptor cache */
/* Note: on a real cpu, CS initially points to upper memory. After
* the 1st jump, the descriptor base is zero'd out. Since I'm just
* going to jump to my BIOS, I don't need to do this.
* For future reference:
* processor cs.selector cs.base cs.limit EIP
* 8086 FFFF FFFF0 FFFF 0000
* 286 F000 FF0000 FFFF FFF0
* 386+ F000 FFFF0000 FFFF FFF0
*/
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = 0xf000;
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type = 3; /* read/write access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = 0x000F0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xFFFF;
#endif
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* 16bit default size */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
#endif
/* SS (Stack Segment) and descriptor cache */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = 0x0000;
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type = 3; /* read/write access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xFFFF;
#endif
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 0; /* 16bit default size */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0;
#endif
/* DS (Data Segment) and descriptor cache */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0x0000;
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type = 3; /* read/write access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = 0; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xFFFF;
#endif
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = 0; /* 16bit default size */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = 0;
#endif
/* ES (Extra Segment) and descriptor cache */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0x0000;
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.type = 3; /* read/write access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = 0; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled = 0xFFFF;
#endif
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b = 0; /* 16bit default size */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl = 0;
#endif
/* FS and descriptor cache */
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.type = 3; /* read/write access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.executable = 0; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b = 0; /* 16bit default size */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl = 0;
#endif
/* GS and descriptor cache */
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.type = 3; /* read/write access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.executable = 0; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b = 0; /* 16bit default size */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl = 0;
#endif
/* GDTR (Global Descriptor Table Register) */
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR gdtr.base = 0x00000000; /* undefined */
BX_CPU_THIS_PTR gdtr.limit = 0x0000; /* undefined */
/* ??? AR=Present, Read/Write */
#endif
/* IDTR (Interrupt Descriptor Table Register) */
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR idtr.base = 0x00000000;
BX_CPU_THIS_PTR idtr.limit = 0x03FF; /* always byte granular */ /* ??? */
/* ??? AR=Present, Read/Write */
#endif
/* LDTR (Local Descriptor Table Register) */
#if BX_CPU_LEVEL >= 2
BX_CPU_THIS_PTR ldtr.selector.value = 0x0000;
BX_CPU_THIS_PTR ldtr.selector.index = 0x0000;
BX_CPU_THIS_PTR ldtr.selector.ti = 0;
BX_CPU_THIS_PTR ldtr.selector.rpl = 0;
BX_CPU_THIS_PTR ldtr.cache.valid = 0; /* not valid */
BX_CPU_THIS_PTR ldtr.cache.p = 0; /* not present */
BX_CPU_THIS_PTR ldtr.cache.dpl = 0; /* field not used */
BX_CPU_THIS_PTR ldtr.cache.segment = 0; /* system segment */
BX_CPU_THIS_PTR ldtr.cache.type = 2; /* LDT descriptor */
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0x00000000;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0xFFFF;
#endif
/* TR (Task Register) */
#if BX_CPU_LEVEL >= 2
/* ??? I don't know what state the TR comes up in */
BX_CPU_THIS_PTR tr.selector.value = 0x0000;
BX_CPU_THIS_PTR tr.selector.index = 0x0000; /* undefined */
BX_CPU_THIS_PTR tr.selector.ti = 0;
BX_CPU_THIS_PTR tr.selector.rpl = 0;
BX_CPU_THIS_PTR tr.cache.valid = 0;
BX_CPU_THIS_PTR tr.cache.p = 0;
BX_CPU_THIS_PTR tr.cache.dpl = 0; /* field not used */
BX_CPU_THIS_PTR tr.cache.segment = 0;
BX_CPU_THIS_PTR tr.cache.type = 0; /* invalid */
BX_CPU_THIS_PTR tr.cache.u.tss286.base = 0x00000000; /* undefined */
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = 0x0000; /* undefined */
#endif
// DR0 - DR7 (Debug Registers)
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR dr0 = 0; /* undefined */
BX_CPU_THIS_PTR dr1 = 0; /* undefined */
BX_CPU_THIS_PTR dr2 = 0; /* undefined */
BX_CPU_THIS_PTR dr3 = 0; /* undefined */
#endif
#if BX_CPU_LEVEL == 3
BX_CPU_THIS_PTR dr6 = 0xFFFF1FF0;
BX_CPU_THIS_PTR dr7 = 0x00000400;
#elif BX_CPU_LEVEL == 4
BX_CPU_THIS_PTR dr6 = 0xFFFF1FF0;
BX_CPU_THIS_PTR dr7 = 0x00000400;
#elif BX_CPU_LEVEL == 5
BX_CPU_THIS_PTR dr6 = 0xFFFF0FF0;
BX_CPU_THIS_PTR dr7 = 0x00000400;
#elif BX_CPU_LEVEL == 6
BX_CPU_THIS_PTR dr6 = 0xFFFF0FF0;
BX_CPU_THIS_PTR dr7 = 0x00000400;
#else
# error "DR6,7: CPU > 6"
#endif
#if 0
/* test registers 3-7 (unimplemented) */
BX_CPU_THIS_PTR tr3 = 0; /* undefined */
BX_CPU_THIS_PTR tr4 = 0; /* undefined */
BX_CPU_THIS_PTR tr5 = 0; /* undefined */
BX_CPU_THIS_PTR tr6 = 0; /* undefined */
BX_CPU_THIS_PTR tr7 = 0; /* undefined */
#endif
#if BX_CPU_LEVEL >= 2
// MSW (Machine Status Word), so called on 286
// CR0 (Control Register 0), so called on 386+
BX_CPU_THIS_PTR cr0.ts = 0; // no task switch
BX_CPU_THIS_PTR cr0.em = 0; // emulate math coprocessor
BX_CPU_THIS_PTR cr0.mp = 0; // wait instructions not trapped
BX_CPU_THIS_PTR cr0.pe = 0; // real mode
BX_CPU_THIS_PTR cr0.val32 = 0;
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR cr0.pg = 0; // paging disabled
// no change to cr0.val32
#endif
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR cr0.cd = 1; // caching disabled
BX_CPU_THIS_PTR cr0.nw = 1; // not write-through
BX_CPU_THIS_PTR cr0.am = 0; // disable alignment check
BX_CPU_THIS_PTR cr0.wp = 0; // disable write-protect
BX_CPU_THIS_PTR cr0.ne = 0; // ndp exceptions through int 13H, DOS compat
BX_CPU_THIS_PTR cr0.val32 |= 0x60000000;
#endif
// handle reserved bits
#if BX_CPU_LEVEL == 3
// reserved bits all set to 1 on 386
BX_CPU_THIS_PTR cr0.val32 |= 0x7ffffff0;
#elif BX_CPU_LEVEL >= 4
// bit 4 is hardwired to 1 on all x86
BX_CPU_THIS_PTR cr0.val32 |= 0x00000010;
#endif
#endif // CPU >= 2
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR cr2 = 0;
BX_CPU_THIS_PTR cr3 = 0;
#endif
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR cr4.setRegister(0);
#endif
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32;
#endif
/* initialise MSR registers to defaults */
#if BX_CPU_LEVEL >= 5
/* APIC Address, APIC enabled and BSP is default, we'll fill in the rest later */
BX_CPU_THIS_PTR msr.apicbase = (APIC_BASE_ADDR << 12) + 0x900;
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR msr.lme = BX_CPU_THIS_PTR msr.lma = 0;
#endif
#endif
BX_CPU_THIS_PTR EXT = 0;
//BX_INTR = 0;
#if BX_SUPPORT_PAGING
#if BX_USE_TLB
TLB_init();
#endif // BX_USE_TLB
#endif // BX_SUPPORT_PAGING
BX_CPU_THIS_PTR eipPageBias = 0;
BX_CPU_THIS_PTR eipPageWindowSize = 0;
BX_CPU_THIS_PTR eipFetchPtr = NULL;
#if BX_DEBUGGER
#ifdef MAGIC_BREAKPOINT
BX_CPU_THIS_PTR magic_break = 0;
#endif
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
BX_CPU_THIS_PTR trace = 0;
#endif
// Init the Floating Point Unit
fpu_init();
#if BX_DYNAMIC_TRANSLATION
dynamic_init();
#endif
#if (BX_SMP_PROCESSORS > 1)
// notice if I'm the bootstrap processor. If not, do the equivalent of
// a HALT instruction.
int apic_id = local_apic.get_id ();
if (BX_BOOTSTRAP_PROCESSOR == apic_id)
{
// boot normally
BX_CPU_THIS_PTR bsp = 1;
BX_CPU_THIS_PTR msr.apicbase |= 0x0100; /* set bit 8 BSP */
BX_INFO(("CPU[%d] is the bootstrap processor", apic_id));
} else {
// it's an application processor, halt until IPI is heard.
BX_CPU_THIS_PTR bsp = 0;
BX_CPU_THIS_PTR msr.apicbase &= ~0x0100; /* clear bit 8 BSP */
BX_INFO(("CPU[%d] is an application processor. Halting until IPI.", apic_id));
debug_trap |= 0x80000000;
async_event = 1;
}
#else
BX_CPU_THIS_PTR async_event = 0;
#endif
}
void
BX_CPU_C::sanity_checks(void)
{
Bit8u al, cl, dl, bl, ah, ch, dh, bh;
Bit16u ax, cx, dx, bx, sp, bp, si, di;
Bit32u eax, ecx, edx, ebx, esp, ebp, esi, edi;
EAX = 0xFFEEDDCC;
ECX = 0xBBAA9988;
EDX = 0x77665544;
EBX = 0x332211FF;
ESP = 0xEEDDCCBB;
EBP = 0xAA998877;
ESI = 0x66554433;
EDI = 0x2211FFEE;
al = AL;
cl = CL;
dl = DL;
bl = BL;
ah = AH;
ch = CH;
dh = DH;
bh = BH;
if ( al != (EAX & 0xFF) ||
cl != (ECX & 0xFF) ||
dl != (EDX & 0xFF) ||
bl != (EBX & 0xFF) ||
ah != ((EAX >> 8) & 0xFF) ||
ch != ((ECX >> 8) & 0xFF) ||
dh != ((EDX >> 8) & 0xFF) ||
bh != ((EBX >> 8) & 0xFF) ) {
BX_PANIC(("problems using BX_READ_8BIT_REGx()!"));
}
ax = AX;
cx = CX;
dx = DX;
bx = BX;
sp = SP;
bp = BP;
si = SI;
di = DI;
if ( ax != (EAX & 0xFFFF) ||
cx != (ECX & 0xFFFF) ||
dx != (EDX & 0xFFFF) ||
bx != (EBX & 0xFFFF) ||
sp != (ESP & 0xFFFF) ||
bp != (EBP & 0xFFFF) ||
si != (ESI & 0xFFFF) ||
di != (EDI & 0xFFFF) ) {
BX_PANIC(("problems using BX_READ_16BIT_REG()!"));
}
eax = EAX;
ecx = ECX;
edx = EDX;
ebx = EBX;
esp = ESP;
ebp = EBP;
esi = ESI;
edi = EDI;
if (sizeof(Bit8u) != 1 || sizeof(Bit8s) != 1)
BX_PANIC(("data type Bit8u or Bit8s is not of length 1 byte!"));
if (sizeof(Bit16u) != 2 || sizeof(Bit16s) != 2)
BX_PANIC(("data type Bit16u or Bit16s is not of length 2 bytes!"));
if (sizeof(Bit32u) != 4 || sizeof(Bit32s) != 4)
BX_PANIC(("data type Bit32u or Bit32s is not of length 4 bytes!"));
BX_DEBUG(( "#(%u)all sanity checks passed!", BX_SIM_ID ));
}
void
BX_CPU_C::set_INTR(Boolean value)
{
BX_CPU_THIS_PTR INTR = value;
BX_CPU_THIS_PTR async_event = 1;
}