Bochs/bochs/cpu/shift64.cc
Stanislav Shwartsman 44eea71f37
implemented SM3 instructions (#84)
add rol/ror methods to scalar_arith.h and use in more places

---------

Co-authored-by: Stanislav Shwartsman <sshwarts@users.sourceforge.net>
2023-10-07 21:34:04 +03:00

604 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
#include "scalar_arith.h"
#include "decoder/ia_opcodes.h"
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EqGqM(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, result_64;
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
/* pointer, segment address pair */
op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_SHLD_EqGq)
count = CL;
else // BX_IA_SHLD_EqGqIb
count = i->Ib();
count &= 0x3f; // use only 6 LSB's
if (count) {
op2_64 = BX_READ_64BIT_REG(i->src());
result_64 = (op1_64 << count) | (op2_64 >> (64 - count));
write_RMW_linear_qword(result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63); // of = cf ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EqGqR(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, result_64;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_SHLD_EqGq)
count = CL;
else // BX_IA_SHLD_EqGqIb
count = i->Ib();
count &= 0x3f; // use only 6 LSB's
if (count) {
op1_64 = BX_READ_64BIT_REG(i->dst());
op2_64 = BX_READ_64BIT_REG(i->src());
result_64 = (op1_64 << count) | (op2_64 >> (64 - count));
BX_WRITE_64BIT_REG(i->dst(), result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63); // of = cf ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EqGqM(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, result_64;
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
/* pointer, segment address pair */
op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_SHRD_EqGq)
count = CL;
else // BX_IA_SHRD_EqGqIb
count = i->Ib();
count &= 0x3f; // use only 6 LSB's
if (count) {
op2_64 = BX_READ_64BIT_REG(i->src());
result_64 = (op2_64 << (64 - count)) | (op1_64 >> count);
write_RMW_linear_qword(result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
cf = (op1_64 >> (count - 1)) & 0x1;
of = ((result_64 << 1) ^ result_64) >> 63; // of = result62 ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EqGqR(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, result_64;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_SHRD_EqGq)
count = CL;
else // BX_IA_SHRD_EqGqIb
count = i->Ib();
count &= 0x3f; // use only 6 LSB's
if (count) {
op1_64 = BX_READ_64BIT_REG(i->dst());
op2_64 = BX_READ_64BIT_REG(i->src());
result_64 = (op2_64 << (64 - count)) | (op1_64 >> count);
BX_WRITE_64BIT_REG(i->dst(), result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
cf = (op1_64 >> (count - 1)) & 0x1;
of = ((result_64 << 1) ^ result_64) >> 63; // of = result62 ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EqM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_ROL_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u result_64 = rol64(op1_64, count);
write_RMW_linear_qword(result_64);
unsigned bit0 = (result_64 & 0x1);
unsigned bit63 = (result_64 >> 63);
// of = cf ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit63, bit0);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EqR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_ROL_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u op1_64 = BX_READ_64BIT_REG(i->dst());
Bit64u result_64 = rol64(op1_64, count);
BX_WRITE_64BIT_REG(i->dst(), result_64);
unsigned bit0 = (result_64 & 0x1);
unsigned bit63 = (result_64 >> 63);
// of = cf ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit63, bit0);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EqM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_ROR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u result_64 = ror64(op1_64, count);
write_RMW_linear_qword(result_64);
unsigned bit63 = (result_64 >> 63) & 1;
unsigned bit62 = (result_64 >> 62) & 1;
// of = result62 ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit62 ^ bit63, bit63);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EqR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_ROR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u op1_64 = BX_READ_64BIT_REG(i->dst());
Bit64u result_64 = ror64(op1_64, count);
BX_WRITE_64BIT_REG(i->dst(), result_64);
unsigned bit63 = (result_64 >> 63) & 1;
unsigned bit62 = (result_64 >> 62) & 1;
// of = result62 ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit62 ^ bit63, bit63);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EqM(bxInstruction_c *i)
{
Bit64u result_64;
unsigned count;
unsigned cf, of;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_RCL_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (!count) {
BX_NEXT_INSTR(i);
}
Bit64u temp_CF = getB_CF();
if (count==1) {
result_64 = (op1_64 << 1) | temp_CF;
}
else {
result_64 = (op1_64 << count) | (temp_CF << (count - 1)) |
(op1_64 >> (65 - count));
}
write_RMW_linear_qword(result_64);
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63); // of = cf ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EqR(bxInstruction_c *i)
{
Bit64u result_64;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_RCL_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (!count) {
BX_NEXT_INSTR(i);
}
Bit64u op1_64 = BX_READ_64BIT_REG(i->dst());
Bit64u temp_CF = getB_CF();
if (count==1) {
result_64 = (op1_64 << 1) | temp_CF;
}
else {
result_64 = (op1_64 << count) | (temp_CF << (count - 1)) |
(op1_64 >> (65 - count));
}
BX_WRITE_64BIT_REG(i->dst(), result_64);
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63); // of = cf ^ result63
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EqM(bxInstruction_c *i)
{
Bit64u result_64;
unsigned count;
unsigned of, cf;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_RCR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (!count) {
BX_NEXT_INSTR(i);
}
Bit64u temp_CF = getB_CF();
if (count==1) {
result_64 = (op1_64 >> 1) | (temp_CF << 63);
}
else {
result_64 = (op1_64 >> count) | (temp_CF << (64 - count)) |
(op1_64 << (65 - count));
}
write_RMW_linear_qword(result_64);
cf = (op1_64 >> (count - 1)) & 0x1;
of = ((result_64 << 1) ^ result_64) >> 63;
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EqR(bxInstruction_c *i)
{
Bit64u result_64;
unsigned count;
unsigned of, cf;
if (i->getIaOpcode() == BX_IA_RCR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (!count) {
BX_NEXT_INSTR(i);
}
Bit64u op1_64 = BX_READ_64BIT_REG(i->dst());
Bit64u temp_CF = getB_CF();
if (count==1) {
result_64 = (op1_64 >> 1) | (temp_CF << 63);
}
else {
result_64 = (op1_64 >> count) | (temp_CF << (64 - count)) |
(op1_64 << (65 - count));
}
BX_WRITE_64BIT_REG(i->dst(), result_64);
cf = (op1_64 >> (count - 1)) & 0x1;
of = ((result_64 << 1) ^ result_64) >> 63;
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EqM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_SHL_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
/* count < 64, since only lower 6 bits used */
Bit64u result_64 = (op1_64 << count);
unsigned cf = (op1_64 >> (64 - count)) & 0x1;
unsigned of = cf ^ (result_64 >> 63);
write_RMW_linear_qword(result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EqR(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned cf, of;
if (i->getIaOpcode() == BX_IA_SHL_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
op1_64 = BX_READ_64BIT_REG(i->dst());
/* count < 64, since only lower 6 bits used */
result_64 = (op1_64 << count);
BX_WRITE_64BIT_REG(i->dst(), result_64);
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EqM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_SHR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u result_64 = (op1_64 >> count);
write_RMW_linear_qword(result_64);
unsigned cf = (op1_64 >> (count - 1)) & 0x1;
// note, that of == result63 if count == 1 and
// of == 0 if count >= 2
unsigned of = ((result_64 << 1) ^ result_64) >> 63;
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EqR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_SHR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u op1_64 = BX_READ_64BIT_REG(i->dst());
Bit64u result_64 = (op1_64 >> count);
BX_WRITE_64BIT_REG(i->dst(), result_64);
unsigned cf = (op1_64 >> (count - 1)) & 0x1;
// note, that of == result63 if count == 1 and
// of == 0 if count >= 2
unsigned of = ((result_64 << 1) ^ result_64) >> 63;
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EqM(bxInstruction_c *i)
{
unsigned count;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u op1_64 = read_RMW_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
if (i->getIaOpcode() == BX_IA_SAR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
/* count < 64, since only lower 6 bits used */
Bit64u result_64 = ((Bit64s) op1_64) >> count;
write_RMW_linear_qword(result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
unsigned cf = (op1_64 >> (count - 1)) & 1;
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(0, cf); /* signed overflow cannot happen in SAR instruction */
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EqR(bxInstruction_c *i)
{
unsigned count;
if (i->getIaOpcode() == BX_IA_SAR_Eq)
count = CL;
else
count = i->Ib();
count &= 0x3f;
if (count) {
Bit64u op1_64 = BX_READ_64BIT_REG(i->dst());
/* count < 64, since only lower 6 bits used */
Bit64u result_64 = ((Bit64s) op1_64) >> count;
BX_WRITE_64BIT_REG(i->dst(), result_64);
SET_FLAGS_OSZAPC_LOGIC_64(result_64);
unsigned cf = (op1_64 >> (count - 1)) & 1;
BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(0, cf); /* signed overflow cannot happen in SAR instruction */
}
BX_NEXT_INSTR(i);
}
#endif /* if BX_SUPPORT_X86_64 */