Bochs/bochs/iodev/usb/usb_xhci.cc
Benjamin David Lunt e7910a30a0
Xhci options (#92)
This adds a "hint" to the xHCI port configuration "option" entries,
hinting that the port number must or must not be super-speed.
2023-10-15 21:47:24 +03:00

3881 lines
180 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2010-2023 Benjamin D Lunt (fys [at] fysnet [dot] net)
// 2011-2023 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
// USB xHCI adapter
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
/* Notes by Ben Lunt:
* This emulates a NEC/Renesas uPD720202 2-port (2 socket, 4-port register sets)
* Root Hub xHCI Host Controller.
* Many, many thanks to Renesas for their work and effort in helping my research.
*
* I have tested in with my own tests and WinXP Home Edition SP3 and Windows 7 Ultimate.
*
* Assuming a two-socket, four-port root hub:
* Use port1 and port2 to emulate a Super-speed device, and use port3 and port4
* to emulate Low-, Full-, or High-speed devices.
* (Other settings, use the first half as Super-speed, and the last half as the other speeds)
*
* Examples:
* usb_xhci: enabled=1, port3=mouse, options3="speed:low"
* usb_xhci: enabled=1, port3=disk, options3="speed:full, path:usbdisk.img"
* usb_xhci: enabled=1, port3=disk, options3="speed:high, path:usbdisk.img"
* usb_xhci: enabled=1, port1=disk, options1="speed:super, path:usbdisk.img"
* usb_xhci: enabled=1, port1=cdrom, options1="speed:super, path:cdrom.iso"
*
* Currently, only a USB MSD Thumb Drive device ("=disk") and a USB MSD CDROM ("=cdrom")
* can be emulated as a Super-speed device.
* All other emulated devices must be Low-, Full-, or High-speed devices.
*
* This code is 32- and 64-bit addressing aware (uses: bx_phy_address & ADDR_CAP_64)
*
* This emulation is coded with the new registers of xHCI version 1.10. However,
* at this time, nothing more has been done to emulate 1.10 features.
* This emulation is set with VERSION_MAJOR and VERSION_MINOR as 0x01 and 0x00
* respectively (version 1.00).
*
* This emulation seems to work as expected. It may not be completly accorate, though
* it is my intention to make it as close as possible. If you find an error or would
* like to add to the emulation, please let me know at fys [at] fysnet [dot] net.
*
*/
#include "iodev.h"
#if BX_SUPPORT_PCI && BX_SUPPORT_USB_XHCI
#include "pci.h"
#include "usb_common.h"
#include "usb_xhci.h"
#define LOG_THIS theUSB_XHCI->
bx_usb_xhci_c *theUSB_XHCI = NULL;
#define PROTOCOL_UBS3_OFFSET (0x510 - 0x500) // offset to the USB3 protocol struct
#define PROTOCOL_UBS2_OFFSET (0x524 - 0x500) // offset to the USB2 protocol struct
static Bit8u ext_caps[EXT_CAPS_SIZE] = {
/* 0x500 */ 0x01, // Legacy Support
0x04, // next = 0x04 * 4 = 0x510
0x00, 0x00, // Semaphores
0x00, 0x00, 0x00, 0xE0, // SMI on Bar, SMI on Command, SMI on Semaphore
0x00, 0x00, 0x00, 0x00, // reserved
0x00, 0x00, 0x00, 0x00, // filler
// this block is modified by init()
/* 0x510 */ 0x02, // Port Protocol
0x05, // next = 0x05 * 4 = 0x524
0x00, 0x03, // Version 3.0
0x55, 0x53, 0x42, 0x20, // "USB "
0x01, // 1-based starting index
0x02, // count of 2 port registers starting at base above
0x00, 0x00, // flags
0x00, 0x00, 0x00, 0x00, // 8 bytes of filler (unnecessary to this emulation
0x00, 0x00, 0x00, 0x00, // but it exists on the uPD720202 hardware)
// this block is modified by init()
/* 0x524 */ 0x02, // Port Protocol
0x07, // next = 0x07 * 4 = 0x540
0x00, 0x02, // Version 2.0
0x55, 0x53, 0x42, 0x20, // "USB "
0x03, // 1-based starting index
0x02, // count of 2 port registers starting at base above
0x00, 0x00, // flags
0x00, 0x00, 0x00, 0x00, // 16 bytes of filler (unnecessary to this emulation
0x00, 0x00, 0x00, 0x00, // but it exists on the uPD720202 hardware)
0x00, 0x00, 0x00, 0x00, //
0x00, 0x00, 0x00, 0x00, //
/* The following two items are not needed or used by this emulation, but they
* are present in the uPD720202 controller. I leave them here to closely emulate
* the said controller, and with intentions of some day adding the debug support.
* If you wish to comment them out, please be sure to remember to change the
* 0x07, // (next = 0x07 * 4 = 0x540)
* above to a
* 0x00, // no more items
*/
/* 0x540 */ 0xC0, // Vendor Defined
0x04, // next = 0x04 * 4 = 0x550
0x00, 0x00, //
0x00, 0x00, 0x00, 0x00, //
0x00, 0x00, 0x00, 0x00, //
0x00, 0x00, 0x00, 0x00, //
/* 0x550 */ 0x0A, // Debug Registers
0x00, // no more
0x00, 0x00, //
0x00, 0x00, 0x00, 0x00, // Doorbell Target
0x00, 0x00, 0x00, 0x00, // Event Ring Table Size
0x00, 0x00, 0x00, 0x00, // Event Ring Table Base Address
0x00, 0x00, 0x00, 0x00, // (64-bit)
0x00, 0x00, 0x00, 0x00, // Dequeue Pointer
0x00, 0x00, 0x00, 0x00, // (64-bit)
0x00, 0x00, 0x00, 0x00, // Max Burst Size, Dev Address, etc.
0x00, 0x00, 0x00, 0x00, // Debug Port Number
0x00, 0x00, 0x00, 0x00, // Port Status
0x00, 0x00, 0x00, 0x00, // Context Pointer
0x00, 0x00, 0x00, 0x00, // (64-bit)
0x00, 0x00, 0x00, 0x00, // DbC Protocol, Vendor ID
0x00, 0x00, 0x00, 0x00, // Product ID, Device Revision
0x00, 0x00, 0x00, 0x00, // filler
0x00, 0x00, 0x00, 0x00 // filler
};
// builtin configuration handling functions
Bit32s usb_xhci_options_parser(const char *context, int num_params, char *params[])
{
if (!strcmp(params[0], "usb_xhci")) {
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_USB_XHCI);
for (int i = 1; i < num_params; i++) {
if (!strncmp(params[i], "enabled=", 8)) {
SIM->get_param_bool(BXPN_XHCI_ENABLED)->set(atol(&params[i][8]));
} else if (!strncmp(params[i], "model=", 6)) {
if (!strcmp(&params[i][6], "uPD720202"))
SIM->get_param_enum(BXPN_XHCI_MODEL)->set(XHCI_HC_uPD720202);
else if (!strcmp(&params[i][6], "uPD720201"))
SIM->get_param_enum(BXPN_XHCI_MODEL)->set(XHCI_HC_uPD720201);
else
BX_PANIC(("%s: unknown parameter '%s' for usb_xhci: model=", context, &params[i][6]));
} else if (!strncmp(params[i], "n_ports=", 8)) {
int max_ports = (int) strtol(&params[i][8], NULL, 10);
if ((max_ports >= 2) && (max_ports <= USB_XHCI_PORTS_MAX) && !(max_ports & 1))
SIM->get_param_num(BXPN_XHCI_N_PORTS)->set(max_ports);
else
BX_PANIC(("%s: n_ports= must be at least 2, no more than %d, and an even number.", context, USB_XHCI_PORTS_MAX));
} else if (!strncmp(params[i], "port", 4) || !strncmp(params[i], "options", 7)) {
if (SIM->parse_usb_port_params(context, params[i], USB_XHCI_PORTS_MAX, base) < 0) {
return -1;
}
} else {
BX_ERROR(("%s: unknown parameter '%s' for usb_xhci ignored.", context, params[i]));
}
}
} else {
BX_PANIC(("%s: unknown directive '%s'", context, params[0]));
}
return 0;
}
Bit32s usb_xhci_options_save(FILE *fp)
{
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_USB_XHCI);
SIM->write_usb_options(fp, USB_XHCI_PORTS_MAX, base);
return 0;
}
// device plugin entry point
PLUGIN_ENTRY_FOR_MODULE(usb_xhci)
{
if (mode == PLUGIN_INIT) {
theUSB_XHCI = new bx_usb_xhci_c();
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theUSB_XHCI, BX_PLUGIN_USB_XHCI);
// add new configuration parameter for the config interface
SIM->init_usb_options("xHCI", "xhci", USB_XHCI_PORTS_MAX, USB_XHCI_PORTS);
// register add-on option for bochsrc and command line
SIM->register_addon_option("usb_xhci", usb_xhci_options_parser, usb_xhci_options_save);
} else if (mode == PLUGIN_FINI) {
SIM->unregister_addon_option("usb_xhci");
bx_list_c *menu = (bx_list_c *) SIM->get_param("ports.usb");
delete theUSB_XHCI;
menu->remove("xhci");
} else if (mode == PLUGIN_PROBE) {
return (int)PLUGTYPE_OPTIONAL;
} else if (mode == PLUGIN_FLAGS) {
return PLUGFLAG_PCI;
}
return 0; // Success
}
// the device object
bx_usb_xhci_c::bx_usb_xhci_c()
{
put("usb_xhci", "XHCI");
memset((void*)&hub, 0, sizeof(bx_usb_xhci_t));
rt_conf_id = -1;
xhci_timer_index = BX_NULL_TIMER_HANDLE;
}
bx_usb_xhci_c::~bx_usb_xhci_c()
{
char pname[32];
SIM->unregister_runtime_config_handler(rt_conf_id);
for (int i=0; i<USB_XHCI_PORTS_MAX; i++) {
sprintf(pname, "port%d.device", i+1);
SIM->get_param_enum(pname, SIM->get_param(BXPN_USB_XHCI))->set_handler(NULL);
sprintf(pname, "port%d.options", i+1);
SIM->get_param_string(pname, SIM->get_param(BXPN_USB_XHCI))->set_enable_handler(NULL);
sprintf(pname, "port%d.over_current", i+1);
SIM->get_param_bool(pname, SIM->get_param(BXPN_USB_XHCI))->set_handler(NULL);
remove_device(i);
}
SIM->get_bochs_root()->remove("usb_xhci");
bx_list_c *usb_rt = (bx_list_c *) SIM->get_param(BXPN_MENU_RUNTIME_USB);
usb_rt->remove("xhci");
BX_DEBUG(("Exit"));
}
void bx_usb_xhci_c::init(void)
{
unsigned i, j;
char pname[6];
Bit8u *p;
bx_list_c *port;
bx_param_enum_c *device;
bx_param_string_c *options;
bx_param_bool_c *over_current;
struct XHCI_PROTOCOL *protocol;
/* If you wish to set DEBUG=report in the code, instead of
* in the configuration, simply uncomment this line. I use
* it when I am working on this emulation.
*/
//LOG_THIS setonoff(LOGLEV_DEBUG, ACT_REPORT);
// Read in values from config interface
bx_list_c *xhci = (bx_list_c *) SIM->get_param(BXPN_USB_XHCI);
// Check if the device is disabled or not configured
if (!SIM->get_param_bool("enabled", xhci)->get()) {
BX_INFO(("USB xHCI disabled"));
// mark unused plugin for removal
((bx_param_bool_c *)((bx_list_c *) SIM->get_param(BXPN_PLUGIN_CTRL))->get_by_name("usb_xhci"))->set(0);
return;
}
BX_XHCI_THIS xhci_timer_index =
DEV_register_timer(this, xhci_timer_handler, 1024, 1, 1, "xhci_timer");
BX_XHCI_THIS devfunc = 0x00;
DEV_register_pci_handlers(this, &BX_XHCI_THIS devfunc, BX_PLUGIN_USB_XHCI,
"Experimental USB xHCI");
// get the desired host controller type
BX_XHCI_THIS hub.HostController = SIM->get_param_enum(BXPN_XHCI_MODEL)->get();
if (BX_XHCI_THIS hub.HostController == XHCI_HC_uPD720202) {
BX_INFO(("xHCI Host Controller: uPD720202"));
BX_XHCI_THIS hub.n_ports = USB_XHCI_PORTS; // we hard code to USB_XHCI_PORTS for this host controller (default)
// 0x1912 = vendor (Renesas)
// 0x0015 = device (0x0015 = uPD720202)
// revision number (0x02 = uPD720202)
init_pci_conf(0x1912, 0x0015, 0x02, 0x0C0330, 0x00, BX_PCI_INTD);
} else if (BX_XHCI_THIS hub.HostController == XHCI_HC_uPD720201) {
BX_INFO(("xHCI Host Controller: uPD720201"));
BX_XHCI_THIS hub.n_ports = 8; // we hard code to 8 for this host controller
// 0x1912 = vendor (Renesas)
// 0x0014 = device (0x0014 = uPD720201)
// revision number (0x03 = uPD720201)
init_pci_conf(0x1912, 0x0014, 0x03, 0x0C0330, 0x00, BX_PCI_INTD);
} else {
BX_PANIC(("Unknown xHCI Host Controller specified..."));
return;
}
// set the number of ports used
// if n_ports is not given in the Bochsrc.txt file, the number of ports
// is defaulted to the controller type above
Bit32s n_ports = SIM->get_param_num(BXPN_XHCI_N_PORTS)->get();
if (n_ports > -1) BX_XHCI_THIS hub.n_ports = n_ports;
if ((BX_XHCI_THIS hub.n_ports < 2) || (BX_XHCI_THIS hub.n_ports > USB_XHCI_PORTS_MAX) || (BX_XHCI_THIS hub.n_ports & 1)) {
BX_PANIC(("n_ports (%d) must be at least 2, not more than %d, and must be an even number.", BX_XHCI_THIS hub.n_ports, USB_XHCI_PORTS_MAX));
return;
}
BX_XHCI_THIS init_bar_mem(0, IO_SPACE_SIZE, read_handler, write_handler);
// initialize capability registers
BX_XHCI_THIS hub.cap_regs.HcCapLength = (VERSION_MAJOR << 24) | (VERSION_MINOR << 16) | OPS_REGS_OFFSET;
BX_XHCI_THIS hub.cap_regs.HcSParams1 = (BX_XHCI_THIS hub.n_ports << 24) | (INTERRUPTERS << 8) | MAX_SLOTS;
BX_XHCI_THIS hub.cap_regs.HcSParams2 =
// MAX_SCRATCH_PADS 4:0 in bits 31:27 (v1.00) and bits 9:5 in bits 21:25 (v1.01+)
((MAX_SCRATCH_PADS >> 5) << 21) | ((MAX_SCRATCH_PADS & 0x1F) << 27) |
((SCATCH_PAD_RESTORE == 1) << 26) | (MAX_SEG_TBL_SZ_EXP << 4) | ISO_SECH_THRESHOLD;
BX_XHCI_THIS hub.cap_regs.HcSParams3 = (U2_DEVICE_EXIT_LAT << 16) | U1_DEVICE_EXIT_LAT;
BX_XHCI_THIS hub.cap_regs.HcCParams1 =
((EXT_CAPS_OFFSET >> 2) << 16) | (MAX_PSA_SIZE << 12) | (SEC_DOMAIN_BAND << 9) | (PARSE_ALL_EVENT << 8) |
(LIGHT_HC_RESET << 5) |
(PORT_INDICATORS << 4) | (PORT_POWER_CTRL << 3) | ((CONTEXT_SIZE >> 6) << 2) |
(BW_NEGOTIATION << 1) | ADDR_CAP_64;
BX_XHCI_THIS hub.cap_regs.DBOFF = DOORBELL_OFFSET; // at offset DOORBELL_OFFSET from base
BX_XHCI_THIS hub.cap_regs.RTSOFF = RUNTIME_OFFSET; // at offset RUNTIME_OFFSET from base
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_XHCI_THIS hub.cap_regs.HcCParams2 =
(CONFIG_INFO_CAP << 5) | (LARGE_ESIT_PAYLOAD_CAP << 4) | (COMPLNC_TRANS_CAP << 3) |
(FORCE_SAVE_CONTEXT_CAP << 2) | (CONFIG_EP_CMND_CAP << 1) | U3_ENTRY_CAP;
#endif
// initialize runtime configuration
bx_list_c *usb_rt = (bx_list_c *) SIM->get_param(BXPN_MENU_RUNTIME_USB);
bx_list_c *xhci_rt = new bx_list_c(usb_rt, "xhci", "xHCI Runtime Options");
xhci_rt->set_options(xhci_rt->SHOW_PARENT | xhci_rt->USE_BOX_TITLE);
for (i=0; i<BX_XHCI_THIS hub.n_ports; i++) {
sprintf(pname, "port%d", i+1);
port = (bx_list_c *) SIM->get_param(pname, xhci);
xhci_rt->add(port);
device = (bx_param_enum_c*)port->get_by_name("device");
device->set_handler(usb_param_handler);
options = (bx_param_string_c*)port->get_by_name("options");
options->set_enable_handler(usb_param_enable_handler);
over_current = (bx_param_bool_c*)port->get_by_name("over_current");
over_current->set_handler(usb_param_oc_handler);
BX_XHCI_THIS hub.usb_port[i].device = NULL;
BX_XHCI_THIS hub.usb_port[i].portsc.ccs = 0;
BX_XHCI_THIS hub.usb_port[i].portsc.csc = 0;
}
// register handler for correct device connect handling after runtime config
BX_XHCI_THIS rt_conf_id = SIM->register_runtime_config_handler(BX_XHCI_THIS_PTR, runtime_config_handler);
BX_XHCI_THIS device_change = 0;
BX_XHCI_THIS packets = NULL;
// The remaining is the code to adjust all items that depend
// on the count of port registers. This needs to be done at run-time
// so that we can adjust the count without hard-coding anything.
// We divide the sets evenly and place the USB3 register sets
// before the USB2 register sets.
// initialize the allowed speeds for each port
// initialize the paired port number for each port
// TODO: port_speed_allowed is currently unused
for (i=0; i<(BX_XHCI_THIS hub.n_ports / 2); i++) {
//BX_XHCI_THIS hub.port_speed_allowed[i] = USB3;
BX_XHCI_THIS hub.usb_port[i].is_usb3 = 1;
BX_XHCI_THIS hub.paired_portnum[i] = i + (BX_XHCI_THIS hub.n_ports / 2); // zero based
}
for (; i<BX_XHCI_THIS hub.n_ports; i++) {
//BX_XHCI_THIS hub.port_speed_allowed[i] = USB2;
BX_XHCI_THIS hub.usb_port[i].is_usb3 = 0;
BX_XHCI_THIS hub.paired_portnum[i] = i - (BX_XHCI_THIS hub.n_ports / 2); // zero based
}
// Bandwidth of each port of each speed.
// See Section 6.2.6 of xHCI version 1.00
// example: four port (two socket):
// rsvd, port1, port2, port3, port4 (padding to 8 bytes)
// Full Speed: { 0x00, 0, 0, 90, 90, 0, 0, 0 },
// Low Speed: { 0x00, 0, 0, 90, 90, 0, 0, 0 },
// High Speed: { 0x00, 0, 0, 80, 80, 0, 0, 0 },
// Super Speed: { 0x00, 90, 90, 0, 0, 0, 0, 0 }
// (These numbers are for a two socket, four port hc.)
// (They will need to be different for a different combination)
p = BX_XHCI_THIS hub.port_band_width;
for (i=0; i<4; i++) { // 4 speeds
*p++ = 0; // first entry is reserved
for (j=0; j<BX_XHCI_THIS hub.n_ports; j++) {
switch (i) {
case 0: // Full Speed
case 1: // Low Speed
*p++ = (j < (BX_XHCI_THIS hub.n_ports / 2)) ? 0 : 90;
break;
case 2: // High Speed
*p++ = (j < (BX_XHCI_THIS hub.n_ports / 2)) ? 0 : 80;
break;
case 3: // Super Speed
*p++ = (j < (BX_XHCI_THIS hub.n_ports / 2)) ? 90 : 0;
break;
}
}
// pad to an 8-byte boundary
while ((j & 7) < 7) {
*p++ = 0;
j++;
}
}
// adjust the Extended Caps Protocol fields
// first the USB3 (first half ports)
protocol = (struct XHCI_PROTOCOL *) &ext_caps[PROTOCOL_UBS3_OFFSET];
protocol->start_index = 1; // 1 based starting index
protocol->count = BX_XHCI_THIS hub.n_ports / 2;
// then the USB2 (second half ports)
protocol = (struct XHCI_PROTOCOL *) &ext_caps[PROTOCOL_UBS2_OFFSET];
protocol->start_index = (BX_XHCI_THIS hub.n_ports / 2) + 1; // 1 based starting index
protocol->count = BX_XHCI_THIS hub.n_ports / 2;
// done initializing
BX_INFO(("USB xHCI initialized"));
}
void bx_usb_xhci_c::reset(unsigned type)
{
if (type == BX_RESET_HARDWARE) {
static const struct reset_vals_t {
unsigned addr;
unsigned char val;
} reset_vals[] = {
{ 0x04, 0x06 }, { 0x05, 0x01 }, // command_io
{ 0x06, 0x10 }, { 0x07, 0x00 }, // status (has caps list)
{ 0x0C, 0x10 }, // cache line size
{ 0x0D, 0x00 }, // bus latency
{ 0x0F, 0x00 }, // BIST is not supported
// address space 0x10 - 0x17
{ 0x10, 0x04 }, { 0x11, 0x00 }, // 64-bit wide and anywhere in the 64-bit address space
{ 0x12, 0x50 }, { 0x13, 0xF0 }, //
{ 0x14, 0x00 }, { 0x15, 0x00 }, //
{ 0x16, 0x00 }, { 0x17, 0x00 }, //
// addresses 0x18 - 0x28 are reserved
{ 0x2C, 0xFF }, { 0x2D, 0xFF }, // subsystem vendor ID
{ 0x2E, 0xFF }, { 0x2F, 0xFF }, // subsystem ID
{ 0x34, 0x50 }, // offset of capabilities list within configuration space
{ 0x3C, 0x0A }, // IRQ
{ 0x3E, 0x00 }, // minimum time bus master needs PCI bus ownership, in 250ns units
{ 0x3F, 0x00 }, // maximum latency, in 250ns units (bus masters only) (read-only)
// capabilities list:
{ 0x50, 0x01 }, // PCI Power Management
// { 0x51, 0x70 }, // Pointer to next item (0x70 -> MSI stuff)
{ 0x51, 0x00 }, // Pointer to next item (0x00 = no more)
{ 0x52, 0xC3 }, { 0x53, 0xC9 }, // Capabilities: version = 1.2, Aux Current = 375mA,
{ 0x54, 0x08 }, { 0x55, 0x00 }, // Status: Power State = D0, Bit 3 = no soft reset
{ 0x56, 0x00 }, { 0x57, 0x00 }, //
{ 0x60, 0x30 }, // Supports USB Spec version 3.0
{ 0x61, 0x20 }, // Frame List Adjustment
// Firmware version
{ 0x6C, 0x09 }, // ????? This byte not documented in specification ??
{ 0x6D, 0x18 }, { 0x6E, 0x20 }, // low = 0x18, high = 0x20
{ 0x6F, 0x00 }, //
/* The following items are used with PCIe and are not wanted or needed within
* this emulation. However, the controller contains them within its PCI(e)
* configuration space. Therefore, I leave them here (though commented out)
* for that sake. This is for the benefit of the reader, along as myself.
* If you uncomment this section, remember to swap the commented lines above.
* { 0x51, 0x70 }, and { 0x51, 0x00 },
// MSI
{ 0x70, 0x05 }, // MSI
{ 0x71, 0x90 }, // Pointer to next item (0x00 = no more)
{ 0x72, 0x86 }, { 0x73, 0x00 }, //
{ 0x74, 0x00 }, { 0x75, 0x00 }, // 0x74 - 0x87 are zero's
// MSI-x
{ 0x90, 0x11 }, // MSI-x
{ 0x91, 0xA0 }, // Pointer to next item (0x00 = no more)
{ 0x92, 0x07 }, { 0x93, 0x00 }, //
{ 0x94, 0x00 }, { 0x95, 0x10 }, //
{ 0x96, 0x00 }, { 0x97, 0x00 }, //
{ 0x98, 0x80 }, { 0x99, 0x10 }, //
{ 0x9A, 0x00 }, { 0x9B, 0x00 }, //
// PCIe caps register1
{ 0xA0, 0x10 }, // PCIe caps register
{ 0xA1, 0x00 }, // Pointer to next item (0x00 = no more)
{ 0xA2, 0x02 }, { 0xA3, 0x00 }, //
{ 0xA4, 0xC0 }, { 0xA5, 0x8F }, //
{ 0xA6, 0x00 }, { 0xA7, 0x00 }, //
{ 0xA8, 0x10 }, { 0xA9, 0x28 }, //
{ 0xAA, 0x10 }, { 0xAB, 0x00 }, //
{ 0xAC, 0x12 }, { 0xAD, 0xEC }, //
{ 0xAE, 0x07 }, { 0xAF, 0x00 }, //
{ 0xB0, 0x40 }, { 0xB1, 0x00 }, //
{ 0xB2, 0x11 }, { 0xB3, 0x10 }, //
// PCIe caps register2
{ 0xC4, 0x10 }, { 0xC5, 0x08 }, //
{ 0xC6, 0x00 }, { 0xC7, 0x00 }, //
{ 0xC8, 0x00 }, { 0xC9, 0x00 }, //
{ 0xCA, 0x00 }, { 0xCB, 0x00 }, //
{ 0xCC, 0x00 }, { 0xCD, 0x00 }, //
{ 0xCE, 0x00 }, { 0xCF, 0x00 }, //
{ 0xD0, 0x00 }, { 0xD1, 0x00 }, //
{ 0xD2, 0x01 }, { 0xD3, 0x10 }, //
// Phy 0
{ 0xDC, 0x00 }, { 0xDD, 0x00 }, //
{ 0xDE, 0x00 }, { 0xDF, 0x00 }, //
// Phy 1
{ 0xE0, 0x00 }, { 0xE1, 0x00 }, //
{ 0xE2, 0x00 }, { 0xE3, 0x00 }, //
// Phy 2 (battery charging control)
{ 0xE4, 0x00 }, { 0xE5, 0x00 }, //
{ 0xE6, 0x03 }, { 0xE7, 0x00 }, //
// HCConfiguration Register
{ 0xE8, 0x00 }, { 0xE9, 0x00 }, //
{ 0xEA, 0x01 }, { 0xEB, 0x05 }, //
// External ROM Information Register
{ 0xEC, 0x7F }, { 0xED, 0x20 }, //
{ 0xEE, 0x9D }, { 0xEF, 0x01 }, //
// External ROM Information Register
{ 0xF0, 0x00 }, { 0xF1, 0x00 }, //
{ 0xF2, 0x00 }, { 0xF3, 0x00 }, //
// Firmware Download Control and Status
{ 0xF4, 0x00 }, { 0xF5, 0x00 }, //
{ 0xF6, 0x00 }, { 0xF7, 0x80 }, //
// Data 0
{ 0xF8, 0x00 }, { 0xF9, 0x00 }, //
{ 0xFA, 0x00 }, { 0xFB, 0x00 }, //
// Data 1
{ 0xFC, 0x00 }, { 0xFD, 0x00 }, //
{ 0xFE, 0x00 }, { 0xFF, 0x00 }, //
* Offsets 0x100 -> 0x157 are used by controller,
* but Bochs only supports up to 256 (PCI)
*/
};
for (unsigned i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); i++) {
BX_XHCI_THIS pci_conf[reset_vals[i].addr] = reset_vals[i].val;
}
}
BX_XHCI_THIS reset_hc();
}
void bx_usb_xhci_c::reset_hc()
{
unsigned int i;
char pname[6];
// Command
BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1 = 0;
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_XHCI_THIS hub.op_regs.HcCommand.cme = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.spe = 0;
#endif
BX_XHCI_THIS hub.op_regs.HcCommand.eu3s = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.ewe = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.crs = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.css = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.lhcrst = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP0 = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.hsee = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.inte = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.hcrst = 0;
BX_XHCI_THIS hub.op_regs.HcCommand.rs = 0;
// Status
BX_XHCI_THIS hub.op_regs.HcStatus.RsvdZ1 = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.hce = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.cnr = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.sre = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.rss = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.sss = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.RsvdZ0 = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.pcd = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.eint = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.hse = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.RsvdZ2 = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.hch = 1;
// Page Size
BX_XHCI_THIS hub.op_regs.HcPageSize.pagesize = XHCI_PAGE_SIZE;
// Device Notification Control Register
BX_XHCI_THIS hub.op_regs.HcNotification.RsvdP = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n15 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n14 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n13 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n12 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n11 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n10 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n9 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n8 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n7 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n6 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n5 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n4 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n3 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n2 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n1 = 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n0 = 0;
// Command Ring Control Register
BX_XHCI_THIS hub.op_regs.HcCrcr.crc = 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.RsvdP = 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.crr = 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.ca = 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.cs = 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.rcs = 0;
// DCBAAP
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap = 0;
// Config
BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP = 0;
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_XHCI_THIS hub.op_regs.HcConfig.u3e = 0;
BX_XHCI_THIS hub.op_regs.HcConfig.cie = 0;
#endif
BX_XHCI_THIS hub.op_regs.HcConfig.MaxSlotsEn = 0;
// Ports[x]
for (i=0; i<BX_XHCI_THIS hub.n_ports; i++) {
reset_port(i);
if (BX_XHCI_THIS hub.usb_port[i].device == NULL) {
sprintf(pname, "port%d", i+1);
init_device(i, (bx_list_c *) SIM->get_param(pname, SIM->get_param(BXPN_USB_XHCI)));
} else {
set_connect_status(i, 1);
}
}
// Extended Caps
for (i=0; i<EXT_CAPS_SIZE; i++)
BX_XHCI_THIS hub.extended_caps[i] = ext_caps[i];
// interrupters[x]
BX_XHCI_THIS hub.runtime_regs.mfindex.RsvdP = 0;
BX_XHCI_THIS hub.runtime_regs.mfindex.index = 0;
for (i=0; i<INTERRUPTERS; i++) {
BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.RsvdP = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ie = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ip = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodc = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodi = 4000;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.RsvdP = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.erstabsize = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].RsvdP = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.RsvdP = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.ehb = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.desi = 0;
}
// reset our slot contexts
for (i=0; i<MAX_SLOTS; i++)
memset(&BX_XHCI_THIS hub.slots[i], 0, sizeof(struct HC_SLOT_CONTEXT));
while (BX_XHCI_THIS packets != NULL) {
usb_cancel_packet(&BX_XHCI_THIS packets->packet);
remove_async_packet(&BX_XHCI_THIS packets, BX_XHCI_THIS packets);
}
}
void bx_usb_xhci_c::reset_port(int p)
{
BX_XHCI_THIS hub.usb_port[p].portsc.wpr = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.dr = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.woe = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.wde = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.wce = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.cas = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.cec = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.plc = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.prc = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.occ = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.wrc = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.pec = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.csc = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.lws = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.pic = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.speed = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.pp = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.pls = PLS_U0; // always ready to go (for our sake anyway)
BX_XHCI_THIS hub.usb_port[p].portsc.pr = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.oca = 0;
BX_XHCI_THIS hub.usb_port[p].portsc.ped = 0;
if (BX_XHCI_THIS hub.usb_port[p].is_usb3) {
BX_XHCI_THIS hub.usb_port[p].usb3.portpmsc.RsvdP = 0;
BX_XHCI_THIS hub.usb_port[p].usb3.portpmsc.fla = 0;
BX_XHCI_THIS hub.usb_port[p].usb3.portpmsc.u2timeout = 0;
BX_XHCI_THIS hub.usb_port[p].usb3.portpmsc.u1timeout = 0;
BX_XHCI_THIS hub.usb_port[p].usb3.portli.lec = 0;
} else {
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.tmode = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.RsvdP = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.hle = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.l1dslot = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.hird = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.rwe = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portpmsc.l1s = 0;
BX_XHCI_THIS hub.usb_port[p].usb2.portli.RsvdP = 0;
}
BX_XHCI_THIS hub.usb_port[p].has_been_reset = 0;
BX_XHCI_THIS hub.usb_port[p].psceg = 0;
}
void bx_usb_xhci_c::reset_port_usb3(int port, const int reset_type)
{
BX_INFO(("Reset port #%d, type=%d", port + 1, reset_type));
BX_XHCI_THIS hub.usb_port[port].portsc.pr = 0;
BX_XHCI_THIS hub.usb_port[port].has_been_reset = 1;
if (BX_XHCI_THIS hub.usb_port[port].portsc.ccs) {
BX_XHCI_THIS hub.usb_port[port].portsc.prc = 1;
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_U0;
BX_XHCI_THIS hub.usb_port[port].portsc.ped = 1;
if (BX_XHCI_THIS hub.usb_port[port].device != NULL) {
BX_XHCI_THIS hub.usb_port[port].device->usb_send_msg(USB_MSG_RESET);
if (BX_XHCI_THIS hub.usb_port[port].is_usb3 && (reset_type == WARM_RESET))
BX_XHCI_THIS hub.usb_port[port].portsc.wrc = 1;
}
} else {
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_RXDETECT;
BX_XHCI_THIS hub.usb_port[port].portsc.ped = 0;
BX_XHCI_THIS hub.usb_port[port].portsc.speed = 0;
}
}
/* This is the Save/Restore part of the controller. The host will issue a save state
* (via a bit in the command register) before it powers down the controller. The controller
* will use the scratch pad buffers (or its own memory if HCSPARAMS2:ScratchPadRestore == 0)
* to save its internal state before power shutdown (hibernation). If the SPR bit is set,
* the controller is to use the scratch pad buffers and the host is to make sure these
* buffers are maintained during hibernation. (The host may use paging to page to disk
* before hibernation as long as the memory is updated from the paged to disk before
* the restore is performed.)
*
* Since a Bochs power hibernation does not touch our current state, there would be no
* need to save the controller state. However, the host may (just might) check to see
* if the scratch pad buffers have been modified (due to paging and/or protection), so
* we need to write something to these buffers.
*
* We will simply save 'BX_XHCI_THIS hub' to the scratch pad buffers. However, since we
* use bx_bool's for bits, which are 32-bits for every single bit of the controller,
* 'hub' is way too big to fit in the scratch pad buffers. Therefore, we will only
* save up to PAGESIZE * BUFFER_COUNT.
*
* We will also use a simple crc check and store this as the last dword in each buffer.
* This way, when we restore, we can check to see if we restored the correct data and
* set the restore error bit accordingly.
*
* Please note that we must not assume that the scratch pad buffers will be in
* consecutive order, one right after the other, in memory.
*
* Callee checks to be sure the Halted bit is set first.
* We return 0 == no error, 1 = error
*/
bool bx_usb_xhci_c::save_hc_state(void)
{
int i, j;
Bit64u addr;
Bit32u *ptr = (Bit32u *) &BX_XHCI_THIS hub;
Bit64u temp[2 | MAX_SCRATCH_PADS]; // at least the larger of 2 or MAX_SCRATCH_PADS
Bit32u crc;
// do we use the scratch pad buffers to save the controller state?
#if (SCATCH_PAD_RESTORE == 1)
// get pointer to scratch pad buffers from DCBAAP
DEV_MEM_READ_PHYSICAL((bx_phy_address) BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap, 8, (Bit8u*)&addr);
// get MAX_SCRATCH_PADS worth of pointers
for (i=0; i<MAX_SCRATCH_PADS; i++) {
DEV_MEM_READ_PHYSICAL((bx_phy_address) (addr + i * 8), 8, (Bit8u*)&temp[i]);
}
for (i=0; i<MAX_SCRATCH_PADS; i++) {
crc = 0;
for (j=0; j<((XHCI_PAGE_SIZE << 12) >> 2) - 1; j++)
crc += ptr[j];
addr = temp[i];
DEV_MEM_WRITE_PHYSICAL_DMA((bx_phy_address) addr, (XHCI_PAGE_SIZE << 12) - sizeof(Bit32u), (Bit8u*)ptr);
DEV_MEM_WRITE_PHYSICAL((bx_phy_address) (addr + ((XHCI_PAGE_SIZE << 12) - sizeof(Bit32u))), sizeof(Bit32u), (Bit8u *) &crc);
ptr += (((XHCI_PAGE_SIZE << 12) >> 2) - 1);
}
#else
// Use controller's internal memory to save the state
// Since saving to the internal memory will have no effect on the host,
// since we don't destroy BX_XHCI_THIS hub on hibernation, we don't need
// to do anything here.
#endif
// return no error
return 0;
}
/*
* See comments at save_hc_state above
*/
bool bx_usb_xhci_c::restore_hc_state(void)
{
int i, j;
Bit64u addr;
Bit64u temp[2 | MAX_SCRATCH_PADS]; // at least the larger of 2 or MAX_SCRATCH_PADS
Bit32u temp_buffer[(XHCI_PAGE_SIZE << 12) >> 2];
Bit32u crc;
// if we are to use the scratch pad buffers to restore the controller state
#if (SCATCH_PAD_RESTORE == 1)
// get pointer to scratch pad buffers from DCBAAP
DEV_MEM_READ_PHYSICAL((bx_phy_address) BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap, 8, (Bit8u*)&addr);
// get MAX_SCRATCH_PADS worth of pointers
for (i=0; i<MAX_SCRATCH_PADS; i++) {
DEV_MEM_READ_PHYSICAL_DMA((bx_phy_address) (addr + i * 8), 8, (Bit8u*)&temp[i]);
}
// we read it in to a temp buffer just to check the crc.
for (i=0; i<MAX_SCRATCH_PADS; i++) {
addr = temp[i];
DEV_MEM_READ_PHYSICAL_DMA((bx_phy_address) addr, (XHCI_PAGE_SIZE << 12), (Bit8u*)temp_buffer);
crc = 0;
for (j=0; j<((XHCI_PAGE_SIZE << 12) >> 2) - 1; j++)
crc += temp_buffer[j];
if (crc != temp_buffer[((XHCI_PAGE_SIZE << 12) >> 2) - 1])
return 1; // error
}
#else
// Use controller's internal memory to save the state
// Since saving to the internal memory will have no effect on the host,
// since we don't destroy BX_XHCI_THIS hub on hibernation, we don't need
// to do anything here.
#endif
// return no error
return 0;
}
void bx_usb_xhci_c::register_state(void)
{
unsigned i, j, k;
char tmpname[16];
bx_list_c *hub, *port, *reg, *reg_grp, *reg_grp1;
bx_list_c *list1, *list2, *list3, *item, *entries, *entry, *entry1;
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "usb_xhci", "USB xHCI State");
hub = new bx_list_c(list, "hub");
reg_grp = new bx_list_c(hub, "op_regs");
reg = new bx_list_c(reg_grp, "HcCommand");
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BXRS_PARAM_BOOL(reg, cme, BX_XHCI_THIS hub.op_regs.HcCommand.cme);
BXRS_PARAM_BOOL(reg, spe, BX_XHCI_THIS hub.op_regs.HcCommand.spe);
#endif
BXRS_PARAM_BOOL(reg, eu3s, BX_XHCI_THIS hub.op_regs.HcCommand.eu3s);
BXRS_PARAM_BOOL(reg, ewe, BX_XHCI_THIS hub.op_regs.HcCommand.ewe);
BXRS_PARAM_BOOL(reg, crs, BX_XHCI_THIS hub.op_regs.HcCommand.crs);
BXRS_PARAM_BOOL(reg, css, BX_XHCI_THIS hub.op_regs.HcCommand.css);
BXRS_PARAM_BOOL(reg, lhcrst, BX_XHCI_THIS hub.op_regs.HcCommand.lhcrst);
BXRS_PARAM_BOOL(reg, hsee, BX_XHCI_THIS hub.op_regs.HcCommand.hsee);
BXRS_PARAM_BOOL(reg, inte, BX_XHCI_THIS hub.op_regs.HcCommand.inte);
BXRS_PARAM_BOOL(reg, hcrst, BX_XHCI_THIS hub.op_regs.HcCommand.hcrst);
BXRS_PARAM_BOOL(reg, rs, BX_XHCI_THIS hub.op_regs.HcCommand.rs);
reg = new bx_list_c(reg_grp, "HcStatus");
BXRS_PARAM_BOOL(reg, hce, BX_XHCI_THIS hub.op_regs.HcStatus.hce);
BXRS_PARAM_BOOL(reg, cnr, BX_XHCI_THIS hub.op_regs.HcStatus.cnr);
BXRS_PARAM_BOOL(reg, sre, BX_XHCI_THIS hub.op_regs.HcStatus.sre);
BXRS_PARAM_BOOL(reg, rss, BX_XHCI_THIS hub.op_regs.HcStatus.rss);
BXRS_PARAM_BOOL(reg, sss, BX_XHCI_THIS hub.op_regs.HcStatus.sss);
BXRS_PARAM_BOOL(reg, pcd, BX_XHCI_THIS hub.op_regs.HcStatus.pcd);
BXRS_PARAM_BOOL(reg, eint, BX_XHCI_THIS hub.op_regs.HcStatus.eint);
BXRS_PARAM_BOOL(reg, hse, BX_XHCI_THIS hub.op_regs.HcStatus.hse);
BXRS_PARAM_BOOL(reg, hch, BX_XHCI_THIS hub.op_regs.HcStatus.hch);
BXRS_HEX_PARAM_FIELD(reg_grp, HcPageSize, BX_XHCI_THIS hub.op_regs.HcPageSize.pagesize);
reg = new bx_list_c(reg_grp, "HcNotification");
BXRS_PARAM_BOOL(reg, n15, BX_XHCI_THIS hub.op_regs.HcNotification.n15);
BXRS_PARAM_BOOL(reg, n14, BX_XHCI_THIS hub.op_regs.HcNotification.n14);
BXRS_PARAM_BOOL(reg, n13, BX_XHCI_THIS hub.op_regs.HcNotification.n13);
BXRS_PARAM_BOOL(reg, n12, BX_XHCI_THIS hub.op_regs.HcNotification.n12);
BXRS_PARAM_BOOL(reg, n11, BX_XHCI_THIS hub.op_regs.HcNotification.n11);
BXRS_PARAM_BOOL(reg, n10, BX_XHCI_THIS hub.op_regs.HcNotification.n10);
BXRS_PARAM_BOOL(reg, n9, BX_XHCI_THIS hub.op_regs.HcNotification.n9);
BXRS_PARAM_BOOL(reg, n8, BX_XHCI_THIS hub.op_regs.HcNotification.n8);
BXRS_PARAM_BOOL(reg, n7, BX_XHCI_THIS hub.op_regs.HcNotification.n7);
BXRS_PARAM_BOOL(reg, n6, BX_XHCI_THIS hub.op_regs.HcNotification.n6);
BXRS_PARAM_BOOL(reg, n5, BX_XHCI_THIS hub.op_regs.HcNotification.n5);
BXRS_PARAM_BOOL(reg, n4, BX_XHCI_THIS hub.op_regs.HcNotification.n4);
BXRS_PARAM_BOOL(reg, n3, BX_XHCI_THIS hub.op_regs.HcNotification.n3);
BXRS_PARAM_BOOL(reg, n2, BX_XHCI_THIS hub.op_regs.HcNotification.n2);
BXRS_PARAM_BOOL(reg, n1, BX_XHCI_THIS hub.op_regs.HcNotification.n1);
BXRS_PARAM_BOOL(reg, n0, BX_XHCI_THIS hub.op_regs.HcNotification.n0);
reg = new bx_list_c(reg_grp, "HcCrcr");
BXRS_HEX_PARAM_FIELD(reg, crc, BX_XHCI_THIS hub.op_regs.HcCrcr.crc);
BXRS_PARAM_BOOL(reg, crr, BX_XHCI_THIS hub.op_regs.HcCrcr.crr);
BXRS_PARAM_BOOL(reg, ca, BX_XHCI_THIS hub.op_regs.HcCrcr.ca);
BXRS_PARAM_BOOL(reg, cs, BX_XHCI_THIS hub.op_regs.HcCrcr.cs);
BXRS_PARAM_BOOL(reg, rcs, BX_XHCI_THIS hub.op_regs.HcCrcr.rcs);
BXRS_HEX_PARAM_FIELD(reg_grp, HcDCBAAP, BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap);
BXRS_HEX_PARAM_FIELD(reg_grp, HcConfig_MaxSlotsEn, BX_XHCI_THIS hub.op_regs.HcConfig.MaxSlotsEn);
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BXRS_PARAM_BOOL(reg_grp, HcConfig_u3e, BX_XHCI_THIS hub.op_regs.HcConfig.u3e);
BXRS_PARAM_BOOL(reg_grp, HcConfig_cie, BX_XHCI_THIS hub.op_regs.HcConfig.cie);
#endif
for (i = 0; i < BX_XHCI_THIS hub.n_ports; i++) {
sprintf(tmpname, "port%d", i+1);
port = new bx_list_c(hub, tmpname);
BXRS_PARAM_BOOL(port, has_been_reset, BX_XHCI_THIS hub.usb_port[i].has_been_reset);
BXRS_HEX_PARAM_FIELD(port, psceg, BX_XHCI_THIS hub.usb_port[i].psceg);
reg = new bx_list_c(port, "portsc");
BXRS_PARAM_BOOL(reg, wpr, BX_XHCI_THIS hub.usb_port[i].portsc.wpr);
BXRS_PARAM_BOOL(reg, dr, BX_XHCI_THIS hub.usb_port[i].portsc.dr);
BXRS_PARAM_BOOL(reg, woe, BX_XHCI_THIS hub.usb_port[i].portsc.woe);
BXRS_PARAM_BOOL(reg, wde, BX_XHCI_THIS hub.usb_port[i].portsc.wde);
BXRS_PARAM_BOOL(reg, wce, BX_XHCI_THIS hub.usb_port[i].portsc.wce);
BXRS_PARAM_BOOL(reg, cas, BX_XHCI_THIS hub.usb_port[i].portsc.cas);
BXRS_PARAM_BOOL(reg, cec, BX_XHCI_THIS hub.usb_port[i].portsc.cec);
BXRS_PARAM_BOOL(reg, plc, BX_XHCI_THIS hub.usb_port[i].portsc.plc);
BXRS_PARAM_BOOL(reg, prc, BX_XHCI_THIS hub.usb_port[i].portsc.prc);
BXRS_PARAM_BOOL(reg, occ, BX_XHCI_THIS hub.usb_port[i].portsc.occ);
BXRS_PARAM_BOOL(reg, wrc, BX_XHCI_THIS hub.usb_port[i].portsc.wrc);
BXRS_PARAM_BOOL(reg, pec, BX_XHCI_THIS hub.usb_port[i].portsc.pec);
BXRS_PARAM_BOOL(reg, csc, BX_XHCI_THIS hub.usb_port[i].portsc.csc);
BXRS_PARAM_BOOL(reg, lws, BX_XHCI_THIS hub.usb_port[i].portsc.lws);
BXRS_HEX_PARAM_FIELD(reg, pic, BX_XHCI_THIS hub.usb_port[i].portsc.pic);
BXRS_DEC_PARAM_FIELD(reg, speed, BX_XHCI_THIS hub.usb_port[i].portsc.speed);
BXRS_PARAM_BOOL(reg, pp, BX_XHCI_THIS hub.usb_port[i].portsc.pp);
BXRS_HEX_PARAM_FIELD(reg, pls, BX_XHCI_THIS hub.usb_port[i].portsc.pls);
BXRS_PARAM_BOOL(reg, pr, BX_XHCI_THIS hub.usb_port[i].portsc.pr);
BXRS_PARAM_BOOL(reg, oca, BX_XHCI_THIS hub.usb_port[i].portsc.oca);
BXRS_PARAM_BOOL(reg, ped, BX_XHCI_THIS hub.usb_port[i].portsc.ped);
BXRS_PARAM_BOOL(reg, ccs, BX_XHCI_THIS hub.usb_port[i].portsc.ccs);
reg = new bx_list_c(port, "portpmsc");
if (BX_XHCI_THIS hub.usb_port[i].is_usb3) {
BXRS_PARAM_BOOL(reg, fla, BX_XHCI_THIS hub.usb_port[i].usb3.portpmsc.fla);
BXRS_HEX_PARAM_FIELD(reg, u2timeout, BX_XHCI_THIS hub.usb_port[i].usb3.portpmsc.u2timeout);
BXRS_HEX_PARAM_FIELD(reg, u1timeout, BX_XHCI_THIS hub.usb_port[i].usb3.portpmsc.u1timeout);
BXRS_HEX_PARAM_FIELD(port, portli_lec, BX_XHCI_THIS hub.usb_port[i].usb3.portli.lec);
} else {
BXRS_HEX_PARAM_FIELD(reg, tmode, BX_XHCI_THIS hub.usb_port[i].usb2.portpmsc.tmode);
BXRS_PARAM_BOOL(reg, hle, BX_XHCI_THIS hub.usb_port[i].usb2.portpmsc.hle);
BXRS_HEX_PARAM_FIELD(reg, l1dslot, BX_XHCI_THIS hub.usb_port[i].usb2.portpmsc.l1dslot);
BXRS_HEX_PARAM_FIELD(reg, hird, BX_XHCI_THIS hub.usb_port[i].usb2.portpmsc.hird);
BXRS_PARAM_BOOL(reg, rwe, BX_XHCI_THIS hub.usb_port[i].usb2.portpmsc.rwe);
BXRS_HEX_PARAM_FIELD(reg, l1s, BX_XHCI_THIS hub.usb_port[i].usb2.portpmsc.l1s);
}
reg = new bx_list_c(port, "porthlpmc");
BXRS_HEX_PARAM_FIELD(reg, hirdm, BX_XHCI_THIS hub.usb_port[i].porthlpmc.hirdm);
BXRS_HEX_PARAM_FIELD(reg, l1timeout, BX_XHCI_THIS hub.usb_port[i].porthlpmc.l1timeout);
BXRS_HEX_PARAM_FIELD(reg, hirdd, BX_XHCI_THIS hub.usb_port[i].porthlpmc.hirdd);
// empty list for USB device state
new bx_list_c(port, "device");
}
new bx_shadow_data_c(hub, "extended_caps", BX_XHCI_THIS hub.extended_caps, EXT_CAPS_SIZE, 1);
reg_grp = new bx_list_c(hub, "runtime_regs");
BXRS_HEX_PARAM_FIELD(reg_grp, mfindex, BX_XHCI_THIS hub.runtime_regs.mfindex.index);
for (i = 0; i < INTERRUPTERS; i++) {
sprintf(tmpname, "interrupter%d", i+1);
reg_grp1 = new bx_list_c(reg_grp, tmpname);
reg = new bx_list_c(reg_grp1, "iman");
BXRS_PARAM_BOOL(reg, ie, BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ie);
BXRS_PARAM_BOOL(reg, ip, BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ip);
reg = new bx_list_c(reg_grp1, "imod");
BXRS_HEX_PARAM_FIELD(reg, imodc, BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodc);
BXRS_HEX_PARAM_FIELD(reg, imodi, BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodi);
BXRS_HEX_PARAM_FIELD(reg_grp1, erstabsize, BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.erstabsize);
BXRS_HEX_PARAM_FIELD(reg_grp1, erstabadd, BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd);
reg = new bx_list_c(reg_grp1, "erdp");
BXRS_HEX_PARAM_FIELD(reg, eventadd, BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd);
BXRS_PARAM_BOOL(reg, ehb, BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.ehb);
BXRS_HEX_PARAM_FIELD(reg, desi, BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.desi);
}
list1 = new bx_list_c(hub, "slots");
for (i = 1; i < MAX_SLOTS; i++) {
sprintf(tmpname, "slot%d", i);
item = new bx_list_c(list1, tmpname);
BXRS_PARAM_BOOL(item, enabled, BX_XHCI_THIS hub.slots[i].enabled);
list2 = new bx_list_c(item, "slot_context");
BXRS_DEC_PARAM_FIELD(list2, entries, BX_XHCI_THIS hub.slots[i].slot_context.entries);
BXRS_PARAM_BOOL(list2, hub, BX_XHCI_THIS hub.slots[i].slot_context.hub);
BXRS_PARAM_BOOL(list2, mtt, BX_XHCI_THIS hub.slots[i].slot_context.mtt);
BXRS_DEC_PARAM_FIELD(list2, speed, BX_XHCI_THIS hub.slots[i].slot_context.speed);
BXRS_DEC_PARAM_FIELD(list2, route_string, BX_XHCI_THIS hub.slots[i].slot_context.route_string);
BXRS_DEC_PARAM_FIELD(list2, num_ports, BX_XHCI_THIS hub.slots[i].slot_context.num_ports);
BXRS_DEC_PARAM_FIELD(list2, rh_port_num, BX_XHCI_THIS hub.slots[i].slot_context.rh_port_num);
BXRS_DEC_PARAM_FIELD(list2, max_exit_latency, BX_XHCI_THIS hub.slots[i].slot_context.max_exit_latency);
BXRS_DEC_PARAM_FIELD(list2, int_target, BX_XHCI_THIS hub.slots[i].slot_context.int_target);
BXRS_DEC_PARAM_FIELD(list2, ttt, BX_XHCI_THIS hub.slots[i].slot_context.ttt);
BXRS_DEC_PARAM_FIELD(list2, tt_port_num, BX_XHCI_THIS hub.slots[i].slot_context.tt_port_num);
BXRS_DEC_PARAM_FIELD(list2, tt_hub_slot_id, BX_XHCI_THIS hub.slots[i].slot_context.tt_hub_slot_id);
BXRS_DEC_PARAM_FIELD(list2, slot_state, BX_XHCI_THIS hub.slots[i].slot_context.slot_state);
BXRS_DEC_PARAM_FIELD(list2, device_address, BX_XHCI_THIS hub.slots[i].slot_context.device_address);
entries = new bx_list_c(item, "ep_context");
for (j = 0; j < 32; j++) {
sprintf(tmpname, "%d", j);
entry = new bx_list_c(entries, tmpname);
list2 = new bx_list_c(entry, "ep_context");
BXRS_DEC_PARAM_FIELD(list2, interval, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.interval);
BXRS_PARAM_BOOL(list2, lsa, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.lsa);
BXRS_DEC_PARAM_FIELD(list2, max_pstreams, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.max_pstreams);
BXRS_DEC_PARAM_FIELD(list2, mult, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.mult);
BXRS_DEC_PARAM_FIELD(list2, ep_state, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.ep_state);
BXRS_DEC_PARAM_FIELD(list2, max_packet_size, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.max_packet_size);
BXRS_DEC_PARAM_FIELD(list2, max_burst_size, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.max_burst_size);
BXRS_PARAM_BOOL(list2, hid, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.hid);
BXRS_DEC_PARAM_FIELD(list2, ep_type, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.ep_type);
BXRS_DEC_PARAM_FIELD(list2, cerr, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.cerr);
BXRS_HEX_PARAM_FIELD(list2, tr_dequeue_pointer, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.tr_dequeue_pointer);
BXRS_PARAM_BOOL(list2, dcs, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.dcs);
BXRS_DEC_PARAM_FIELD(list2, max_esit_payload, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.max_esit_payload);
BXRS_DEC_PARAM_FIELD(list2, average_trb_len, BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.average_trb_len);
BXRS_HEX_PARAM_FIELD(entry, edtla, BX_XHCI_THIS hub.slots[i].ep_context[j].edtla);
BXRS_HEX_PARAM_FIELD(entry, enqueue_pointer, BX_XHCI_THIS hub.slots[i].ep_context[j].enqueue_pointer);
BXRS_PARAM_BOOL(entry, rcs, BX_XHCI_THIS hub.slots[i].ep_context[j].rcs);
BXRS_PARAM_BOOL(entry, retry, BX_XHCI_THIS hub.slots[i].ep_context[j].retry);
BXRS_DEC_PARAM_FIELD(entry, retry_counter, BX_XHCI_THIS hub.slots[i].ep_context[j].retry_counter);
for (k = 0; k < MAX_PSA_SIZE_NUM; k++) {
sprintf(tmpname, "%d", k);
entry1 = new bx_list_c(entry, tmpname);
list3 = new bx_list_c(entry1, "ep_stream");
BXRS_HEX_PARAM_FIELD(list3, tr_dequeue_pointer, BX_XHCI_THIS hub.slots[i].ep_context[j].stream[k].tr_dequeue_pointer);
BXRS_PARAM_BOOL(list3, dcs, BX_XHCI_THIS hub.slots[i].ep_context[j].stream[k].dcs);
}
}
}
list1 = new bx_list_c(hub, "ring_members");
list2 = new bx_list_c(list1, "command_ring");
BXRS_HEX_PARAM_FIELD(list2, dq_pointer, BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer);
BXRS_PARAM_BOOL(list2, rcs, BX_XHCI_THIS hub.ring_members.command_ring.rcs);
list2 = new bx_list_c(list1, "event_rings");
for (i = 0; i < INTERRUPTERS; i++) {
sprintf(tmpname, "ring%d", i);
item = new bx_list_c(list2, tmpname);
BXRS_PARAM_BOOL(item, rcs, BX_XHCI_THIS hub.ring_members.event_rings[i].rcs);
BXRS_HEX_PARAM_FIELD(item, trb_count, BX_XHCI_THIS hub.ring_members.event_rings[i].trb_count);
BXRS_HEX_PARAM_FIELD(item, count, BX_XHCI_THIS hub.ring_members.event_rings[i].count);
BXRS_HEX_PARAM_FIELD(item, cur_trb, BX_XHCI_THIS hub.ring_members.event_rings[i].cur_trb);
entries = new bx_list_c(item, "entries");
for (j = 0; j < (1<<MAX_SEG_TBL_SZ_EXP); j++) {
sprintf(tmpname, "entry%d", j);
entry = new bx_list_c(entries, tmpname);
BXRS_HEX_PARAM_FIELD(entry, addr, BX_XHCI_THIS hub.ring_members.event_rings[i].entrys[j].addr);
BXRS_HEX_PARAM_FIELD(entry, size, BX_XHCI_THIS hub.ring_members.event_rings[i].entrys[j].size);
}
}
register_pci_state(hub);
}
void bx_usb_xhci_c::after_restore_state(void)
{
bx_pci_device_c::after_restore_pci_state(NULL);
for (unsigned int j=0; j<BX_XHCI_THIS hub.n_ports; j++) {
if (BX_XHCI_THIS hub.usb_port[j].device != NULL) {
BX_XHCI_THIS hub.usb_port[j].device->after_restore_state();
}
}
}
int xhci_event_handler(int event, void *ptr, void *dev, int port);
void bx_usb_xhci_c::init_device(Bit8u port, bx_list_c *portconf)
{
char pname[BX_PATHNAME_LEN];
if (DEV_usb_init_device(portconf, BX_XHCI_THIS_PTR, &BX_XHCI_THIS hub.usb_port[port].device, xhci_event_handler, port)) {
if (set_connect_status(port, 1)) {
portconf->get_by_name("options")->set_enabled(0);
sprintf(pname, "usb_xhci.hub.port%d.device", port+1);
bx_list_c *sr_list = (bx_list_c *) SIM->get_param(pname, SIM->get_bochs_root());
BX_XHCI_THIS hub.usb_port[port].device->register_state(sr_list);
} else {
((bx_param_enum_c*)portconf->get_by_name("device"))->set_by_name("none");
((bx_param_string_c*)portconf->get_by_name("options"))->set("none");
((bx_param_bool_c*)portconf->get_by_name("over_current"))->set(0);
set_connect_status(port, 0);
}
}
}
void bx_usb_xhci_c::remove_device(Bit8u port)
{
if (BX_XHCI_THIS hub.usb_port[port].device != NULL) {
delete BX_XHCI_THIS hub.usb_port[port].device;
BX_XHCI_THIS hub.usb_port[port].device = NULL;
}
}
void bx_usb_xhci_c::update_irq(unsigned interrupter)
{
bool level = 0;
if ((BX_XHCI_THIS hub.op_regs.HcCommand.inte) &&
(BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].iman.ie)) {
level = 1;
BX_DEBUG(("Interrupt Fired."));
}
DEV_pci_set_irq(BX_XHCI_THIS devfunc, BX_XHCI_THIS pci_conf[0x3d], level);
}
bool bx_usb_xhci_c::read_handler(bx_phy_address addr, unsigned len, void *data, void *param)
{
Bit32u val = 0, val_hi = 0;
int i, speed = 0;
const Bit32u offset = (Bit32u) (addr - BX_XHCI_THIS pci_bar[0].addr);
// Even though the controller allows reads other than 32-bits & on odd boundaries,
// we are going to ASSUME dword reads and writes unless specified below
// RO Capability Registers
if (offset < OPS_REGS_OFFSET) {
switch (offset) {
// Capability Registers
case 0x00: // CapLength / version
val = BX_XHCI_THIS hub.cap_regs.HcCapLength;
break;
case 0x01:
val = BX_XHCI_THIS hub.cap_regs.HcCapLength >> 8;
break;
case 0x02:
val = BX_XHCI_THIS hub.cap_regs.HcCapLength >> 16;
break;
case 0x04: // HCSPARAMS1
val = BX_XHCI_THIS hub.cap_regs.HcSParams1;
break;
case 0x08: // HCSPARAMS2
val = BX_XHCI_THIS hub.cap_regs.HcSParams2;
break;
case 0x0C: // HCSPARAMS3
val = BX_XHCI_THIS hub.cap_regs.HcSParams3;
break;
case 0x10: // HCCPARAMS1
val = BX_XHCI_THIS hub.cap_regs.HcCParams1;
break;
case 0x14: // DBOFF
val = BX_XHCI_THIS hub.cap_regs.DBOFF;
break;
case 0x18: // RTSOFF
val = BX_XHCI_THIS hub.cap_regs.RTSOFF;
break;
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
case 0x1C: // HCCPARAMS2
val = BX_XHCI_THIS hub.cap_regs.HcCParams2;
break;
#else
case 0x1C: // reserved
val = 0;
break;
#endif
}
} else
// Operational Registers
if ((offset >= OPS_REGS_OFFSET) && (offset < (OPS_REGS_OFFSET + 0x40))) {
switch (offset - OPS_REGS_OFFSET) {
case 0x00: // Command
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
val = (BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1 << 14)
| (BX_XHCI_THIS hub.op_regs.HcCommand.cme ? 1 << 13 : 0)
| (BX_XHCI_THIS hub.op_regs.HcCommand.spe ? 1 << 12 : 0)
#else
val = (BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1 << 12)
#endif
| (BX_XHCI_THIS hub.op_regs.HcCommand.eu3s ? 1 << 11 : 0)
| (BX_XHCI_THIS hub.op_regs.HcCommand.ewe ? 1 << 10 : 0)
| 0 // controller restore state always read as zero
| 0 // controller save state always read as zero
| (BX_XHCI_THIS hub.op_regs.HcCommand.lhcrst ? 1 << 7 : 0)
| (BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP0 << 4)
| (BX_XHCI_THIS hub.op_regs.HcCommand.hsee ? 1 << 3 : 0)
| (BX_XHCI_THIS hub.op_regs.HcCommand.inte ? 1 << 2 : 0)
| (BX_XHCI_THIS hub.op_regs.HcCommand.hcrst ? 1 << 1 : 0)
| (BX_XHCI_THIS hub.op_regs.HcCommand.rs ? 1 << 0 : 0);
break;
case 0x04: // Status
val = (BX_XHCI_THIS hub.op_regs.HcStatus.hce ? 1 << 12 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.cnr ? 1 << 11 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.sre ? 1 << 10 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.rss ? 1 << 9 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.sss ? 1 << 8 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.pcd ? 1 << 4 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.eint ? 1 << 3 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.hse ? 1 << 2 : 0)
| (BX_XHCI_THIS hub.op_regs.HcStatus.hch ? 1 << 0 : 0);
break;
case 0x08: // Page Size
val = BX_XHCI_THIS hub.op_regs.HcPageSize.pagesize;
break;
case 0x0C: // Reserved and Zero'd
case 0x10: // Reserved and Zero'd
val = 0;
break;
case 0x14: // Device Notification Control Register
val = (BX_XHCI_THIS hub.op_regs.HcNotification.RsvdP << 16)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n15 ? 1 << 15 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n14 ? 1 << 14 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n13 ? 1 << 13 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n12 ? 1 << 12 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n11 ? 1 << 11 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n10 ? 1 << 10 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n9 ? 1 << 9 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n8 ? 1 << 8 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n7 ? 1 << 7 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n6 ? 1 << 6 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n5 ? 1 << 5 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n4 ? 1 << 4 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n3 ? 1 << 3 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n2 ? 1 << 2 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n1 ? 1 << 1 : 0)
| (BX_XHCI_THIS hub.op_regs.HcNotification.n0 ? 1 << 0 : 0);
break;
case 0x18: // Command Ring Control Register (Lo) (* most fields always returns zero when read *)
val = (BX_XHCI_THIS hub.op_regs.HcCrcr.RsvdP << 4)
| (BX_XHCI_THIS hub.op_regs.HcCrcr.crr ? 1 << 3 : 0);
break;
case 0x1C: // Command Ring Control Register (Hi) (* always returns zero when read *)
val = 0;
break;
case 0x20: // Reserved and Zero'd
case 0x24: // Reserved and Zero'd
case 0x28: // Reserved and Zero'd
case 0x2C: // Reserved and Zero'd
val = 0;
break;
case 0x30: // DCBAAP (Lo)
val = (Bit32u) ((Bit32u) BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap & ~0x3F);
if (len == 8)
#if ADDR_CAP_64
val_hi = (Bit32u) (BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap >> 32);
#else
val_hi = 0;
#endif // ADDR_CAP_64
break;
case 0x34: // DCBAAP (Hi)
#if ADDR_CAP_64
val = (Bit32u) (BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap >> 32);
#else
val = 0;
#endif // ADDR_CAP_64
break;
case 0x38: // Config
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
val = (BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP << 10)
| (BX_XHCI_THIS hub.op_regs.HcConfig.cie << 8)
| (BX_XHCI_THIS hub.op_regs.HcConfig.u3e << 9)
#else
val = (BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP << 8)
#endif
| (BX_XHCI_THIS hub.op_regs.HcConfig.MaxSlotsEn << 0);
break;
}
} else
// Register Port Sets
if ((offset >= PORT_SET_OFFSET) && (offset < (PORT_SET_OFFSET + (BX_XHCI_THIS hub.n_ports * 16)))) {
unsigned port = (((offset - PORT_SET_OFFSET) >> 4) & 0x3F); // calculate port number
if (BX_XHCI_THIS hub.usb_port[port].portsc.pp) {
// the speed field is only valid for USB3 before a port reset. If a reset has not
// taken place after the port is powered, the USB2 ports don't show a valid speed field.
if (BX_XHCI_THIS hub.usb_port[port].portsc.ccs &&
(BX_XHCI_THIS hub.usb_port[port].is_usb3 || BX_XHCI_THIS hub.usb_port[port].has_been_reset))
speed = BX_XHCI_THIS hub.usb_port[port].portsc.speed;
switch (offset & 0x0000000F) {
case 0x00:
val = 0 /* BX_XHCI_THIS hub.usb_port[port].portsc.wpr == 0 when read */
| (BX_XHCI_THIS hub.usb_port[port].portsc.dr ? 1 << 30 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.woe ? 1 << 27 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.wde ? 1 << 26 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.wce ? 1 << 25 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.cas ? 1 << 24 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.cec ? 1 << 23 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.plc ? 1 << 22 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.prc ? 1 << 21 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.occ ? 1 << 20 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.wrc ? 1 << 19 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.pec ? 1 << 18 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.csc ? 1 << 17 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.pic << 14)
| ( speed << 10)
| (BX_XHCI_THIS hub.usb_port[port].portsc.pp ? 1 << 9 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.pls << 5)
| (BX_XHCI_THIS hub.usb_port[port].portsc.pr ? 1 << 4 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.oca ? 1 << 3 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.ped ? 1 << 1 : 0)
| (BX_XHCI_THIS hub.usb_port[port].portsc.ccs ? 1 << 0 : 0);
break;
case 0x04:
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
val = (BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.RsvdP << 17)
| (BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.fla ? 1 << 16 : 0)
| (BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.u2timeout << 8)
| (BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.u1timeout << 0);
} else {
val = (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.tmode << 28)
| (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.RsvdP << 17)
| (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.hle ? 1 << 16 : 0)
| (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.l1dslot << 8)
| (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.hird << 4)
| (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.rwe ? 1 << 3 : 0)
| (BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.l1s << 0);
}
break;
case 0x08:
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
val = (BX_XHCI_THIS hub.usb_port[port].usb3.portli.RsvdP << 16)
| (BX_XHCI_THIS hub.usb_port[port].usb3.portli.lec << 0);
} else {
val = BX_XHCI_THIS hub.usb_port[port].usb2.portli.RsvdP;
}
break;
case 0x0C:
#if ((VERSION_MAJOR < 1) || ((VERSION_MAJOR == 1) && (VERSION_MINOR == 0)))
BX_ERROR(("Read from Reserved Register in Port Register Set %d", port));
#else
val = (BX_XHCI_THIS hub.usb_port[port].porthlpmc.RsvdP << 14)
| (BX_XHCI_THIS hub.usb_port[port].porthlpmc.hirdd << 10)
| (BX_XHCI_THIS hub.usb_port[port].porthlpmc.l1timeout << 2)
| (BX_XHCI_THIS hub.usb_port[port].porthlpmc.hirdm << 0);
#endif
break;
}
} else val = 0;
} else
// Extended Capabilities
if ((offset >= EXT_CAPS_OFFSET) && (offset < (EXT_CAPS_OFFSET + EXT_CAPS_SIZE))) {
unsigned caps_offset = (offset - EXT_CAPS_OFFSET);
switch (len) {
case 1:
val = BX_XHCI_THIS hub.extended_caps[caps_offset];
break;
case 2:
val = BX_XHCI_THIS hub.extended_caps[caps_offset] |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 1] << 8);
break;
case 8:
val_hi = (BX_XHCI_THIS hub.extended_caps[caps_offset + 4] |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 5] << 8) |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 6] << 16) |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 7] << 24));
case 4:
val = (BX_XHCI_THIS hub.extended_caps[caps_offset] |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 1] << 8) |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 2] << 16) |
(BX_XHCI_THIS hub.extended_caps[caps_offset + 3] << 24));
break;
}
} else
// Host Controller Runtime Registers
if ((offset >= RUNTIME_OFFSET) && (offset < (RUNTIME_OFFSET + 32 + (INTERRUPTERS * 32)))) {
if (offset == RUNTIME_OFFSET) {
val = (BX_XHCI_THIS hub.runtime_regs.mfindex.RsvdP << 14)
| (BX_XHCI_THIS hub.runtime_regs.mfindex.index << 0);
} else if (offset < (RUNTIME_OFFSET + 32)) {
val = 0;
} else {
unsigned rt_offset = (offset - RUNTIME_OFFSET - 32);
i = (rt_offset >> 5); // interrupter offset
switch (rt_offset & 0x1F) {
case 0x00:
val = (BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.RsvdP << 2)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ie ? 1 << 1 : 0)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ip ? 1 << 0 : 0);
break;
case 0x04:
val = (BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodc << 16)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodi << 0);
break;
case 0x08:
val = (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.RsvdP << 16)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.erstabsize << 0);
break;
case 0x0C:
val = BX_XHCI_THIS hub.runtime_regs.interrupter[i].RsvdP;
break;
case 0x10:
val = ((Bit32u) BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd & ~0x3F)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.RsvdP << 0);
if (len == 8)
#if ADDR_CAP_64
val_hi = (Bit32u) (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd >> 32);
#else
val_hi = 0;
#endif // ADDR_CAP_64
break;
case 0x14:
#if ADDR_CAP_64
val = (Bit32u) (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd >> 32);
#else
val = 0;
#endif // ADDR_CAP_64
break;
case 0x18:
val = (Bit32u) ((Bit32u) BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd & ~0x0F)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.ehb ? 1 << 3 : 0)
| (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.desi << 0);
if (len == 8)
#if ADDR_CAP_64
val_hi = (Bit32u) (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd >> 32);
#else
val_hi = 0;
#endif // ADDR_CAP_64
break;
case 0x1C:
#if ADDR_CAP_64
val = (Bit32u) (BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd >> 32);
#else
val = 0;
#endif // ADDR_CAP_64
break;
}
}
} else
// Doorbell Registers (return zero when read)
if ((offset >= DOORBELL_OFFSET) && (offset < (DOORBELL_OFFSET + 4 + (INTERRUPTERS * 4)))) {
val = 0;
} else {
#if BX_PHY_ADDRESS_LONG
BX_ERROR(("register read from unknown offset 0x%08X: 0x%08X%08X (len=%d)", offset, (Bit32u) val_hi, (Bit32u) val, len));
#else
BX_DEBUG(("register read from unknown offset 0x%08X: 0x%08X (len=%d)", offset, (Bit32u) val, len));
if (len > 4)
BX_DEBUG(("Ben: In 32-bit mode, len > 4! (len=%d)", len));
#endif
}
switch (len) {
case 1:
val &= 0xFF;
*((Bit8u *) data) = (Bit8u) val;
break;
case 2:
val &= 0xFFFF;
*((Bit16u *) data) = (Bit16u) val;
break;
case 8:
*((Bit32u *) ((Bit8u *) data + 4)) = val_hi;
case 4:
*((Bit32u *) data) = val;
break;
}
// don't populate the log file if reading from interrupter's IMAN and only INT_ENABLE is set.
// (This only works with the first interrupter)
if ((offset != 0x620) || (val != 0x02)) {
#if BX_PHY_ADDRESS_LONG
// this populates the log file, so we comment it out for now.
//BX_DEBUG(("register read from offset 0x%04X: 0x%08X%08X (len=%d)", offset, (Bit32u) val_hi, (Bit32u) val, len));
#else
BX_DEBUG(("register read from offset 0x%04X: 0x%08X (len=%d)", offset, (Bit32u) val, len));
if (len > 4)
BX_DEBUG(("Ben: In 32-bit mode, len > 4! (len=%d)", len));
#endif
}
return 1;
}
bool bx_usb_xhci_c::write_handler(bx_phy_address addr, unsigned len, void *data, void *param)
{
Bit32u value = *((Bit32u *) data);
Bit32u value_hi = *((Bit32u *) ((Bit8u *) data + 4));
const Bit32u offset = (Bit32u) (addr - BX_XHCI_THIS pci_bar[0].addr);
Bit32u temp;
int i;
// modify val and val_hi per len of data to write
switch (len) {
case 1:
value &= 0xFF;
case 2:
value &= 0xFFFF;
case 4:
value_hi = 0;
break;
}
#if BX_PHY_ADDRESS_LONG
BX_DEBUG(("register write to offset 0x%04X: 0x%08X%08X (len=%d)", offset, value_hi, value, len));
#else
BX_DEBUG(("register write to offset 0x%04X: 0x%08X (len=%d)", offset, value, len));
if (len > 4)
BX_DEBUG(("Ben: In 32-bit mode, len > 4! (len=%d)", len));
#endif
// Even though the controller allows reads other than 32-bits & on odd boundaries,
// we are going to ASSUME dword reads and writes unless specified below
// RO Capability Registers
if (offset < OPS_REGS_OFFSET) {
switch (offset) {
// Capability Registers
case 0x00: // CapLength / version
case 0x04: // HCSPARAMS1
case 0x08: // HCSPARAMS2
case 0x0C: // HCSPARAMS3
case 0x10: // HCCPARAMS1
case 0x14: // DBOFF
case 0x18: // TRSOFF
case 0x1C: // reserved/HCCPARAMS2
BX_ERROR(("Write to Read Only Host Capability Register (0x%08X)", offset));
break;
}
} else
// Operational Registers
if ((offset >= OPS_REGS_OFFSET) && (offset < (OPS_REGS_OFFSET + 0x40))) {
switch (offset - OPS_REGS_OFFSET) {
case 0x00: // Command
temp = BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1;
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1 = (value >> 14);
if (temp != BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1)
BX_ERROR(("bits 31:14 in command register were not preserved"));
BX_XHCI_THIS hub.op_regs.HcCommand.cme = (value & (1 << 13)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcCommand.spe = (value & (1 << 12)) ? 1 : 0;
#else
BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1 = (value >> 12);
if (temp != BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP1)
BX_ERROR(("bits 31:12 in command register were not preserved"));
#endif
BX_XHCI_THIS hub.op_regs.HcCommand.eu3s = (value & (1 << 11)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcCommand.ewe = (value & (1 << 10)) ? 1 : 0;
if (value & (1 << 9)) {
if (BX_XHCI_THIS hub.op_regs.HcStatus.hch == 1) {
// show that we are restoring the state
// (redundant since emulated host can't see it set until we are done here)
BX_XHCI_THIS hub.op_regs.HcStatus.rss = 1;
BX_XHCI_THIS hub.op_regs.HcStatus.sre = BX_XHCI_THIS restore_hc_state();
// show that the restoring is done. (again, redundant, but we do it anyway)
BX_XHCI_THIS hub.op_regs.HcStatus.rss = 0;
} else
BX_ERROR(("Restore State when controller not in Halted state."));
}
if (value & (1 << 8)) {
if (BX_XHCI_THIS hub.op_regs.HcStatus.hch == 1) {
// show that we are saving the state
// (redundant since emulated host can't see it set until we are done here)
BX_XHCI_THIS hub.op_regs.HcStatus.sss = 1;
BX_XHCI_THIS hub.op_regs.HcStatus.sre = BX_XHCI_THIS save_hc_state();
// show that the saving is done. (again, redundant, but we do it anyway)
BX_XHCI_THIS hub.op_regs.HcStatus.sss = 0;
} else
BX_ERROR(("Save State when controller not in Halted state."));
}
#if LIGHT_HC_RESET
BX_XHCI_THIS hub.op_regs.HcCommand.lhcrst = (value & (1 << 7)) ? 1 : 0;
// TODO: Do light reset
#endif // LIGHT_HC_RESET
temp = BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP0;
BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP0 = (value & (7 << 4)) >> 4;
if (temp != BX_XHCI_THIS hub.op_regs.HcCommand.RsvdP0)
BX_ERROR(("bits 6:4 in Command Register were not preserved"));
BX_XHCI_THIS hub.op_regs.HcCommand.hsee = (value & (1 << 3)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcCommand.inte = (value & (1 << 2)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcCommand.hcrst = (value & (1 << 1)) ? 1 : 0;
if (BX_XHCI_THIS hub.op_regs.HcCommand.hcrst) {
BX_XHCI_THIS reset_hc();
BX_XHCI_THIS hub.op_regs.HcCommand.hcrst = 0;
// the controller will send a reset to all USB 3.0 ports,
// enabling the port if a device is attached.
for (unsigned int port=0; port<BX_XHCI_THIS hub.n_ports; port++) {
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
reset_port_usb3(port, HOT_RESET);
}
}
}
// if run/stop bit cleared, stop command ring
BX_XHCI_THIS hub.op_regs.HcCommand.rs = (value & (1 << 0)) ? 1 : 0;
if (BX_XHCI_THIS hub.op_regs.HcCommand.rs == 0) {
BX_XHCI_THIS hub.op_regs.HcCrcr.crr = 0;
BX_XHCI_THIS hub.op_regs.HcStatus.hch = 1; // set the Halted Bit
} else {
BX_XHCI_THIS hub.op_regs.HcStatus.hch = 0; // clear the Halted Bit
#if MAX_SCRATCH_PADS > 0
// if the scratchpad area is required, the quest must allocate and
// place that address at DCBAAP[0] before setting the Run Bit.
Bit64u scratch_addr = 0;
DEV_MEM_READ_PHYSICAL((bx_phy_address) BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap, sizeof(Bit64u), (Bit8u *) &scratch_addr);
if (scratch_addr == 0)
BX_ERROR(("Run bit set with a NULL ScratchPad address at DCBAAP[0]"));
#endif
}
break;
case 0x04: // Status
if ((value & 0xFFFFE0E2) != 0)
BX_ERROR(("RsvdZ bits in HcStatus not written as zeros"));
if (value & ((1<<12) | (1<<11) | (1<<9) | (1<<8) | (1<<0)))
BX_ERROR(("Write to one or more Read-only bits in Status Register"));
BX_XHCI_THIS hub.op_regs.HcStatus.sre = (value & (1 << 10)) ? 0 : BX_XHCI_THIS hub.op_regs.HcStatus.sre;
BX_XHCI_THIS hub.op_regs.HcStatus.pcd = (value & (1 << 4)) ? 0 : BX_XHCI_THIS hub.op_regs.HcStatus.pcd;
BX_XHCI_THIS hub.op_regs.HcStatus.eint = (value & (1 << 3)) ? 0 : BX_XHCI_THIS hub.op_regs.HcStatus.eint;
BX_XHCI_THIS hub.op_regs.HcStatus.hse = (value & (1 << 2)) ? 0 : BX_XHCI_THIS hub.op_regs.HcStatus.hse;
if (value & (1 << 3)) // acknowledging the interrupt
DEV_pci_set_irq(BX_XHCI_THIS devfunc, BX_XHCI_THIS pci_conf[0x3d], 0);
break;
case 0x08: // Page Size
BX_ERROR(("Write to one or more Read-only bits in Page Size Register"));
break;
case 0x0C: // Reserved and Zero'd
case 0x10: // Reserved and Zero'd
if (value != 0)
BX_ERROR(("Write non-zero to RsvdZ Register (offset = 0x%08X value = 0x%08X)", offset, value));
break;
case 0x14: // Device Notification Control Register
temp = BX_XHCI_THIS hub.op_regs.HcNotification.RsvdP;
BX_XHCI_THIS hub.op_regs.HcNotification.RsvdP = value >> 16;
if (temp != BX_XHCI_THIS hub.op_regs.HcNotification.RsvdP)
BX_ERROR(("bits 31:16 in DNCTRL Register were not preserved"));
BX_XHCI_THIS hub.op_regs.HcNotification.n15 = (value & (1 << 15)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n14 = (value & (1 << 14)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n13 = (value & (1 << 13)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n12 = (value & (1 << 12)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n11 = (value & (1 << 11)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n10 = (value & (1 << 10)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n9 = (value & (1 << 9)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n8 = (value & (1 << 8)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n7 = (value & (1 << 7)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n6 = (value & (1 << 6)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n5 = (value & (1 << 5)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n4 = (value & (1 << 4)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n3 = (value & (1 << 3)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n2 = (value & (1 << 2)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n1 = (value & (1 << 1)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcNotification.n0 = (value & (1 << 0)) ? 1 : 0;
break;
case 0x18: // Command Ring Control Register (Lo)
if (value & (1<<3))
BX_ERROR(("Write to one or more Read-only bits in CRCR Register"));
temp = BX_XHCI_THIS hub.op_regs.HcCrcr.RsvdP;
BX_XHCI_THIS hub.op_regs.HcCrcr.RsvdP = (value & (2<<4)) >> 4;
if (temp != BX_XHCI_THIS hub.op_regs.HcCrcr.RsvdP)
BX_ERROR(("bits 5:4 in CRCR Register were not preserved"));
BX_XHCI_THIS hub.op_regs.HcCrcr.ca = (value & (1 << 2)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.cs = (value & (1 << 1)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcCrcr.rcs = (value & (1 << 0)) ? 1 : 0;
// save the new ring pointer
#if ADDR_CAP_64
if (len == 8) {
BX_XHCI_THIS hub.op_regs.HcCrcr.crc = (Bit64u) (((Bit64u) value_hi << 32) | (value & ~0x3F));
} else {
BX_XHCI_THIS hub.op_regs.HcCrcr.crc &= (Bit64u) ~0xFFFFFFFF;
BX_XHCI_THIS hub.op_regs.HcCrcr.crc |= (Bit64u) (value & ~0x3F);
}
#else
BX_XHCI_THIS hub.op_regs.HcCrcr.crc = (Bit64u) (value & ~0x3F);
#endif
BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer = BX_XHCI_THIS hub.op_regs.HcCrcr.crc;
BX_XHCI_THIS hub.ring_members.command_ring.rcs = BX_XHCI_THIS hub.op_regs.HcCrcr.rcs;
// if command stop or abort, stop command ring
if (BX_XHCI_THIS hub.op_regs.HcCrcr.ca || BX_XHCI_THIS hub.op_regs.HcCrcr.cs)
BX_XHCI_THIS hub.op_regs.HcCrcr.crr = 0;
// this register is read as zero, so we keep this value for internal reading
if (len == 8) {
BX_XHCI_THIS hub.op_regs.HcCrcr.actual = (Bit64u) (((Bit64u) value_hi << 32) | value);
} else {
BX_XHCI_THIS hub.op_regs.HcCrcr.actual &= (Bit64u) ~0xFFFFFFFF;
BX_XHCI_THIS hub.op_regs.HcCrcr.actual |= (Bit64u) value;
}
break;
case 0x1C: // Command Ring Control Register (Hi)
#if ADDR_CAP_64
BX_XHCI_THIS hub.op_regs.HcCrcr.crc &= (Bit64u) 0xFFFFFFFF;
BX_XHCI_THIS hub.op_regs.HcCrcr.crc |= (Bit64u) ((Bit64u) value << 32);
BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer = BX_XHCI_THIS hub.op_regs.HcCrcr.crc;
// this register is read as zero, so we keep this value for internal reading
BX_XHCI_THIS hub.op_regs.HcCrcr.actual &= (Bit64u) 0xFFFFFFFF;
BX_XHCI_THIS hub.op_regs.HcCrcr.actual |= (Bit64u) ((Bit64u) value << 32);
#endif
break;
case 0x20: // Reserved and Zero'd
case 0x24: // Reserved and Zero'd
case 0x28: // Reserved and Zero'd
case 0x2C: // Reserved and Zero'd
if (value != 0)
BX_ERROR(("Write non-zero to RsvdZ Register (offset = 0x%08X value = 0x%08X)", offset, value));
break;
case 0x30: // DCBAAP (Lo)
if (value & 0x3F)
BX_ERROR(("Write non-zero to RsvdZ member of DCBAAP Register"));
#if ADDR_CAP_64
if (len == 8)
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap = (Bit64u) (((Bit64u) value_hi << 32) | (value & ~0x3F));
else {
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap &= (Bit64u) ~0xFFFFFFFF;
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap |= (Bit64u) (value & ~0x3F);
}
#else
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap = (Bit64u) (value & ~0x3F);
#endif
break;
case 0x34: // DCBAAP (Hi)
#if ADDR_CAP_64
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap &= (Bit64u) 0xFFFFFFFF;
BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap |= (Bit64u) ((Bit64u) value << 32);
#endif
break;
case 0x38: // Config
temp = BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP;
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP = (value >> 10);
if (temp != BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP)
BX_ERROR(("bits 31:10 in Config Register were not preserved"));
BX_XHCI_THIS hub.op_regs.HcConfig.cie = (value & (1 << 9)) ? 1 : 0;
BX_XHCI_THIS hub.op_regs.HcConfig.u3e = (value & (1 << 8)) ? 1 : 0;
#else
BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP = (value >> 8);
if (temp != BX_XHCI_THIS hub.op_regs.HcConfig.RsvdP)
BX_ERROR(("bits 31:8 in Config Register were not preserved"));
#endif
BX_XHCI_THIS hub.op_regs.HcConfig.MaxSlotsEn = (value & 0xFF);
break;
}
} else
// Register Port Sets
if ((offset >= PORT_SET_OFFSET) && (offset < (PORT_SET_OFFSET + (BX_XHCI_THIS hub.n_ports * 16)))) {
unsigned port = (((offset - PORT_SET_OFFSET) >> 4) & 0x3F); // calculate port number
switch (offset & 0x0000000F) {
case 0x00:
if (value & (1<<9)) { // port power
if (value & ((1<<30) | (1<<24) | (1<<3) | (1<<0)))
BX_DEBUG(("Write to one or more Read-only bits in PORTSC[%d] Register (0x%08X)", port, value));
if (value & ((3<<28) | (1<<2)))
BX_ERROR(("Write non-zero to a RsvdZ member of PORTSC[%d] Register", port));
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
BX_XHCI_THIS hub.usb_port[port].portsc.wpr = (value & (1 << 31)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].portsc.cec = (value & (1 << 23)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].portsc.wrc = (value & (1 << 19)) ? 0 : BX_XHCI_THIS hub.usb_port[port].portsc.wrc;
if (value & (1<<18)) // For a USB3 protocol port, this bit shall never be set to 1, however doesn't hurt to write to it anyway
BX_DEBUG(("Write to USB3 port: bit 18"));
} else {
BX_XHCI_THIS hub.usb_port[port].portsc.pec = (value & (1 << 18)) ? 0 : BX_XHCI_THIS hub.usb_port[port].portsc.pec;
if (value & ((1<<31) | (1<<23) | (1<<19)))
BX_ERROR(("Write to USB2 port: RsvdZ bit"));
}
// The WC1 bits must be before anything that will change these bits below.
if (value & (1 << 22)) BX_XHCI_THIS hub.usb_port[port].portsc.plc = 0;
if (value & (1 << 21)) BX_XHCI_THIS hub.usb_port[port].portsc.prc = 0;
if (value & (1 << 20)) BX_XHCI_THIS hub.usb_port[port].portsc.occ = 0;
if (value & (1 << 17)) BX_XHCI_THIS hub.usb_port[port].portsc.csc = 0;
if (value & (1 << 1)) BX_XHCI_THIS hub.usb_port[port].portsc.ped = 0;
BX_XHCI_THIS hub.usb_port[port].portsc.woe = (value & (1 << 27)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].portsc.wde = (value & (1 << 26)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].portsc.wce = (value & (1 << 25)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].portsc.pic = (value & (0x3 << 14)) >> 14;
// if transition from non-powered to powered
if (BX_XHCI_THIS hub.usb_port[port].portsc.pp == 0) {
// a "has been reset" is false.
BX_XHCI_THIS hub.usb_port[port].has_been_reset = 0;
}
BX_XHCI_THIS hub.usb_port[port].portsc.pp = 1;
if (value & (1<<16)) { // LWS
switch ((value & (0xF << 5)) >> 5) {
case 0:
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_U0;
break;
case 2: // USB2 only
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_U2;
break;
case 3:
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_U3_SUSPENDED;
break;
case 5: // USB3 only
if (BX_XHCI_THIS hub.usb_port[port].portsc.pls == PLS_DISABLED) {
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_RXDETECT;
BX_XHCI_THIS hub.usb_port[port].portsc.ped = 0;
BX_XHCI_THIS hub.usb_port[port].portsc.pec = 1;
}
break;
case 15: // USB2 only
if (BX_XHCI_THIS hub.usb_port[port].portsc.pls == PLS_U3_SUSPENDED) {
// port should transition to the U3Exit state...
}
break;
}
}
// if port reset bit is set, reset the port, then enable the port (if ccs == 1).
if (((value & (1 << 31)) && BX_XHCI_THIS hub.usb_port[port].is_usb3) ||
(value & (1 << 4))) {
reset_port_usb3(port, (value & (1 << 4)) ? HOT_RESET : WARM_RESET);
}
} else
BX_XHCI_THIS hub.usb_port[port].portsc.pp = 0;
break;
case 0x04:
if (BX_XHCI_THIS hub.usb_port[port].portsc.pp) {
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
temp = BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.RsvdP;
BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.RsvdP = value >> 17;
if (temp != BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.RsvdP)
BX_ERROR(("bits 31:17 in PORTPMSC[%d] Register were not preserved", port));
BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.fla = (value & (1 << 16)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.u2timeout = (value & (0xFF << 8)) >> 8;
BX_XHCI_THIS hub.usb_port[port].usb3.portpmsc.u1timeout = (value & (0xFF << 0)) >> 0;
} else {
if (value & (7<<0))
BX_ERROR(("Write to one or more Read-only bits in PORTPMSC[%d] Register", port));
BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.tmode = (value & (0xF << 28)) >> 28;
temp = BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.RsvdP;
BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.RsvdP = (value & (0x1FFF << 15)) >> 15;
if (temp != BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.RsvdP)
BX_ERROR(("bits 27:15 in PORTPMSC[%d] Register were not preserved", port));
BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.hle = (value & (1 << 16)) ? 1 : 0;
BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.l1dslot = (value & (0xFF << 8)) >> 8;
BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.hird = (value & (0xF << 4)) >> 4;
BX_XHCI_THIS hub.usb_port[port].usb2.portpmsc.rwe = (value & (1 << 3)) ? 1 : 0;
}
}
break;
case 0x08:
if (BX_XHCI_THIS hub.usb_port[port].portsc.pp) {
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
if (value & (0xFFFF<<0))
BX_ERROR(("Write to one or more Read-only bits in PORTLI[%d] Register", port));
temp = BX_XHCI_THIS hub.usb_port[port].usb3.portli.RsvdP;
BX_XHCI_THIS hub.usb_port[port].usb3.portli.RsvdP = value >> 16;
if (temp != BX_XHCI_THIS hub.usb_port[port].usb3.portli.RsvdP)
BX_ERROR(("bits 31:16 in PORTLI[%d] Register were not preserved", port));
} else {
temp = BX_XHCI_THIS hub.usb_port[port].usb2.portli.RsvdP;
BX_XHCI_THIS hub.usb_port[port].usb2.portli.RsvdP = value;
if (temp != BX_XHCI_THIS hub.usb_port[port].usb2.portli.RsvdP)
BX_ERROR(("bits 31:0 in PORTLI[%d] Register were not preserved", port));
}
}
break;
case 0x0C:
#if ((VERSION_MAJOR < 1) || ((VERSION_MAJOR == 1) && (VERSION_MINOR == 0)))
BX_ERROR(("Write to Reserved Register in Port Register Set %d", port));
#else
temp = BX_XHCI_THIS hub.usb_port[port].porthlpmc.RsvdP;
BX_XHCI_THIS hub.usb_port[port].porthlpmc.RsvdP = (value >> 14);
if (temp != BX_XHCI_THIS hub.usb_port[port].porthlpmc.RsvdP)
BX_ERROR(("bits 31:14 in PORTHLPMC[%d] Register were not preserved", port));
BX_XHCI_THIS hub.usb_port[port].porthlpmc.hirdd = ((value & (0x0F << 10)) >> 10);
BX_XHCI_THIS hub.usb_port[port].porthlpmc.l1timeout = ((value & (0xFF << 2)) >> 2);
BX_XHCI_THIS hub.usb_port[port].porthlpmc.hirdm = ((value & (0x0F << 0)) >> 0);
#endif
break;
}
} else
// Extended Capabilities
if ((offset >= EXT_CAPS_OFFSET) && (offset < (EXT_CAPS_OFFSET + EXT_CAPS_SIZE))) {
unsigned caps_offset = (offset - EXT_CAPS_OFFSET);
Bit64u qword = (((Bit64u) value_hi << 32) | value);
while (len) {
*(Bit8u *) &BX_XHCI_THIS hub.extended_caps[caps_offset] = (Bit8u) (qword & 0xFF);
switch (caps_offset) {
case 3:
if (qword & 1) // clear the BIOS owner bit
BX_XHCI_THIS hub.extended_caps[2] &= ~(1<<0);
break;
default:
;
}
len--;
caps_offset++;
qword >>= 8;
}
} else
// Host Controller Runtime Registers
if ((offset >= RUNTIME_OFFSET) && (offset < (RUNTIME_OFFSET + 32 + (INTERRUPTERS * 32)))) {
if (offset == RUNTIME_OFFSET) {
BX_ERROR(("Write to MFINDEX register"));
} else if (offset < (RUNTIME_OFFSET + 32)) {
BX_ERROR(("Write to Reserved Register in HC Runtime Register set"));
} else {
unsigned rt_offset = (offset - RUNTIME_OFFSET - 32);
i = (rt_offset >> 5); // interrupter offset
switch (rt_offset & 0x1F) {
case 0x00:
temp = BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.RsvdP;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.RsvdP = (value >> 2);
if (temp != BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.RsvdP)
BX_ERROR(("bits 31:2 in IMAN Register were not preserved"));
BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ie = ((value & (1 << 1)) == (1 << 1));
if (value & (1 << 0))
BX_XHCI_THIS hub.runtime_regs.interrupter[i].iman.ip = 0;
break;
case 0x04:
BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodc = (value >> 16);
BX_XHCI_THIS hub.runtime_regs.interrupter[i].imod.imodi = (value & 0xFFFF);
break;
case 0x08:
temp = BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.RsvdP;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.RsvdP = (value >> 16);
if (temp != BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.RsvdP)
BX_ERROR(("bits 31:16 in ERSTSZ Register were not preserved"));
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstsz.erstabsize = (value & 0xFFFF);
break;
case 0x0C:
temp = BX_XHCI_THIS hub.runtime_regs.interrupter[i].RsvdP;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].RsvdP = value;
if (temp != BX_XHCI_THIS hub.runtime_regs.interrupter[i].RsvdP)
BX_ERROR(("bits 31:0 in RsvdP (0x0C) Register were not preserved"));
break;
case 0x10:
temp = BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.RsvdP;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.RsvdP = (value & ERSTABADD_MASK);
if (temp != BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.RsvdP)
BX_ERROR(("RsvdP bits in ERSTBA Register were not preserved"));
#if ADDR_CAP_64
if (len == 8) {
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd = (((Bit64u) value_hi << 32) | (value & ~ERSTABADD_MASK));
init_event_ring(i); // initialize event ring members
} else {
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd &= (Bit64u) ~0xFFFFFFFF;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd |= (Bit64u) (value & ~ERSTABADD_MASK);
}
#else
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd = (Bit64u) (value & ~ERSTABADD_MASK);
init_event_ring(i); // initialize event ring members
#endif
break;
case 0x14:
#if ADDR_CAP_64
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd &= (Bit64u) 0xFFFFFFFF;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erstba.erstabadd |= ((Bit64u) value << 32);
init_event_ring(i); // initialize event ring members
#endif
break;
case 0x18:
if (value & (1 << 3))
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.ehb = 0;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.desi = (value & 0x07);
#if ADDR_CAP_64
if (len == 8)
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd = (Bit64u) (((Bit64u) value_hi << 32) | (value & ~0x0F));
else {
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd &= (Bit64u) ~0xFFFFFFFF;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd |= (Bit64u) (value & ~0x0F);
}
#else
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd == (Bit64u) (value & ~0x0F);
#endif
break;
case 0x1C:
#if ADDR_CAP_64
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd &= (Bit64u) 0xFFFFFFFF;
BX_XHCI_THIS hub.runtime_regs.interrupter[i].erdp.eventadd |= ((Bit64u) value << 32);
#endif
break;
}
}
} else
// Doorbell Registers
if ((offset >= DOORBELL_OFFSET) && (offset < (DOORBELL_OFFSET + 4 + (INTERRUPTERS * 4)))) {
if (value & (0xFF << 8))
BX_ERROR(("RsvdZ field of Doorbell written as non zero."));
unsigned doorbell = ((offset - DOORBELL_OFFSET) >> 2);
if (doorbell == 0) { // Command Doorbell
BX_DEBUG(("Command Doorbell Rang"));
if (value & (0xFFFF << 16))
BX_ERROR(("DB Stream ID not zero when Command Doorbell rung"));
if ((value & 0xFF) != 0)
BX_ERROR(("Command Doorbell rang with non zero value: 0x%02X", (value & 0xFF)));
// if the run/stop bit is set, the command ring is running
if (BX_XHCI_THIS hub.op_regs.HcCommand.rs)
BX_XHCI_THIS hub.op_regs.HcCrcr.crr = 1;
process_command_ring();
} else {
// doorbell = slot to use (1 based)
// (value & 0xFF) = ep (1 = control, 2 = ep1 out, 3 = ep1 in, etc);
int ep = (value & 0xFF);
BX_DEBUG(("Rang Doorbell: slot = %d ep = %d (%s)", doorbell, ep, (ep & 1) ? "IN" : "OUT"));
if (ep > 31) {
BX_ERROR(("Doorbell rang with EP > 31 (ep = %d)", ep));
} else {
#if MAX_PSA_SIZE > 0
// is this endpoint using streams?
if (BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.max_pstreams > 0) { // specifying streams
// the ep must be a super-speed bulk endpoint
if ((BX_XHCI_THIS hub.slots[doorbell].slot_context.speed == XHCI_SPEED_SUPER) && // is a super-speed device
((BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.ep_type == 2) || // is a bulk out
(BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.ep_type == 6))) { // or bulk in
// if the lsa bit is set, use primary streams only
if (BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.lsa == 1) {
unsigned primary_id = PSA_PRIMARY_MASK(value, BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.max_pstreams);
if ((primary_id > 0) && (primary_id < MAX_PSA_SIZE_NUM) &&
(primary_id < PSA_MAX_SIZE_NUM(BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.max_pstreams)) &&
BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].stream[primary_id].valid == 1) {
BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].stream[primary_id].tr_dequeue_pointer =
BX_XHCI_THIS process_transfer_ring(doorbell, ep, BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].stream[primary_id].tr_dequeue_pointer,
&BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].stream[primary_id].dcs, primary_id);
} else {
BX_ERROR(("Stream Context with bad Primary Stream ID (%d)", primary_id));
// no TRB is associated, so can't include a TRB address. Does this make the EventTRB invalid?
//write_event_TRB(0, 0, TRB_SET_COMP_CODE(INVALID_STREAM_ID), TRB_SET_SLOT(doorbell) | TRB_SET_EP(ep) | TRB_SET_TYPE(TRANS_EVENT), 1);
//BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.ep_state = EP_STATE_HALTED; // call a function to do this correctly.
}
} else {
#if NO_SSD_SUPPORT
BX_ERROR(("The EP's context lsa bit is zero. Secondary Streams are not supported."));
#else
// secondary streams are used
unsigned primary_id = PSA_PRIMARY_MASK(value, BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.max_pstreams);
unsigned secondary_id = PSA_SECONDARY_MASK(value, BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].ep_context.max_pstreams);
BX_ERROR(("The EP's context lsa bit is set. Secondary Streams are not yet supported."));
// TODO:
#endif
}
} else {
BX_ERROR(("EP:MaxPStream > 0 on a non-Bulk SS device endpoint"));
}
} else {
#endif
// standard trb ring
BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].enqueue_pointer =
BX_XHCI_THIS process_transfer_ring(doorbell, ep, BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].enqueue_pointer,
&BX_XHCI_THIS hub.slots[doorbell].ep_context[ep].rcs, 0);
#if MAX_PSA_SIZE > 0
}
#endif
}
}
} else
BX_ERROR(("register write to unknown offset 0x%08X: 0x%08X%08X (len=%d)", offset, (Bit32u) value_hi, (Bit32u) value, len));
return 1;
}
void bx_usb_xhci_c::get_stream_info(struct STREAM_CONTEXT *context, const Bit64u address, const int index)
{
struct STREAM_CONTEXT stream_context;
Bit8u buffer[16];
// the first stream context is reserved
if ((index > 0) && (index < MAX_PSA_SIZE_NUM)) {
// read in the stream context
DEV_MEM_READ_PHYSICAL((bx_phy_address) address + (index * 16), 16, buffer);
copy_stream_from_buffer(&stream_context, buffer);
if ((stream_context.sct == 1) && (stream_context.tr_dequeue_pointer != 0)) {
context->valid = 1; // mark that this is a valid stream context
context->tr_dequeue_pointer = stream_context.tr_dequeue_pointer;
context->dcs = stream_context.dcs;
context->sct = stream_context.sct;
} else {
#if NO_SSD_SUPPORT
context->valid = 0;
BX_DEBUG(("Stream Context index %d with SCT != 1 (%d)", index, stream_context.sct));
#else
BX_DEBUG(("Stream Context index %d with SCT == 0 (%d)...Secondary Streams not yet supported.", index));
#endif
}
}
}
void bx_usb_xhci_c::put_stream_info(struct STREAM_CONTEXT *context, const Bit64u address, const int index) {
Bit8u buffer[16];
// the first stream context is reserved
if ((index > 0) && (index < MAX_PSA_SIZE_NUM)) {
copy_stream_to_buffer(buffer, context);
// write the stream context
DEV_MEM_WRITE_PHYSICAL((bx_phy_address) address + (index * 16), 16, buffer);
}
}
int xhci_event_handler(int event, void *ptr, void *dev, int port)
{
if (dev != NULL) {
return ((bx_usb_xhci_c*)dev)->event_handler(event, ptr, port);
}
return -1;
}
int bx_usb_xhci_c::event_handler(int event, void *ptr, int port)
{
int slot, ep, ret = 0;
USBAsync *p;
switch (event) {
// packet events start here
case USB_EVENT_ASYNC:
BX_DEBUG(("Experimental async packet completion"));
p = container_of_usb_packet(ptr);
p->done = 1;
slot = (p->slot_ep >> 8);
ep = (p->slot_ep & 0xff);
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams > 0) { // specifying streams
BX_DEBUG(("Event Handler: USB_EVENT_ASYNC: slot %d, ep %d, stream ID %d", slot, ep, p->packet.strm_pid));
BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[p->packet.strm_pid].tr_dequeue_pointer =
BX_XHCI_THIS process_transfer_ring(slot, ep, BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[p->packet.strm_pid].tr_dequeue_pointer,
&BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[p->packet.strm_pid].dcs, p->packet.strm_pid);
} else {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer =
BX_XHCI_THIS process_transfer_ring(slot, ep, BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer,
&BX_XHCI_THIS hub.slots[slot].ep_context[ep].rcs, 0);
}
break;
case USB_EVENT_WAKEUP:
if (BX_XHCI_THIS hub.usb_port[port].portsc.pls != PLS_U3_SUSPENDED) {
break;
}
BX_XHCI_THIS hub.usb_port[port].portsc.pls = PLS_RESUME;
if (!BX_XHCI_THIS hub.usb_port[port].portsc.plc) {
BX_XHCI_THIS hub.usb_port[port].portsc.plc = 1;
if (BX_XHCI_THIS hub.op_regs.HcStatus.hch) {
break;
}
write_event_TRB(0, ((port + 1) << 24), TRB_SET_COMP_CODE(1), TRB_SET_TYPE(PORT_STATUS_CHANGE), 1);
}
break;
// host controller events start here
case USB_EVENT_DEFAULT_SPEED:
// return default speed for specified port number
if (BX_XHCI_THIS hub.usb_port[port].is_usb3 == 1) {
// return super-speed
return USB_SPEED_SUPER;
}
// else return high-speed
return USB_SPEED_HIGH;
case USB_EVENT_CHECK_SPEED:
// all super-speed device must be on the first half port register sets,
// while all non-super-speed device must be on the second half.
if (ptr != NULL) {
usb_device_c *usb_device = (usb_device_c *) ptr;
if ((usb_device->get_speed() == USB_SPEED_SUPER) &&
(BX_XHCI_THIS hub.usb_port[port].is_usb3 != 1)) {
ret = 0; // given speed is not allowed on this port
break;
}
if ((usb_device->get_speed() != USB_SPEED_SUPER) &&
(BX_XHCI_THIS hub.usb_port[port].is_usb3 != 0)) {
ret = 0; // given speed is not allowed on this port
break;
}
ret = 1; // given speed is allowed on this port
}
break;
default:
BX_ERROR(("unknown/unsupported event (id=%d) on port #%d", event, port+1));
ret = -1; // unknown event, event not handled
}
return ret;
}
// This function checks and processes all enqueued TRB's in the EP's transfer ring
Bit64u bx_usb_xhci_c::process_transfer_ring(const int slot, const int ep, Bit64u ring_addr, bool *rcs, const int primary_sid)
{
struct TRB trb;
Bit64u address = 0, org_addr;
int int_target/*, td_size*/;
Bit32u transfer_length;
int ret = 0, len;
int port_num = BX_XHCI_THIS hub.slots[slot].slot_context.rh_port_num;
USBAsync *p;
Bit8u cur_direction = (ep & 1) ? USB_TOKEN_IN : USB_TOKEN_OUT; // for NORMAL without SETUP
bool is_transfer_trb, is_immed_data, ioc, spd_occurred = 0;
bool first_event_trb_encountered = 0;
Bit32u bytes_not_transferred = 0;
int comp_code = 0;
Bit8u immed_data[8];
// this assumes that we are starting at the first of the TD when this function is called.
// this is usually the case, and rarely isn't.
int trb_count = 0;
BX_XHCI_THIS hub.slots[slot].ep_context[ep].edtla = 0;
BX_XHCI_THIS hub.slots[slot].ep_context[ep].retry = 0;
// if the ep is disabled, return an error event trb.
if ((BX_XHCI_THIS hub.slots[slot].slot_context.slot_state == SLOT_STATE_DISABLED_ENABLED)
|| (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_DISABLED)) {
org_addr = ring_addr;
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(EP_NOT_ENABLED),
TRB_SET_SLOT(slot) | TRB_SET_EP(ep) | TRB_SET_TYPE(TRANS_EVENT), 1);
return ring_addr;
}
// if the ep is in the halted or error state, ignore the doorbell ring.
if ((BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_HALTED)
|| (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_ERROR))
return ring_addr;
// if the ep_context::type::direction field is not correct for the ep type of this ep, then ignore the doorbell
if (ep >= 2) {
static int endpoint_dir[8] = { -1, EP_DIR_OUT, EP_DIR_OUT, EP_DIR_OUT, -1, EP_DIR_IN, EP_DIR_IN, EP_DIR_IN };
int ep_type = (ep & 1) ? EP_DIR_IN : EP_DIR_OUT;
if (endpoint_dir[BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_type] != ep_type) {
BX_ERROR(("Endpoint_context::Endpoint_type::direction is not correct for this endpoint number. Ignoring doorbell ring."));
return ring_addr;
}
}
// If an endpoint is in the Stopped state when the doorbell is rung, it will transition to the Running state (page 126)
// The output Context (*slot_addr) should be updated before any other transfer events are made
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_STOPPED) {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state = EP_STATE_RUNNING;
update_ep_context(slot, ep);
}
// read in the TRB
read_TRB((bx_phy_address) ring_addr, &trb);
while ((trb.command & 1) == *rcs) {
org_addr = ring_addr;
BX_DEBUG(("Found TRB: address = 0x" FORMATADDRESS " 0x" FMT_ADDRX64 " 0x%08X 0x%08X %d (SPD occurred = %d)",
(bx_phy_address) org_addr, trb.parameter, trb.status, trb.command, *rcs, spd_occurred));
trb_count++;
// these are used in some/most items.
// If not used, won't hurt to extract bad data.
int_target = TRB_GET_TARGET(trb.status);
// td_size = TRB_GET_TDSIZE(trb.status);
transfer_length = TRB_GET_TX_LEN(trb.status);
is_transfer_trb = 0; // assume not a transfer
ioc = TRB_IOC(trb.command);
// if a SPD occurred, we only process the LINK and EVENT TRB's in this TD, until either one of these two or end of TD
if (!spd_occurred ||
(spd_occurred && ((TRB_GET_TYPE(trb.command) == LINK) || (TRB_GET_TYPE(trb.command) == EVENT_DATA)))) {
// is the data in trb.parameter? (Immediate data?)
is_immed_data = TRB_IS_IMMED_DATA(trb.command);
if (is_immed_data)
DEV_MEM_READ_PHYSICAL_DMA((bx_phy_address) org_addr, 8, immed_data); // No byte-swapping here
else
address = trb.parameter;
switch (TRB_GET_TYPE(trb.command)) {
// is a LINK trb.
case LINK:
if (ioc)
write_event_TRB(int_target, org_addr, TRB_SET_COMP_CODE(TRB_SUCCESS), TRB_SET_TYPE(LINK), 1);
if (TRB_TOGGLE(trb.command))
(*rcs) ^= 1;
ring_addr = trb.parameter & (Bit64u) ~0xF;
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d): LINK TRB: New dq_pointer = 0x" FMT_ADDRX64 " (%d)",
(bx_phy_address) org_addr, slot, ep, ring_addr, *rcs));
#if ((VERSION_MAJOR == 0) && (VERSION_MINOR == 0x95))
// https://patchwork.kernel.org/patch/51191/
if (!TRB_CHAIN(trb.command))
BX_DEBUG(("Chain Bit in Link TRB not set."));
#endif
read_TRB((bx_phy_address) ring_addr, &trb);
continue;
// Setup Stage TRB
case SETUP_STAGE:
cur_direction = USB_TOKEN_SETUP;
is_transfer_trb = 1;
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d) (len = %d): Found SETUP TRB",
(bx_phy_address) org_addr, slot, ep, transfer_length));
break;
// Data Stage TRB
case DATA_STAGE:
cur_direction = TRB_GET_DIR(trb.command);
is_transfer_trb = 1;
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d) (len = %d): Found DATA STAGE TRB",
(bx_phy_address) org_addr, slot, ep, transfer_length));
break;
// Status Stage TRB
case STATUS_STAGE:
cur_direction = TRB_GET_DIR(trb.command);
is_transfer_trb = 1;
transfer_length = 0;
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d): Found STATUS STAGE TRB",
(bx_phy_address) org_addr, slot, ep));
break;
// Normal TRB
case NORMAL:
is_transfer_trb = 1;
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d) (len = %d): Found NORMAL TRB",
(bx_phy_address) org_addr, slot, ep, transfer_length));
break;
// Event TRB
// xHCI version 1.10 (Nov 2017), page 184
case EVENT_DATA:
if (!spd_occurred || (spd_occurred && !first_event_trb_encountered)) {
comp_code = (spd_occurred) ? SHORT_PACKET : TRB_SUCCESS;
write_event_TRB(int_target, trb.parameter,
TRB_SET_COMP_CODE(comp_code) | (BX_XHCI_THIS hub.slots[slot].ep_context[ep].edtla & 0x00FFFFFF),
TRB_SET_SLOT(slot) | TRB_SET_EP(ep) | TRB_SET_TYPE(TRANS_EVENT) | (1<<2),
ioc);
}
// in version 1.00+, we need to check the PARSE_ALL_EVENT bit
// to see if we parse all of them
#if (((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x00)) && PARSE_ALL_EVENT)
first_event_trb_encountered = 0;
#else
if (spd_occurred)
first_event_trb_encountered = 1;
#endif
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d) (trnsfrd = %d): Found EVENT_DATA TRB: (returning %d)",
(bx_phy_address) org_addr, slot, ep, BX_XHCI_THIS hub.slots[slot].ep_context[ep].edtla, comp_code));
break;
// No Op (transfer ring) TRB (Sect: 6.4.1.4)
case NO_OP:
BX_DEBUG(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d): Found No Op TRB",
(bx_phy_address) org_addr, slot, ep));
cur_direction = 0;
is_transfer_trb = 1;
transfer_length = 0;
break;
// unknown TRB type
default:
BX_ERROR(("0x" FORMATADDRESS ": Transfer Ring (slot = %d) (ep = %d): Unknown TRB found.",
(bx_phy_address) org_addr, slot, ep));
BX_ERROR(("Unknown trb type found: %d (0x" FMT_ADDRX64 " 0x%08X 0x%08X)", TRB_GET_TYPE(trb.command),
trb.parameter, trb.status, trb.command));
}
// is there a transfer to be done?
if (is_transfer_trb) {
p = find_async_packet(&BX_XHCI_THIS packets, ring_addr);
bool completion = (p != NULL);
if (completion && !p->done) {
return ring_addr;
}
comp_code = TRB_SUCCESS; // assume good trans event
if (completion) {
ret = p->packet.len;
len = ret;
} else {
p = create_async_packet(&BX_XHCI_THIS packets, org_addr, transfer_length);
p->packet.pid = cur_direction;
p->packet.devaddr = BX_XHCI_THIS hub.slots[slot].slot_context.device_address;
p->packet.devep = (ep >> 1);
p->packet.speed = broadcast_speed(slot);
#if HANDLE_TOGGLE_CONTROL
p->packet.toggle = -1; // the xHCI handles the data toggle bit for USB2 devices
#endif
p->packet.complete_cb = xhci_event_handler;
p->packet.complete_dev = BX_XHCI_THIS_PTR;
p->packet.strm_pid = primary_sid;
p->slot_ep = (slot << 8) | ep;
switch (cur_direction) {
case USB_TOKEN_OUT:
case USB_TOKEN_SETUP:
if (is_immed_data)
memcpy(p->packet.data, immed_data, transfer_length);
else if (transfer_length > 0)
DEV_MEM_READ_PHYSICAL_DMA((bx_phy_address) address, transfer_length, p->packet.data);
// The XHCI should block all SET_ADDRESS SETUP TOKEN's
if ((cur_direction == USB_TOKEN_SETUP) &&
(p->packet.data[0] == 0) && // Request type
(p->packet.data[1] == 5)) { // SET_ADDRESS
len = 0;
comp_code = TRB_ERROR;
BX_ERROR(("SETUP_TOKEN: System Software should not send SET_ADDRESS command on the xHCI."));
} else {
ret = BX_XHCI_THIS broadcast_packet(&p->packet, port_num - 1);
len = transfer_length;
BX_DEBUG(("OUT: Transferred %d bytes (ret = %d)", len, ret));
}
break;
case USB_TOKEN_IN:
ret = BX_XHCI_THIS broadcast_packet(&p->packet, port_num - 1);
break;
}
if (ret == USB_RET_ASYNC) {
BX_DEBUG(("Async packet deferred"));
break;
}
}
if (cur_direction == USB_TOKEN_IN) {
if (ret >= 0) {
len = ret;
BX_XHCI_THIS hub.slots[slot].ep_context[ep].edtla += len;
if (len > 0)
DEV_MEM_WRITE_PHYSICAL_DMA((bx_phy_address) address, len, p->packet.data);
BX_DEBUG(("IN: Transferred %d bytes, requested %d bytes", len, transfer_length));
if (len < (int) transfer_length) {
bytes_not_transferred = transfer_length - len;
spd_occurred = 1;
} else
bytes_not_transferred = 0;
} else {
switch (ret) {
case USB_RET_STALL:
comp_code = STALL_ERROR;
break;
case USB_RET_BABBLE:
comp_code = BABBLE_DETECTION;
break;
default:
comp_code = TRANSACTION_ERROR;
}
len = 0;
}
}
remove_async_packet(&BX_XHCI_THIS packets, p);
if (ret == USB_RET_NAK) {
// If we are a high-speed device, and a SETUP packet, we need to
// return a comp_code of TRANSACTION_ERROR instead of breaking out.
if ((cur_direction == USB_TOKEN_SETUP) &&
(BX_XHCI_THIS hub.slots[slot].slot_context.speed == XHCI_SPEED_HIGH))
comp_code = TRANSACTION_ERROR;
else {
// if the device NAK'ed, we retry with given interval
BX_XHCI_THIS hub.slots[slot].ep_context[ep].retry = 1;
int interval = 125 * (1 << BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.interval);
if (interval < 1000) {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].retry_counter = 1;
} else {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].retry_counter = interval / 1000;
}
break;
}
}
// 4.10.1 paragraph 4
// 4.10.1.1
if (ioc) {
if ((comp_code == TRB_SUCCESS) && spd_occurred && TRB_SPD(trb.command)) {
comp_code = SHORT_PACKET;
BX_DEBUG(("Sending Short Packet Detect Event TRB (%d)", bytes_not_transferred));
}
// create a Event TRB
write_event_TRB(int_target, org_addr, TRB_SET_COMP_CODE(comp_code) | bytes_not_transferred,
TRB_SET_SLOT(slot) | TRB_SET_EP(ep) | TRB_SET_TYPE(TRANS_EVENT), 1);
}
}
}
// if the Chain bit is clear, then end of TD
if ((trb.command & (1<<4)) == 0) {
spd_occurred = 0;
BX_XHCI_THIS hub.slots[slot].ep_context[ep].edtla = 0;
}
// advance the Dequeue pointer and continue;
ring_addr += 16;
read_TRB((bx_phy_address) ring_addr, &trb);
}
BX_DEBUG(("Process Transfer Ring: Processed %d TRB's", trb_count));
if (trb_count == 0)
BX_ERROR(("Process Transfer Ring: Doorbell rang, but no TRB's were enqueued in the ring."));
// return the new address
return ring_addr;
}
// This function call starts at the current position in the Command Ring,
// processes that command, then moves to the next one, until CCS != SCS;
// BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer = current position in ring
// BX_XHCI_THIS hub.op_regs.HcCrcr.rcs = current ring cycle state
// BX_XHCI_THIS hub.op_regs.HcCrcr.crr = command ring running
void bx_usb_xhci_c::process_command_ring(void)
{
struct TRB trb;
unsigned i, j;
int slot, ep, comp_code = 0, new_addr = 0, bsr = 0, trb_command;
Bit32u a_flags = 0, d_flags = 0;
Bit64u org_addr, temp_addr;
bool temp_dcs;
Bit8u buffer[CONTEXT_SIZE + (32 * CONTEXT_SIZE)];
struct SLOT_CONTEXT slot_context;
struct EP_CONTEXT ep_context;
if (!BX_XHCI_THIS hub.op_regs.HcCrcr.crr)
return;
// read in the TRB
read_TRB((bx_phy_address) BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer, &trb);
BX_DEBUG(("Dump command trb: %d (0x" FMT_ADDRX64 " 0x%08X 0x%08X) (%d)", TRB_GET_TYPE(trb.command),
trb.parameter, trb.status, trb.command, BX_XHCI_THIS hub.ring_members.command_ring.rcs));
while ((trb.command & 1) == BX_XHCI_THIS hub.ring_members.command_ring.rcs) {
org_addr = BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer;
trb_command = TRB_GET_TYPE(trb.command);
switch (trb_command) {
// is a LINK trb.
case LINK:
// Chain bit and Interrupter Target fields are ignored in Command Rings (Page 370)
BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer = trb.parameter & (Bit64u) ~0xF;
if (TRB_IOC(trb.command))
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(TRB_SUCCESS), TRB_SET_SLOT(0) | TRB_SET_TYPE(LINK), 1);
if (TRB_TOGGLE(trb.command))
BX_XHCI_THIS hub.ring_members.command_ring.rcs ^= 1;
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found LINK TRB: New dq_pointer = 0x" FORMATADDRESS " (%d)",
(bx_phy_address) org_addr, (bx_phy_address) BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer,
BX_XHCI_THIS hub.ring_members.command_ring.rcs));
read_TRB((bx_phy_address) BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer, &trb);
continue;
// NEC: Get Firmware version
case NEC_TRB_TYPE_GET_FW:
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(1) | 0x3021, TRB_SET_SLOT(0) | TRB_SET_TYPE(NEC_TRB_TYPE_CMD_COMP), 1);
BX_DEBUG(("NEC GET Firmware Version TRB found. Returning 0x3021"));
break;
/* NEC: Get Verification
* The NEC/Renesas driver sends a vendor specific TRB to the controller to
* verify that the controller is indeed a NEC/Renesas controller.
* A 64-bit value is sent in the TRB.Param field and a 32-bit value is returned.
* (A 16-bit value in the high-order of TRB.Command and a 16-bit value in
* the low-order of TRB.Status)
* I do not have permission from NEC/Renesas to show the code that calculates and
* returns the correct verification values. Therefore, this simply returns.
* As long as you are not using a compatible NEC/Renesas driver, everything
* should be fine.
*/
case NEC_TRB_TYPE_GET_UN:
BX_DEBUG(("NEC GET Verification TRB found."));
break;
/* Bochs Dump Controller command:
* This command simply dumps the controller's contents to the debug file.
* This is useful for displaying the controller before and then after a given command.
* This uses the 8-byte Parameter member of the TRB to pass arguments:
* bits 4:0 - zero based highest slot number to dump (1,2,3,...31)
* bits 8:5 - zero based highest endpoint to dump (1,2,3,...15)
* This command sends a Command Completion on the Event Ring.
*/
case BX_TRB_TYPE_DUMP:
BX_INFO(("BX_TRB_TYPE_DUMP TRB found. Dumping the core."));
dump_xhci_core((trb.parameter >> 0) & 0x1F, (trb.parameter >> 5) & 0xF);
write_event_TRB(0, 0x0, TRB_SET_COMP_CODE(TRB_SUCCESS), TRB_SET_SLOT(0) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
break;
case ENABLE_SLOT:
comp_code = NO_SLOTS_ERROR; // assume no slots
slot = 0;
for (i=1; i<MAX_SLOTS; i++) { // slots are one based
if (BX_XHCI_THIS hub.slots[i].enabled == 0) {
memset(&BX_XHCI_THIS hub.slots[i], 0, sizeof(struct HC_SLOT_CONTEXT));
BX_XHCI_THIS hub.slots[i].slot_context.slot_state = SLOT_STATE_DISABLED_ENABLED;
BX_XHCI_THIS hub.slots[i].enabled = 1;
slot = i;
for (j=1; j<32; j++)
BX_XHCI_THIS hub.slots[i].ep_context[j].ep_context.ep_state = EP_STATE_DISABLED;
comp_code = TRB_SUCCESS;
break;
}
}
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found Enable Slot TRB (slot = %d) (returning %d)",
(bx_phy_address) org_addr, slot, comp_code));
break;
case DISABLE_SLOT:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
if (BX_XHCI_THIS hub.slots[slot].enabled) {
BX_XHCI_THIS hub.slots[slot].enabled = 0;
BX_XHCI_THIS hub.slots[slot].slot_context.slot_state = 0; // disabled
update_slot_context(slot);
for (i=1; i<32; i++) {
BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.ep_state = EP_STATE_DISABLED;
update_ep_context(slot, i);
}
comp_code = TRB_SUCCESS;
} else
comp_code = SLOT_NOT_ENABLED;
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found Disable Slot TRB (slot = %d) (returning %d)",
(bx_phy_address) org_addr, slot, comp_code));
break;
case ADDRESS_DEVICE:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
if (BX_XHCI_THIS hub.slots[slot].enabled == 1) {
get_dwords((bx_phy_address) trb.parameter, (Bit32u *) buffer, (CONTEXT_SIZE + (CONTEXT_SIZE * 2)) >> 2);
bsr = ((trb.command & (1<<9)) == (1<<9));
d_flags = * (Bit32u *) &buffer[0];
a_flags = * (Bit32u *) &buffer[4];
if (((d_flags & 0x03) == 0) && ((a_flags & 0x03) == 3)) {
if ((d_flags & ~0x03) || (a_flags & ~0x03)) {
BX_ERROR(("D2->D31 and A2->A31 must be zero..."));
}
// Use temporary slot and ep context incase there is an error we don't modify the main contexts
copy_slot_from_buffer(&slot_context, &buffer[CONTEXT_SIZE]);
copy_ep_from_buffer(&ep_context, &buffer[CONTEXT_SIZE + CONTEXT_SIZE]);
// check that the Input contexts are valid
if ((validate_slot_context(&slot_context, trb_command, slot) == TRB_SUCCESS) &&
(validate_ep_context(&ep_context, trb_command, 0, slot_context.rh_port_num - 1, 1) == TRB_SUCCESS)) {
if (bsr == 1) { // BSR flag set
if (BX_XHCI_THIS hub.slots[slot].slot_context.slot_state == SLOT_STATE_DISABLED_ENABLED) {
slot_context.slot_state = SLOT_STATE_DEFAULT;
slot_context.device_address = 0;
ep_context.ep_state = EP_STATE_RUNNING;
comp_code = TRB_SUCCESS;
} else
comp_code = CONTEXT_STATE_ERROR;
} else { // BSR flag is clear
if (BX_XHCI_THIS hub.slots[slot].slot_context.slot_state <= SLOT_STATE_DEFAULT) {
int port_num = slot_context.rh_port_num - 1; // slot:port_num is 1 based
new_addr = create_unique_address(slot);
if (send_set_address(new_addr, port_num, slot) == 0) {
slot_context.slot_state = SLOT_STATE_ADDRESSED;
slot_context.device_address = new_addr;
ep_context.ep_state = EP_STATE_RUNNING;
comp_code = TRB_SUCCESS;
} else
comp_code = TRANSACTION_ERROR;
} else
comp_code = CONTEXT_STATE_ERROR;
}
} else // validate contexts
comp_code = CONTEXT_STATE_ERROR;
} else
comp_code = CONTEXT_STATE_ERROR; // A0 and A1 not set correctly
} else
comp_code = SLOT_NOT_ENABLED;
// if successful, copy to the buffer allocated for this slot
if (comp_code == TRB_SUCCESS) {
memcpy(&BX_XHCI_THIS hub.slots[slot].slot_context, &slot_context, sizeof(struct SLOT_CONTEXT));
memcpy(&BX_XHCI_THIS hub.slots[slot].ep_context[1].ep_context, &ep_context, sizeof(struct EP_CONTEXT));
// initialize our internal enqueue pointer
BX_XHCI_THIS hub.slots[slot].ep_context[1].enqueue_pointer = ep_context.tr_dequeue_pointer;
BX_XHCI_THIS hub.slots[slot].ep_context[1].rcs = ep_context.dcs;
update_slot_context(slot);
update_ep_context(slot, 1);
}
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
//BX_INFO(("ADDRESS_DEVICE TRB: 0x" FMT_ADDRX64 " 0x%08X 0x%08X", trb.parameter, trb.status, trb.command));
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: SetAddress TRB (bsr = %d) (addr = %d) (slot = %d) (returning %d)",
(bx_phy_address) org_addr, bsr, new_addr, slot, comp_code));
break;
case EVALUATE_CONTEXT:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
if (BX_XHCI_THIS hub.slots[slot].enabled == 1) {
get_dwords((bx_phy_address) trb.parameter, (Bit32u *) buffer, (CONTEXT_SIZE + (CONTEXT_SIZE * 32)) >> 2);
a_flags = * (Bit32u *) &buffer[4];
// only the Slot context and EP0 (control EP) contexts are evaluated. Section 6.2.3.3, p326
// If the slot is not addressed or configured, then return error
// XHCI specs 1.0, page 102 says DEFAULT or higher, while page 321 states higher than DEFAULT!!!
// (specs 1.1 removed the DEFAULT word and require it to be greater than the DEFAULT state)
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
if (BX_XHCI_THIS hub.slots[slot].slot_context.slot_state > SLOT_STATE_DEFAULT) {
#else
if (BX_XHCI_THIS hub.slots[slot].slot_context.slot_state >= SLOT_STATE_DEFAULT) {
#endif
comp_code = TRB_SUCCESS; // assume good completion
if (a_flags & (1<<0)) {
copy_slot_from_buffer(&slot_context, &buffer[CONTEXT_SIZE]);
comp_code = validate_slot_context(&slot_context, trb_command, slot);
}
if (comp_code == TRB_SUCCESS) {
if (a_flags & (1<<1)) {
copy_ep_from_buffer(&ep_context, &buffer[CONTEXT_SIZE + CONTEXT_SIZE]);
comp_code = validate_ep_context(&ep_context, trb_command, a_flags, BX_XHCI_THIS hub.slots[slot].slot_context.rh_port_num - 1, 1);
}
}
} else {
comp_code = CONTEXT_STATE_ERROR;
BX_DEBUG(("Evaluate Context with an illegal slot state"));
}
// if all were good, go ahead and update our contexts
if (comp_code == TRB_SUCCESS) {
if (a_flags & (1<<0)) { // slot context
// See section 6.2.2.3 for what fields will be updated
copy_slot_from_buffer(&slot_context, &buffer[CONTEXT_SIZE]);
// only the Interrupter Target and Max Exit Latency are updated by this command
BX_XHCI_THIS hub.slots[slot].slot_context.int_target = slot_context.int_target;
BX_XHCI_THIS hub.slots[slot].slot_context.max_exit_latency = slot_context.max_exit_latency;
update_slot_context(slot); // update the DCBAAP slot
}
if (a_flags & (1<<1)) { // control ep context
// See section 6.2.3.3 for what fields will be updated
copy_ep_from_buffer(&ep_context, &buffer[CONTEXT_SIZE + CONTEXT_SIZE]);
BX_XHCI_THIS hub.slots[slot].ep_context[1].ep_context.max_packet_size = ep_context.max_packet_size;
update_ep_context(slot, 1);
}
}
} else
comp_code = SLOT_NOT_ENABLED;
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Evaluate TRB (slot = %d) (d_flags = 0x%08X) (a_flags = 0x%08X) (returning %d)",
(bx_phy_address) org_addr, slot, d_flags, a_flags, comp_code));
break;
case CONFIG_EP: {
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
bool dc = TRB_DC(trb.command);
if (BX_XHCI_THIS hub.slots[slot].enabled) {
get_dwords((bx_phy_address) trb.parameter, (Bit32u *) buffer, (CONTEXT_SIZE + (CONTEXT_SIZE * 32)) >> 2);
d_flags = * (Bit32u *) &buffer[0];
a_flags = * (Bit32u *) &buffer[4];
copy_slot_from_buffer(&slot_context, &buffer[CONTEXT_SIZE]); // so we get entry_count
for (i=2; i<32; i++) {
if (dc || (d_flags & (1<<i))) {
BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.ep_state = EP_STATE_DISABLED;
// TODO: Bandwidth stuff
update_ep_context(slot, i);
}
}
if (dc) {
BX_XHCI_THIS hub.slots[slot].slot_context.entries = 1;
BX_XHCI_THIS hub.slots[slot].slot_context.slot_state = SLOT_STATE_ADDRESSED;
update_slot_context(slot);
} else
if (BX_XHCI_THIS hub.slots[slot].slot_context.slot_state >= SLOT_STATE_ADDRESSED) {
comp_code = TRB_SUCCESS; // assume good completion
if ((d_flags & 3) > 0) // the D0 (slot) and D1 (ep0) bits must be cleared
comp_code = PARAMETER_ERROR;
if ((a_flags & 3) == 1) { // the A0 (slot) bit must be set, and A1 (ep0) must be cleared
comp_code = validate_slot_context(&slot_context, trb_command, slot);
} else {
comp_code = PARAMETER_ERROR;
}
// Check all the input context entries with an a_flag == 1
for (i=2; i<32; i++) {
if (a_flags & (1<<i)) {
copy_ep_from_buffer(&ep_context, &buffer[CONTEXT_SIZE + (CONTEXT_SIZE * i)]);
if (i > slot_context.entries) {
comp_code = PARAMETER_ERROR;
break; // no need to check the rest
}
comp_code = validate_ep_context(&ep_context, trb_command, a_flags, BX_XHCI_THIS hub.slots[slot].slot_context.rh_port_num - 1, i);
if (comp_code != TRB_SUCCESS)
break; // no need to check the rest
}
}
// if all were good, go ahead and update our contexts
if (comp_code == TRB_SUCCESS) {
// first update the slot context
// See section 6.2.2.2 for what fields will be updated
BX_XHCI_THIS hub.slots[slot].slot_context.entries = slot_context.entries;
BX_XHCI_THIS hub.slots[slot].slot_context.hub = slot_context.hub;
BX_XHCI_THIS hub.slots[slot].slot_context.ttt = slot_context.ttt;
BX_XHCI_THIS hub.slots[slot].slot_context.mtt = slot_context.mtt;
BX_XHCI_THIS hub.slots[slot].slot_context.num_ports = slot_context.num_ports;
// now the endpoints
for (i=2; i<32; i++) {
if (d_flags & (1<<i)) {
BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.ep_state = EP_STATE_DISABLED;
// TODO: Bandwidth stuff
update_ep_context(slot, i);
}
if (a_flags & (1<<i)) {
// xhci 1.0: section 4.6.6, page 97
// All fields of the Input Endpoint Context data structure in the Configure Endpoint Context
// are copied to the Output Endpoint Context fields in the Device Context.
copy_ep_from_buffer(&BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context, &buffer[CONTEXT_SIZE + (i * CONTEXT_SIZE)]);
BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.ep_state = EP_STATE_RUNNING;
// initialize our internal enqueue pointer
BX_XHCI_THIS hub.slots[slot].ep_context[i].enqueue_pointer =
BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.tr_dequeue_pointer;
BX_XHCI_THIS hub.slots[slot].ep_context[i].rcs = BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.dcs;
BX_XHCI_THIS hub.slots[slot].ep_context[i].edtla = 0;
// once the ep is configured, the Stream Context belongs to us
if (BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.max_pstreams > 0) {
for (j=1; j<PSA_MAX_SIZE_NUM(BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.max_pstreams) && (j < MAX_PSA_SIZE_NUM); j++) {
get_stream_info(&BX_XHCI_THIS hub.slots[slot].ep_context[i].stream[j],
BX_XHCI_THIS hub.slots[slot].ep_context[i].enqueue_pointer, j);
}
}
// TODO: Bandwidth stuff
update_ep_context(slot, i);
}
}
// if all EP's are in the disabled state, then set to slot_state = ADDRESSED, else slot_state = CONFIGURED
BX_XHCI_THIS hub.slots[slot].slot_context.slot_state = SLOT_STATE_ADDRESSED;
for (i=2; i<32; i++) {
if (BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.ep_state == EP_STATE_RUNNING) {
BX_XHCI_THIS hub.slots[slot].slot_context.slot_state = SLOT_STATE_CONFIGURED;
break;
}
}
// now update the slot
update_slot_context(slot);
}
} else
comp_code = CONTEXT_STATE_ERROR;
} else
comp_code = SLOT_NOT_ENABLED;
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found Config_EP TRB (slot = %d) (dc = %d) (d_flags = 0x%08X) (a_flags = 0x%08X) (returning %d)",
(bx_phy_address) org_addr, slot, dc, d_flags, a_flags, comp_code));
}
break;
case SET_TR_DEQUEUE:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
ep = TRB_GET_EP(trb.command);
if (BX_XHCI_THIS hub.slots[slot].enabled == 1) {
if ((BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_STOPPED) ||
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_ERROR)) {
// is this endpoint using streams?
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams > 0) { // specifying streams
unsigned stream_id = TRB_GET_STREAM(trb.status);
if ((stream_id > 0) && (stream_id < MAX_PSA_SIZE_NUM) &&
(stream_id < PSA_MAX_SIZE_NUM(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams)) &&
BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[stream_id].valid == 1) {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[stream_id].tr_dequeue_pointer =
temp_addr = (trb.parameter & (Bit64u) ~0xF);
BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[stream_id].dcs =
temp_dcs = (trb.parameter & 1) > 0;
update_ep_context(slot, ep);
comp_code = TRB_SUCCESS;
} else {
comp_code = INVALID_STREAM_ID;
}
} else {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.tr_dequeue_pointer =
BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer =
temp_addr = (trb.parameter & (Bit64u) ~0xF);
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.dcs =
BX_XHCI_THIS hub.slots[slot].ep_context[ep].rcs =
temp_dcs = (trb.parameter & 1) > 0;
BX_XHCI_THIS hub.slots[slot].ep_context[ep].edtla = 0;
update_ep_context(slot, ep);
comp_code = TRB_SUCCESS;
}
} else
comp_code = CONTEXT_STATE_ERROR;
} else
comp_code = SLOT_NOT_ENABLED;
// if the state is in error, move it to stopped
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_ERROR)
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state = EP_STATE_STOPPED;
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found Set_tr_Dequeue TRB (slot = %d) (ep = %d) (returning %d)",
(bx_phy_address) org_addr, slot, ep, comp_code));
if (comp_code == TRB_SUCCESS)
BX_DEBUG((" New address: 0x" FORMATADDRESS " state = %d", temp_addr, temp_dcs));
break;
// case RESET_EP:
// May only be sent to EP's in the HALTED state. (page 105)
// BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_STOPPED;
// break;
case STOP_EP:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
ep = TRB_GET_EP(trb.command);
// A Stop Endpoint Command received while an endpoint is in the Error state shall have no effect and shall
// generate a Command Completion Event with the Completion Code set to Context State Error.
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state == EP_STATE_ERROR)
comp_code = CONTEXT_STATE_ERROR;
else {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state = EP_STATE_STOPPED;
update_ep_context(slot, ep);
comp_code = TRB_SUCCESS;
}
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found Stop EP TRB (slot = %d) (ep = %d) (sp = %d) (returning 1)",
(bx_phy_address) org_addr, slot, ep, ((trb.command & (1<<23)) == (1<<23))));
break;
// Get Port Bandwidth (manditory on versions 0.95, 0.96, and 1.00. Optional on later versions)
case GET_PORT_BAND:
{
unsigned hub_id = TRB_GET_SLOT(trb.command);
unsigned band_speed = ((trb.command & (0x0F << 16)) >> 16) - 1;
unsigned offset = band_speed * (((1 + BX_XHCI_THIS hub.n_ports) + 7) & ~7);
if (hub_id == 0) { // root hub
if (band_speed < 4) {
DEV_MEM_WRITE_PHYSICAL_DMA((bx_phy_address) trb.parameter, 1 + BX_XHCI_THIS hub.n_ports, &BX_XHCI_THIS hub.port_band_width[offset]);
comp_code = TRB_SUCCESS;
} else {
comp_code = TRB_ERROR;
BX_ERROR(("Get Port Bandwidth with unknown speed of %d", band_speed + 1));
}
} else {
#if SEC_DOMAIN_BAND
// TODO: External HUB support
comp_code = TRB_ERROR;
BX_ERROR(("Get Secondary Port Bandwidth not implemented yet."));
#else
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(TRB_ERROR), TRB_SET_SLOT(0) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
#endif
}
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(0) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: GetPortBandwidth TRB (speed = %d) (hub_id = %d) (returning %d)",
(bx_phy_address) org_addr, band_speed, hub_id, comp_code));
}
break;
case RESET_DEVICE:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
if ((BX_XHCI_THIS hub.slots[slot].slot_context.slot_state == SLOT_STATE_ADDRESSED) ||
(BX_XHCI_THIS hub.slots[slot].slot_context.slot_state == SLOT_STATE_CONFIGURED)) {
BX_XHCI_THIS hub.slots[slot].slot_context.slot_state = SLOT_STATE_DEFAULT;
BX_XHCI_THIS hub.slots[slot].slot_context.entries = 1;
BX_XHCI_THIS hub.slots[slot].slot_context.device_address = 0;
update_slot_context(slot);
for (i=2; i<32; i++) {
BX_XHCI_THIS hub.slots[slot].ep_context[i].ep_context.ep_state = EP_STATE_DISABLED;
update_ep_context(slot, i);
}
comp_code = TRB_SUCCESS;
} else {
comp_code = CONTEXT_STATE_ERROR;
}
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(comp_code), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring: Found Reset Device TRB (slot = %d) (returning %d)",
(bx_phy_address) org_addr, slot, comp_code));
break;
// No Op (command ring) TRB (Sect: 6.4.3.1)
case NO_OP_CMD:
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
ep = TRB_GET_EP(trb.command);
BX_DEBUG(("0x" FORMATADDRESS ": Command Ring (slot = %d) (ep = %d): Found No Op TRB",
(bx_phy_address) org_addr, slot, ep));
write_event_TRB(0, org_addr, TRB_SET_COMP_CODE(TRB_SUCCESS), TRB_SET_SLOT(0) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
break;
// unknown TRB type
default:
BX_ERROR(("0x" FORMATADDRESS ": Command Ring: Unknown TRB found.", (bx_phy_address) org_addr));
BX_ERROR(("Unknown trb type found: %d (0x" FMT_ADDRX64 " 0x%08X 0x%08X)", TRB_GET_TYPE(trb.command),
trb.parameter, trb.status, trb.command));
slot = TRB_GET_SLOT(trb.command); // slots are 1 based
write_event_TRB(0, 0x0, TRB_SET_COMP_CODE(TRB_ERROR), TRB_SET_SLOT(slot) | TRB_SET_TYPE(COMMAND_COMPLETION), 1);
}
// advance the Dequeue pointer and continue;
BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer += 16;
read_TRB((bx_phy_address) BX_XHCI_THIS hub.ring_members.command_ring.dq_pointer, &trb);
}
}
void bx_usb_xhci_c::init_event_ring(const unsigned interrupter)
{
const Bit64u addr = BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].erstba.erstabadd;
Bit32u val32;
Bit64u val64;
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].rcs = 1;
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count = 0;
DEV_MEM_READ_PHYSICAL_DMA((bx_phy_address) addr, sizeof(BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys),
(Bit8u *) BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys);
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].cur_trb =
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[0].addr;
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].trb_count =
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[0].size;
// check that the guest uses correct segment sizes
for (int i=0; i<(1<<MAX_SEG_TBL_SZ_EXP); i++) {
if ((BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[i].size < 16) ||
(BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[i].size > 4096)) {
BX_ERROR(("Event Ring Segment %d has a size of %d which is invalid.", i,
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[i].size));
}
}
// dump the event segment table
BX_DEBUG(("Interrupter %02i: Event Ring Table (at 0x" FMT_ADDRX64 ") has %d entries:", interrupter,
addr, BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].erstsz.erstabsize));
for (int i=0; i<BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].erstsz.erstabsize; i++) {
DEV_MEM_READ_PHYSICAL((bx_phy_address) addr + (i * 16), 8, (Bit8u*)&val64);
DEV_MEM_READ_PHYSICAL((bx_phy_address) addr + (i * 16) + 8, 4, (Bit8u*)&val32);
BX_DEBUG((" %02i: address = 0x" FMT_ADDRX64 " Count = %d", i, val64, val32 & 0x0000FFFF));
}
}
void bx_usb_xhci_c::write_event_TRB(const unsigned interrupter, const Bit64u parameter, const Bit32u status,
const Bit32u command, const bool fire_int)
{
// write the TRB
write_TRB((bx_phy_address) BX_XHCI_THIS hub.ring_members.event_rings[interrupter].cur_trb, parameter, status,
command | (Bit32u) BX_XHCI_THIS hub.ring_members.event_rings[interrupter].rcs); // set the cycle bit
BX_DEBUG(("Write Event TRB: table index: %d, trb index: %d",
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count,
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count].size -
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].trb_count));
BX_DEBUG(("Write Event TRB: address = 0x" FORMATADDRESS " 0x" FMT_ADDRX64 " 0x%08X 0x%08X (type = %d)",
(bx_phy_address) BX_XHCI_THIS hub.ring_members.event_rings[interrupter].cur_trb,
parameter, status, command, TRB_GET_TYPE(command)));
// calculate position for next event TRB
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].cur_trb += 16;
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].trb_count--;
if (BX_XHCI_THIS hub.ring_members.event_rings[interrupter].trb_count == 0) {
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count++;
if (BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count ==
BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].erstsz.erstabsize) {
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].rcs ^= 1;
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count = 0;
}
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].cur_trb =
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count].addr;
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].trb_count =
BX_XHCI_THIS hub.ring_members.event_rings[interrupter].entrys[BX_XHCI_THIS hub.ring_members.event_rings[interrupter].count].size;
}
// if caller wants us to fire an interrupt, do so
if (fire_int) {
BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].iman.ip = 1;
BX_XHCI_THIS hub.runtime_regs.interrupter[interrupter].erdp.ehb = 1; // set event handler busy
BX_XHCI_THIS hub.op_regs.HcStatus.eint = 1;
update_irq(interrupter);
}
}
void bx_usb_xhci_c::read_TRB(bx_phy_address addr, struct TRB *trb)
{
DEV_MEM_READ_PHYSICAL(addr, 8, (Bit8u*)&trb->parameter);
DEV_MEM_READ_PHYSICAL(addr + 8, 4, (Bit8u*)&trb->status);
DEV_MEM_READ_PHYSICAL(addr + 12, 4, (Bit8u*)&trb->command);
}
void bx_usb_xhci_c::write_TRB(bx_phy_address addr, const Bit64u parameter, const Bit32u status, const Bit32u command)
{
DEV_MEM_WRITE_PHYSICAL(addr , 8, (Bit8u*)&parameter);
DEV_MEM_WRITE_PHYSICAL(addr + 8, 4, (Bit8u*)&status);
DEV_MEM_WRITE_PHYSICAL(addr + 12, 4, (Bit8u*)&command);
}
void bx_usb_xhci_c::update_slot_context(const int slot)
{
Bit32u buffer[16];
memset(buffer, 0, 16 * sizeof(Bit32u));
copy_slot_to_buffer(buffer, slot);
Bit64u slot_addr = (BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap + (slot * sizeof(Bit64u)));
DEV_MEM_READ_PHYSICAL((bx_phy_address) slot_addr, sizeof(Bit64u), (Bit8u *) &slot_addr);
put_dwords((bx_phy_address) slot_addr, buffer, CONTEXT_SIZE >> 2);
}
void bx_usb_xhci_c::update_ep_context(const int slot, const int ep)
{
Bit32u buffer[16];
unsigned i;
memset(buffer, 0, 16 * sizeof(Bit32u));
copy_ep_to_buffer(buffer, slot, ep);
Bit64u slot_addr = (BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap + (slot * sizeof(Bit64u)));
DEV_MEM_READ_PHYSICAL((bx_phy_address) slot_addr, sizeof(Bit64u), (Bit8u *) &slot_addr);
put_dwords((bx_phy_address) (slot_addr + (ep * CONTEXT_SIZE)), buffer, CONTEXT_SIZE >> 2);
#if MAX_PSA_SIZE > 0
// do we need to update the stream context?
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams > 0) {
for (i=1; i<PSA_MAX_SIZE_NUM(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams) && (i < MAX_PSA_SIZE_NUM); i++) {
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer != 0) {
put_stream_info(&BX_XHCI_THIS hub.slots[slot].ep_context[ep].stream[i],
BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer, i);
}
}
}
#endif
}
void bx_usb_xhci_c::dump_slot_context(const Bit32u *context, const int slot)
{
BX_INFO((" -=-=-=-=-=-=-=- Slot Context -=-=-=-=-=-=-=-"));
BX_INFO((" Context Entries: %d (%d)", (context[0] & (0x1F<<27)) >> 27, BX_XHCI_THIS hub.slots[slot].slot_context.entries));
BX_INFO((" Hub: %d (%d)", (context[0] & (1 <<26)) >> 26, BX_XHCI_THIS hub.slots[slot].slot_context.hub));
BX_INFO((" MTT: %d (%d)", (context[0] & (1 <<25)) >> 25, BX_XHCI_THIS hub.slots[slot].slot_context.mtt));
BX_INFO((" ReservedZ: %02X", (context[0] & (1 <<24)) >> 24));
BX_INFO((" Speed: %d (%d)", (context[0] & (0x0F<<20)) >> 20, BX_XHCI_THIS hub.slots[slot].slot_context.speed));
BX_INFO((" Route String: %05X (%05X)", (context[0] & 0xFFFFF) >> 0, BX_XHCI_THIS hub.slots[slot].slot_context.route_string));
BX_INFO((" Num Ports: %d (%d)", (context[1] & (0xFF<<24)) >> 24, BX_XHCI_THIS hub.slots[slot].slot_context.num_ports));
BX_INFO((" RH Port Num: %d (%d)", (context[1] & (0xFF<<16)) >> 16, BX_XHCI_THIS hub.slots[slot].slot_context.rh_port_num));
BX_INFO(("Max Exit Latency: %d (%d)", (context[1] & 0xFFFF) >> 0, BX_XHCI_THIS hub.slots[slot].slot_context.max_exit_latency));
BX_INFO((" Int Target: %d (%d)", (context[2] & (0x3F<<22)) >> 22, BX_XHCI_THIS hub.slots[slot].slot_context.int_target));
BX_INFO((" ReservedZ: %02X", (context[2] & (0x0F<<18)) >> 18));
BX_INFO((" TTT: %d (%d)", (context[2] & (0x03<<16)) >> 16, BX_XHCI_THIS hub.slots[slot].slot_context.ttt));
BX_INFO((" TT Port Num: %d (%d)", (context[2] & (0xFF<< 8)) >> 8, BX_XHCI_THIS hub.slots[slot].slot_context.tt_port_num));
BX_INFO((" TT Hub Slot: %d (%d)", (context[2] & 0xFF) >> 0, BX_XHCI_THIS hub.slots[slot].slot_context.tt_hub_slot_id));
BX_INFO((" Slot State: %d (%d)", (context[3] & (0x1F<<27)) >> 27, BX_XHCI_THIS hub.slots[slot].slot_context.slot_state));
BX_INFO((" ReservedZ: %06X", (context[3] & (0x7FFFF<<8)) >> 8));
BX_INFO((" Dev Address: %d (%d)", (context[3] & 0xFF) >> 0, BX_XHCI_THIS hub.slots[slot].slot_context.device_address));
BX_INFO((" ReservedZ: %08X", context[4]));
BX_INFO((" ReservedZ: %08X", context[5]));
BX_INFO((" ReservedZ: %08X", context[6]));
BX_INFO((" ReservedZ: %08X", context[7]));
#if (CONTEXT_SIZE == 64)
BX_INFO((" ReservedZ: %08x", context[8]));
BX_INFO((" ReservedZ: %08x", context[9]));
BX_INFO((" ReservedZ: %08x", context[10]));
BX_INFO((" ReservedZ: %08x", context[11]));
BX_INFO((" ReservedZ: %08x", context[12]));
BX_INFO((" ReservedZ: %08x", context[13]));
BX_INFO((" ReservedZ: %08x", context[14]));
BX_INFO((" ReservedZ: %08x", context[15]));
#endif
}
void bx_usb_xhci_c::dump_ep_context(const Bit32u *context, const int slot, const int ep)
{
BX_INFO((" -=-=-=-=-=-=-=-=- EP Context -=-=-=-=-=-=-=-"));
BX_INFO((" ReservedZ: %02x", (context[0] & (0xFF<<24)) >> 24));
BX_INFO((" Interval: %d (%d)", (context[0] & (0x0F<<16)) >> 16, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.interval));
BX_INFO((" LSA: %d (%d)", (context[0] & (1 <<15)) >> 15, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.lsa));
BX_INFO((" MaxPStreams: %d (%d)", (context[0] & (0x1F<<10)) >> 10, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams));
BX_INFO((" Mult: %d (%d)", (context[0] & (0x03<< 8)) >> 8, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.mult));
BX_INFO((" ReservedZ: %02x", (context[0] & (0x1F<< 3)) >> 3));
BX_INFO((" EP State: %d (%d)", (context[0] & 0x7) >> 0, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state));
BX_INFO((" Max Packet Size: %d (%d)", (context[1] & (0xFFFF<<16)) >> 16, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_packet_size));
BX_INFO((" Max Burst Size: %d (%d)", (context[1] & (0xFF<< 8)) >> 8, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_burst_size));
BX_INFO((" HID: %d (%d)", (context[1] & (1 << 7)) >> 7, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.hid));
BX_INFO((" ReservedZ: %01x", (context[1] & (1 << 6)) >> 6));
BX_INFO((" EP Type: %d (%d)", (context[1] & (0x07<< 3)) >> 3, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_type));
BX_INFO((" CErr: %d (%d)", (context[1] & (0x03<< 1)) >> 1, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.cerr));
BX_INFO((" ReservedZ: %01x", (context[1] & (1 << 0)) >> 0));
BX_INFO((" TR Dequeue Ptr: " FMT_ADDRX64 " (" FMT_ADDRX64 ")", (* (Bit64u *) &context[2] & (Bit64u) ~0x0F), BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.tr_dequeue_pointer));
BX_INFO((" ReservedZ: %01x", (context[2] & (0x07 << 1)) >> 1));
BX_INFO((" DCS: %d (%d)", (context[2] & (1 << 0)) >> 0, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.dcs));
BX_INFO(("Avg ESIT Payload: %d (%d)", (context[4] & (0xFFFF<<16)) >> 16, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_esit_payload));
BX_INFO((" Avg TRB Length: %d (%d)", (context[4] & (0xFFFF<< 0)) >> 0, BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.average_trb_len));
BX_INFO((" ReservedZ: %08x", context[5]));
BX_INFO((" ReservedZ: %08x", context[6]));
BX_INFO((" ReservedZ: %08x", context[7]));
#if (CONTEXT_SIZE == 64)
BX_INFO((" ReservedZ: %08x", context[8]));
BX_INFO((" ReservedZ: %08x", context[9]));
BX_INFO((" ReservedZ: %08x", context[10]));
BX_INFO((" ReservedZ: %08x", context[11]));
BX_INFO((" ReservedZ: %08x", context[12]));
BX_INFO((" ReservedZ: %08x", context[13]));
BX_INFO((" ReservedZ: %08x", context[14]));
BX_INFO((" ReservedZ: %08x", context[15]));
#endif
}
void bx_usb_xhci_c::dump_stream_context(const Bit32u *context)
{
BX_INFO((" -=-=-=-=-=-=-=- Stream Context -=-=-=-=-=-=-"));
BX_INFO((" TR Dequeue Ptr: " FMT_ADDRX64 " (" FMT_ADDRX64 ")", (* (Bit64u *) &context[0] & (Bit64u) ~0x0F)));
BX_INFO((" Content Type: %01x", (context[0] & (0x07 << 1)) >> 1));
BX_INFO((" DCS: %d (%d)", (context[0] & (1 << 0)) >> 0));
}
void bx_usb_xhci_c::copy_slot_from_buffer(struct SLOT_CONTEXT *slot_context, const Bit8u *buffer)
{
Bit32u *buffer32 = (Bit32u *) buffer;
slot_context->entries = (buffer32[0] >> 27);
slot_context->hub = (buffer32[0] & (1<<26)) ? 1 : 0;
slot_context->mtt = (buffer32[0] & (1<<25)) ? 1 : 0;
slot_context->speed = (buffer32[0] & (0x0F<<20)) >> 20;
slot_context->route_string = (buffer32[0] & 0x000FFFFF);
slot_context->num_ports = (buffer32[1] >> 24);
slot_context->rh_port_num = (buffer32[1] & (0xFF<<16)) >> 16;
slot_context->max_exit_latency = (buffer32[1] & 0xFFFF);
slot_context->int_target = (buffer32[2] >> 22);
slot_context->ttt = (buffer32[2] & (0x3<<16)) >> 16;
slot_context->tt_port_num = (buffer32[2] & (0xFF<<8)) >> 8;
slot_context->tt_hub_slot_id = (buffer32[2] & 0xFF);
slot_context->slot_state = (buffer32[3] >> 27);
slot_context->device_address = (buffer32[3] & 0xFF);
}
void bx_usb_xhci_c::copy_ep_from_buffer(struct EP_CONTEXT *ep_context, const Bit8u *buffer)
{
Bit32u *buffer32 = (Bit32u *) buffer;
ep_context->interval = (buffer32[0] & (0xFF<<16)) >> 16;
ep_context->lsa = (buffer32[0] & (1<<15)) ? 1 : 0;
ep_context->max_pstreams = (buffer32[0] & (0x1F<<10)) >> 10;
ep_context->mult = (buffer32[0] & (0x03<<8)) >> 8;
ep_context->ep_state = (buffer32[0] & 0x07);
ep_context->max_packet_size = (buffer32[1] >> 16);
ep_context->max_burst_size = (buffer32[1] & (0xFF<<8)) >> 8;
ep_context->hid = (buffer32[1] & (1<<7)) ? 1 : 0;
ep_context->ep_type = (buffer32[1] & (0x07<<3)) >> 3;
ep_context->cerr = (buffer32[1] & (0x03<<1)) >> 1;
ep_context->tr_dequeue_pointer = (buffer32[2] & (Bit64u) ~0xF) | ((Bit64u) buffer32[3] << 32);
ep_context->dcs = (buffer32[2] & (1<<0));
ep_context->max_esit_payload = (buffer32[4] >> 16);
ep_context->average_trb_len = (buffer32[4] & 0xFFFF);
}
void bx_usb_xhci_c::copy_slot_to_buffer(Bit32u *buffer32, const int slot)
{
buffer32[0] = (BX_XHCI_THIS hub.slots[slot].slot_context.entries << 27) |
(BX_XHCI_THIS hub.slots[slot].slot_context.hub << 26) |
(BX_XHCI_THIS hub.slots[slot].slot_context.mtt << 25) |
(BX_XHCI_THIS hub.slots[slot].slot_context.speed << 20) |
BX_XHCI_THIS hub.slots[slot].slot_context.route_string;
buffer32[1] = (BX_XHCI_THIS hub.slots[slot].slot_context.num_ports << 24) |
(BX_XHCI_THIS hub.slots[slot].slot_context.rh_port_num << 16) |
BX_XHCI_THIS hub.slots[slot].slot_context.max_exit_latency;
buffer32[2] = (BX_XHCI_THIS hub.slots[slot].slot_context.int_target << 22) |
(BX_XHCI_THIS hub.slots[slot].slot_context.ttt << 16) |
(BX_XHCI_THIS hub.slots[slot].slot_context.tt_port_num << 8) |
BX_XHCI_THIS hub.slots[slot].slot_context.tt_hub_slot_id;
buffer32[3] = (BX_XHCI_THIS hub.slots[slot].slot_context.slot_state << 27) |
BX_XHCI_THIS hub.slots[slot].slot_context.device_address;
}
void bx_usb_xhci_c::copy_ep_to_buffer(Bit32u *buffer32, const int slot, const int ep)
{
buffer32[0] = (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.interval << 16) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.lsa << 15) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams << 10) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.mult << 8) |
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_state;
buffer32[1] = (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_packet_size << 16) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_burst_size << 8) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.hid << 7) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.ep_type << 3) |
(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.cerr << 1);
buffer32[2] = ((Bit32u)BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.tr_dequeue_pointer) |
(Bit32u)BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.dcs;
buffer32[3] = (Bit32u)(BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.tr_dequeue_pointer >> 32);
buffer32[4] = (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_esit_payload << 16) |
BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.average_trb_len;
}
void bx_usb_xhci_c::copy_stream_from_buffer(struct STREAM_CONTEXT *context, const Bit8u *buffer)
{
Bit32u *buffer32 = (Bit32u *) buffer;
context->tr_dequeue_pointer = (buffer32[0] & (Bit64u) ~0xF) | ((Bit64u) buffer32[1] << 32);
context->dcs = (buffer32[0] & (1<<0));
context->sct = ((buffer32[0] & (7<<1)) >> 1);
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
context->stopped_EDTLA = (buffer32[2] & 0x00FFFFFF);
#endif
}
void bx_usb_xhci_c::copy_stream_to_buffer(Bit8u *buffer, const struct STREAM_CONTEXT *context)
{
Bit32u *buffer32 = (Bit32u *) buffer;
buffer32[0] = (Bit32u) context->tr_dequeue_pointer | (((Bit32u) context->sct) << 1) | (Bit32u) context->dcs;
buffer32[1] = (Bit32u)(context->tr_dequeue_pointer >> 32);
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
buffer[2] = context->stopped_EDTLA;
#endif
}
// Validate a slot context
// specs 1.0: sect 6.2.2.2 (p321):
// specs 1.0: sect 6.2.2.3 (p321):
// "A 'valid' Input Slot Context for an Evaluate Context Command requires the Interrupter Target and
// Max Exit Latency fields to be initialized."
int bx_usb_xhci_c::validate_slot_context(const struct SLOT_CONTEXT *slot_context, const int trb_command, const int slot)
{
int ret = TRB_SUCCESS;
unsigned MaxIntrs;
//int speed = -1;
//int port_num = slot_context->rh_port_num - 1;
//if ((port_num >= 0) && (BX_XHCI_THIS hub.usb_port[port_num].device != NULL)) {
// speed = BX_XHCI_THIS hub.usb_port[port_num].device->get_speed();
//} else {
// BX_ERROR(("Validate Slot Context: Invalid port_num (%d) sent.", port_num));
// return PARAMETER_ERROR;
//}
switch (trb_command) {
case ADDRESS_DEVICE:
case EVALUATE_CONTEXT:
// valid values for the Interrupt Target are 0 to MaxIntrs-1, inclusive.
MaxIntrs = (BX_XHCI_THIS hub.cap_regs.HcSParams1 & (0x7FF << 8)) >> 8;
if (slot_context->int_target > MaxIntrs)
ret = PARAMETER_ERROR;
// all high-speed and lower devices must have a Max Exit Latency value of zero
// (this will fail because 'rh_port_num' hasn't been initialized yet, so 'speed' will be -1)
//if ((slot_context->max_exit_latency > 0) && (speed < USB_SPEED_SUPER))
// ret = PARAMETER_ERROR;
if (ret != TRB_SUCCESS) {
BX_ERROR(("Validate Slot Context: int_target = %d (0 -> %d), slot_context->max_exit_latency = %d",
slot_context->int_target, MaxIntrs, slot_context->max_exit_latency));
}
break;
case CONFIG_EP:
// The config command needs to check the Context Entries field
if (slot_context->entries < BX_XHCI_THIS hub.slots[slot].slot_context.entries)
ret = PARAMETER_ERROR;
// if 'hub' is 1 and device is a high-speed device, then the 'tt think time', 'multi-tt',
// and 'number of ports' fields must be initialized.
// (this will fail because 'rh_port_num' hasn't been initialized yet, so 'speed' will be -1)
//if (slot_context->hub) {
// if ((speed == USB_SPEED_HIGH) && (slot_context->ttt == 0) || (slot_context->mtt == 0)) {
// ret = PARAMETER_ERROR;
// }
//} else {
// if (slot_context->num_ports != 0) {
// ret = PARAMETER_ERROR;
// }
//}
if (ret != TRB_SUCCESS) {
BX_ERROR(("Validate Slot Context: entry count = %d (%d), hub = %d",
slot_context->entries, BX_XHCI_THIS hub.slots[slot].slot_context.entries,
slot_context->hub));
}
break;
}
return ret;
}
// xHCI, section 6.2.3.2, p326
// The controller can return a valid EP Context even though the MPS is less than
// the specified amount. Win7 uses this to detect the actual EP0's max packet size...
// For example, the descriptor might return 64, but the device really only handles
// 8-byte control transfers.
int bx_usb_xhci_c::validate_ep_context(const struct EP_CONTEXT *ep_context, const int trb_command, const Bit32u a_flags, int port_num, int ep_num)
{
int ret = TRB_SUCCESS;
unsigned int mps = 0;
int speed = -1;
// get the device's speed
if ((port_num >= 0) && (BX_XHCI_THIS hub.usb_port[port_num].device != NULL)) {
speed = BX_XHCI_THIS hub.usb_port[port_num].device->get_speed();
} else {
BX_ERROR(("Validate EP Context: Invalid port_num (%d) sent.", port_num));
return PARAMETER_ERROR;
}
// get the default max packet size for the device
switch (speed) {
case USB_SPEED_LOW:
mps = 8;
break;
case USB_SPEED_FULL:
case USB_SPEED_HIGH:
mps = 64;
break;
case USB_SPEED_SUPER:
mps = 512;
break;
}
switch (trb_command) {
case ADDRESS_DEVICE:
if (ep_num == 1) {
// 1) the EP Type field = Control,
if (ep_context->ep_type != 4)
ret = PARAMETER_ERROR;
// 2) the values of the Max Packet Size, Max Burst Size, and the Interval are considered
// within range for endpoint type and the speed of the device,
if (ep_context->max_packet_size != mps)
ret = PARAMETER_ERROR;
if (ep_context->interval > 15) // The legal range of 0 to 15 for all (non full/low-speed interrupt) endpoint types
ret = PARAMETER_ERROR;
// 3) the TR Dequeue Pointer field points to a valid Transfer Ring,
if (ep_context->tr_dequeue_pointer == 0)
ret = PARAMETER_ERROR;
// 4) the DCS field = 1,
if (ep_context->dcs != 1)
ret = PARAMETER_ERROR;
// 5) the MaxPStreams field = 0, and
if (ep_context->max_pstreams != 0)
ret = PARAMETER_ERROR;
// 6) all other fields are within the valid range of values.
// The Max Burst Size, and EP State values shall be cleared to 0.
if ((ep_context->max_burst_size != 0) || (ep_context->ep_state != 0))
ret = PARAMETER_ERROR;
}
break;
// section 6.2.3.3, p326, for an Evaluate Context Command, only the Slot and EP0 are evaluated.
case EVALUATE_CONTEXT:
if ((ep_num == 1) && (a_flags & 2)) {
// check the max packet size field
if (ep_context->max_packet_size != BX_XHCI_THIS hub.usb_port[port_num].device->get_mps(ep_num / 2))
ret = PARAMETER_ERROR;
}
break;
case CONFIG_EP:
if ((ep_num > 1) && (a_flags & (1 << ep_num))) {
// 1) the values of the Max Packet Size, Max Burst Size, and the Interval are considered within
// range for endpoint type and the speed of the device,
if (ep_context->max_packet_size > (unsigned) BX_XHCI_THIS hub.usb_port[port_num].device->get_mps(ep_num / 2))
ret = PARAMETER_ERROR;
// The xhci specs are a little mis-leading. Section 6.2.3.2 states that the max_burst_size should
// be within range for the endpoint type and speed. However, section 6.2.3.4 states that the
// max_burst_size should match the same entry in the super-speed endpoint companion descriptor.
// ( which section should we test for? I chose the former rather than the latter.)
if (speed == USB_SPEED_SUPER) {
if (ep_context->max_burst_size > 15)
ret = PARAMETER_ERROR;
} else {
if (ep_context->max_burst_size != 0)
ret = PARAMETER_ERROR;
}
if (ep_context->interval > 15) // The legal range of 0 to 15 for all (non full/low-speed interrupt) endpoint types
ret = PARAMETER_ERROR;
// 2) if MaxPStreams > 0, then the TR Dequeue Pointer field points to an array of valid
// Stream Contexts, or if MaxPStreams = 0, then the TR Dequeue Pointer field points
// to a Transfer Ring,
if (ep_context->tr_dequeue_pointer == 0)
ret = PARAMETER_ERROR;
// 3) the EP State field = Disabled, and
if (ep_context->ep_state != 0)
ret = PARAMETER_ERROR;
// 4) all other fields are within their valid range of values.
}
break;
default:
BX_ERROR(("Error: Unknown command on Evaluate Context: %d", trb_command));
}
if (ret != TRB_SUCCESS) {
BX_ERROR(("Validate Endpoint Context returned PARAMETER_ERROR."));
}
return ret;
}
// The Specs say that the address is only unique to the RH Port Number
// For now, we simply return the slot number (+1);
int bx_usb_xhci_c::create_unique_address(const int slot)
{
return (slot + 1); // Windows may need the first one to be 2 (though it shouldn't know the difference for xHCI)
}
int bx_usb_xhci_c::send_set_address(const int addr, const int port_num, const int slot)
{
USBPacket packet;
static Bit8u setup_address[8] = { 0, 0x05, 0, 0, 0, 0, 0, 0 };
setup_address[2] = addr & 0xff;
setup_address[3] = addr >> 8;
packet.pid = USB_TOKEN_SETUP;
packet.devep = 0;
packet.speed = broadcast_speed(slot);
#if HANDLE_TOGGLE_CONTROL
packet.toggle = -1; // the xHCI handles the data toggle bit for USB2 devices
#endif
packet.devaddr = 0; // default address
packet.len = 8;
packet.data = setup_address;
packet.complete_cb = NULL;
packet.complete_dev = BX_XHCI_THIS_PTR;
int ret = BX_XHCI_THIS broadcast_packet(&packet, port_num);
if (ret == 0) {
packet.pid = USB_TOKEN_IN;
packet.len = 0;
ret = BX_XHCI_THIS broadcast_packet(&packet, port_num);
}
return ret;
}
int bx_usb_xhci_c::broadcast_speed(const int slot)
{
int ret = -1;
switch (BX_XHCI_THIS hub.slots[slot].slot_context.speed) {
case 1:
ret = USB_SPEED_FULL;
break;
case 2:
ret = USB_SPEED_LOW;
break;
case 3:
ret = USB_SPEED_HIGH;
break;
case 4: case 5:
case 6: case 7:
ret = USB_SPEED_SUPER;
break;
default:
BX_ERROR(("Invalid speed (%d) specified in Speed field of the Slot Context.", BX_XHCI_THIS hub.slots[slot].slot_context.speed));
}
return ret;
}
int bx_usb_xhci_c::broadcast_packet(USBPacket *p, const int port)
{
int ret = USB_RET_NODEV;
if (BX_XHCI_THIS hub.usb_port[port].device != NULL)
ret = BX_XHCI_THIS hub.usb_port[port].device->handle_packet(p);
return ret;
}
void bx_usb_xhci_c::xhci_timer_handler(void *this_ptr)
{
bx_usb_xhci_c *class_ptr = (bx_usb_xhci_c *) this_ptr;
class_ptr->xhci_timer();
}
// return the status of all the PSCEG (Port Status Change Event Generation) bits
Bit8u bx_usb_xhci_c::get_psceg(const int port)
{
Bit8u ret;
ret = (BX_XHCI_THIS hub.usb_port[port].portsc.csc) ? PSCEG_CSC : 0;
ret |= (BX_XHCI_THIS hub.usb_port[port].portsc.pec) ? PSCEG_PEC : 0;
ret |= (BX_XHCI_THIS hub.usb_port[port].portsc.wrc) ? PSCEG_WRC : 0;
ret |= (BX_XHCI_THIS hub.usb_port[port].portsc.occ) ? PSCEG_OCC : 0;
ret |= (BX_XHCI_THIS hub.usb_port[port].portsc.prc) ? PSCEG_PRC : 0;
ret |= (BX_XHCI_THIS hub.usb_port[port].portsc.plc) ? PSCEG_PLC : 0;
ret |= (BX_XHCI_THIS hub.usb_port[port].portsc.cec) ? PSCEG_CEC : 0;
return ret;
}
void bx_usb_xhci_c::xhci_timer(void)
{
int slot, ep;
unsigned int port;
Bit8u new_psceg;
if (BX_XHCI_THIS hub.op_regs.HcStatus.hch)
return;
/* Per section 4.19.3 of the xHCI 1.0 specs, we need to present
* a "Port Status Change Event".
* Also, we should only present this event once if any other bits
* change, only presenting it again when all change bits are written
* back to zero, and a change bit goes from 0 to 1.
*/
for (port=0; port<BX_XHCI_THIS hub.n_ports; port++) {
new_psceg = get_psceg(port);
// if any bit has transitioned from 0 to 1 (in any port),
// set the pcd bit in the host status register.
if ((new_psceg & BX_XHCI_THIS hub.usb_port[port].psceg) > 0)
BX_XHCI_THIS hub.op_regs.HcStatus.pcd = 1;
// clear any bits that have been cleared by the guest,
// if we are now zero *and* there are any new bits set, send a Change Event.
BX_XHCI_THIS hub.usb_port[port].psceg &= new_psceg;
if ((BX_XHCI_THIS hub.usb_port[port].psceg == 0) && (new_psceg != 0)) {
BX_DEBUG(("Port #%d Status Change Event: (%2Xh)", port + 1, new_psceg));
write_event_TRB(0, ((port + 1) << 24), TRB_SET_COMP_CODE(1), TRB_SET_TYPE(PORT_STATUS_CHANGE), 1);
}
BX_XHCI_THIS hub.usb_port[port].psceg |= new_psceg;
}
for (slot=1; slot<MAX_SLOTS; slot++) {
if (BX_XHCI_THIS hub.slots[slot].enabled) {
for (ep=1; ep<32; ep++) {
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].retry) {
if (--BX_XHCI_THIS hub.slots[slot].ep_context[ep].retry_counter <= 0) {
if (BX_XHCI_THIS hub.slots[slot].ep_context[ep].ep_context.max_pstreams > 0) { // specifying streams
//
// ben: TODO:
//
BX_ERROR(("Retry on a streamed endpoint."));
} else {
BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer =
BX_XHCI_THIS process_transfer_ring(slot, ep, BX_XHCI_THIS hub.slots[slot].ep_context[ep].enqueue_pointer,
&BX_XHCI_THIS hub.slots[slot].ep_context[ep].rcs, 0);
}
}
}
}
}
}
}
void bx_usb_xhci_c::runtime_config_handler(void *this_ptr)
{
bx_usb_xhci_c *class_ptr = (bx_usb_xhci_c *) this_ptr;
class_ptr->runtime_config();
}
void bx_usb_xhci_c::runtime_config(void)
{
char pname[8];
for (unsigned i = 0; i < BX_XHCI_THIS hub.n_ports; i++) {
// device change support
if ((BX_XHCI_THIS device_change & (1 << i)) != 0) {
if (!BX_XHCI_THIS hub.usb_port[i].portsc.ccs) {
sprintf(pname, "port%d", i + 1);
init_device(i, (bx_list_c *) SIM->get_param(pname, SIM->get_param(BXPN_USB_XHCI)));
} else {
set_connect_status(i, 0);
}
BX_XHCI_THIS device_change &= ~(1 << i);
}
// forward to connected device
if (BX_XHCI_THIS hub.usb_port[i].device != NULL) {
BX_XHCI_THIS hub.usb_port[i].device->runtime_config();
}
}
}
// pci configuration space write callback handler
void bx_usb_xhci_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len)
{
if (((address >= 0x14) && (address <= 0x34)))
return;
BX_DEBUG_PCI_WRITE(address, value, io_len);
for (unsigned i=0; i<io_len; i++) {
Bit8u value8 = (value >> (i*8)) & 0xFF;
// Bit8u oldval = BX_XHCI_THIS pci_conf[address+i];
switch (address + i) {
case 0x04:
value8 &= 0x06; // (bit 0 is read only for this card) (we don't allow port IO)
BX_XHCI_THIS pci_conf[address+i] = value8;
break;
case 0x3d: //
case 0x3e: //
case 0x3f: //
case 0x05: // disallowing write to command hi-byte
case 0x06: // disallowing write to status lo-byte (is that expected?)
break;
case 0x54:
if ((((value8 & 0x03) == 0x03) && ((BX_XHCI_THIS pci_conf[address+i] & 0x03) == 0x00)) &&
(BX_XHCI_THIS hub.op_regs.HcCommand.rs || !BX_XHCI_THIS hub.op_regs.HcStatus.hch))
BX_ERROR(("Power Transition from D0 to D3 with Run bit set and/or Halt bit clear"));
BX_XHCI_THIS pci_conf[address+i] = value8;
break;
case 0x55:
BX_XHCI_THIS pci_conf[address+i] = value8;
if (value8 & 0x80) // if we write a one to bit 7 (15 of word register at 0x54), clear bit 7.
BX_XHCI_THIS pci_conf[address+i] &= 0x7F;
break;
default:
BX_XHCI_THIS pci_conf[address+i] = value8;
}
}
}
bool bx_usb_xhci_c::set_connect_status(Bit8u port, bool connected)
{
const bool ccs_org = BX_XHCI_THIS hub.usb_port[port].portsc.ccs;
const bool ped_org = BX_XHCI_THIS hub.usb_port[port].portsc.ped;
int otherportnum = BX_XHCI_THIS hub.paired_portnum[port];
usb_device_c *device = BX_XHCI_THIS hub.usb_port[port].device;
if (device != NULL) {
if (connected) {
// make sure the user has not tried to put a device on a paired port number
// (this is invalid in all but external USB3 hubs)
if (BX_XHCI_THIS hub.usb_port[otherportnum].portsc.ccs) {
BX_PANIC(("Port #%d: Paired port number #%d already in use.", port + 1, otherportnum + 1));
return 0;
}
if ((device->get_speed() == USB_SPEED_SUPER) &&
!BX_XHCI_THIS hub.usb_port[port].is_usb3) {
BX_PANIC(("Super-speed device not supported on USB2 port."));
return 0;
}
if ((device->get_speed() < USB_SPEED_SUPER) &&
BX_XHCI_THIS hub.usb_port[port].is_usb3) {
BX_PANIC(("Non super-speed device not supported on USB3 port."));
return 0;
}
if (BX_XHCI_THIS hub.usb_port[port].is_usb3) {
if (!device->set_speed(USB_SPEED_SUPER)) {
BX_PANIC(("Only super-speed devices supported on USB3 port."));
return 0;
}
}
switch (device->get_speed()) {
case USB_SPEED_LOW:
BX_XHCI_THIS hub.usb_port[port].portsc.speed = 2;
break;
case USB_SPEED_FULL:
BX_XHCI_THIS hub.usb_port[port].portsc.speed = 1;
break;
case USB_SPEED_HIGH:
BX_XHCI_THIS hub.usb_port[port].portsc.speed = 3;
break;
case USB_SPEED_SUPER:
BX_XHCI_THIS hub.usb_port[port].portsc.speed = 4;
break;
default:
BX_PANIC(("USB device returned invalid speed value"));
return 0;
}
BX_XHCI_THIS hub.usb_port[port].portsc.ccs = 1;
if (!device->get_connected()) {
if (!device->init()) {
BX_ERROR(("port #%d: connect failed", port+1));
return 0;
} else {
BX_INFO(("port #%d: connect: %s", port+1, device->get_info()));
}
}
} else { // not connected
BX_INFO(("port #%d: device disconnect", port+1));
BX_XHCI_THIS hub.usb_port[port].portsc.ccs = 0;
BX_XHCI_THIS hub.usb_port[port].portsc.ped = 0;
BX_XHCI_THIS hub.usb_port[port].portsc.speed = 0;
remove_device(port);
}
// did we change?
if (ccs_org != BX_XHCI_THIS hub.usb_port[port].portsc.ccs)
BX_XHCI_THIS hub.usb_port[port].portsc.csc = 1;
if (ped_org != BX_XHCI_THIS hub.usb_port[port].portsc.ped) {
BX_XHCI_THIS hub.usb_port[port].portsc.pec = 1;
}
}
return connected;
}
// USB runtime parameter handler
Bit64s bx_usb_xhci_c::usb_param_handler(bx_param_c *param, bool set, Bit64s val)
{
if (set) {
int portnum = atoi((param->get_parent())->get_name()+4) - 1;
bool empty = (val == 0);
if ((portnum >= 0) && (portnum < (int) BX_XHCI_THIS hub.n_ports)) {
if (empty && BX_XHCI_THIS hub.usb_port[portnum].portsc.ccs) {
BX_XHCI_THIS device_change |= (1 << portnum);
} else if (!empty && !BX_XHCI_THIS hub.usb_port[portnum].portsc.ccs) {
BX_XHCI_THIS device_change |= (1 << portnum);
} else if (val != ((bx_param_enum_c*)param)->get()) {
BX_ERROR(("usb_param_handler(): port #%d already in use", portnum+1));
val = ((bx_param_enum_c*)param)->get();
}
} else {
BX_PANIC(("usb_param_handler called with unexpected parameter '%s'", param->get_name()));
}
}
return val;
}
// USB runtime parameter handler: over-current
Bit64s bx_usb_xhci_c::usb_param_oc_handler(bx_param_c *param, bool set, Bit64s val)
{
if (set) {
int portnum = atoi((param->get_parent())->get_name()+4) - 1;
if ((portnum >= 0) && (portnum < (int) BX_XHCI_THIS hub.n_ports)) {
if (val) {
if (BX_XHCI_THIS hub.usb_port[portnum].portsc.ccs) {
BX_XHCI_THIS hub.usb_port[portnum].portsc.occ = 1;
BX_XHCI_THIS hub.usb_port[portnum].portsc.oca = 1;
BX_DEBUG(("Over-current signaled on port #%d.", portnum + 1));
write_event_TRB(0, ((portnum + 1) << 24), TRB_SET_COMP_CODE(1), TRB_SET_TYPE(PORT_STATUS_CHANGE), 1);
}
}
}
}
return 0; // clear the indicator for next time
}
// USB runtime parameter enable handler
bool bx_usb_xhci_c::usb_param_enable_handler(bx_param_c *param, bool en)
{
int portnum = atoi((param->get_parent())->get_name()+4) - 1;
if (en && (BX_XHCI_THIS hub.usb_port[portnum].device != NULL)) {
en = 0;
}
return en;
}
void bx_usb_xhci_c::dump_xhci_core(const unsigned int slots, const unsigned int eps)
{
bx_phy_address addr = BX_XHCI_THIS pci_bar[0].addr;
unsigned i, p;
Bit32u dword;
Bit64u qword;
Bit8u buffer[4096];
// dump the caps registers
BX_INFO((" CAPLENGTH: 0x%02X", BX_XHCI_THIS hub.cap_regs.HcCapLength & 0xFF));
BX_INFO(("HC VERSION: %X.%02X", ((BX_XHCI_THIS hub.cap_regs.HcCapLength & 0xFF000000) >> 24),
((BX_XHCI_THIS hub.cap_regs.HcCapLength & 0x00FF0000) >> 16)));
BX_INFO(("HCSPARAMS1: 0x%08X", BX_XHCI_THIS hub.cap_regs.HcSParams1));
BX_INFO(("HCSPARAMS2: 0x%08X", BX_XHCI_THIS hub.cap_regs.HcSParams2));
BX_INFO(("HCSPARAMS3: 0x%08X", BX_XHCI_THIS hub.cap_regs.HcSParams3));
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_INFO(("HCCPARAMS1: 0x%08X", BX_XHCI_THIS hub.cap_regs.HcCParams1));
#else
BX_INFO(("HCCPARAMS: 0x%08X", BX_XHCI_THIS hub.cap_regs.HcCParams1));
#endif
BX_INFO((" DBOFF: 0x%08X", BX_XHCI_THIS hub.cap_regs.DBOFF));
BX_INFO((" RTSOFF: 0x%08X", BX_XHCI_THIS hub.cap_regs.RTSOFF));
#if ((VERSION_MAJOR == 1) && (VERSION_MINOR >= 0x10))
BX_INFO(("HCCPARAMS2: 0x%08X", BX_XHCI_THIS hub.cap_regs.HcCParams2));
#endif
// dump the operational registers
BX_XHCI_THIS read_handler(addr + 0x20, 4, &dword, NULL);
BX_INFO((" USB_COMMAND: 0x%08X", dword));
BX_XHCI_THIS read_handler(addr + 0x24, 4, &dword, NULL);
BX_INFO((" USB_STATUS: 0x%08X", dword));
BX_XHCI_THIS read_handler(addr + 0x28, 4, &dword, NULL);
BX_INFO((" PAGE_SIZE: 0x%08X", dword));
BX_XHCI_THIS read_handler(addr + 0x34, 4, &dword, NULL);
BX_INFO((" DNCTRL: 0x%08X", dword));
//BX_XHCI_THIS read_handler(addr + 0x38, 8, &qword, NULL); // * this register reads as zero *
BX_INFO((" CRCR: 0x" FMT_ADDRX64 " (read as zero)", BX_XHCI_THIS hub.op_regs.HcCrcr.actual));
BX_XHCI_THIS read_handler(addr + 0x50, 8, &qword, NULL);
BX_INFO((" DCBAAP: 0x" FMT_ADDRX64, qword));
BX_XHCI_THIS read_handler(addr + 0x58, 4, &dword, NULL);
BX_INFO((" CONFIG: 0x%08X", dword));
for (i=0, p=0; i<BX_XHCI_THIS hub.n_ports; i++, p+=16) {
BX_XHCI_THIS read_handler(addr + 0x420 + (p + 0), 4, &dword, NULL);
BX_INFO((" Port %d: 0x%08X", i, dword));
BX_XHCI_THIS read_handler(addr + 0x420 + (p + 4), 4, &dword, NULL);
BX_INFO((" 0x%08X", dword));
BX_XHCI_THIS read_handler(addr + 0x420 + (p + 8), 4, &dword, NULL);
BX_INFO((" 0x%08X", dword));
BX_XHCI_THIS read_handler(addr + 0x420 + (p + 12), 4, &dword, NULL);
BX_INFO((" 0x%08X", dword));
}
Bit64u slot_addr = BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap;
DEV_MEM_READ_PHYSICAL((bx_phy_address) slot_addr, sizeof(Bit64u), (Bit8u *) &slot_addr);
BX_INFO((" SCRATCH PADS: 0x" FMT_ADDRX64, slot_addr));
for (i=1; i<slots+1; i++) {
slot_addr = (BX_XHCI_THIS hub.op_regs.HcDCBAAP.dcbaap + (i * sizeof(Bit64u)));
DEV_MEM_READ_PHYSICAL((bx_phy_address) slot_addr, sizeof(Bit64u), (Bit8u *) &slot_addr);
DEV_MEM_READ_PHYSICAL_DMA((bx_phy_address) slot_addr, 2048, buffer);
dump_slot_context((Bit32u *) &buffer[0], i);
for (p=1; p<eps+1; p++)
dump_ep_context((Bit32u *) &buffer[p * CONTEXT_SIZE], i, p);
}
}
#endif // BX_SUPPORT_PCI && BX_SUPPORT_USB_XHCI