Bochs/bochs/iodev/dma.cc
2012-08-19 08:16:20 +00:00

838 lines
29 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2009 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#include "dma.h"
#define LOG_THIS theDmaDevice->
#define DMA_MODE_DEMAND 0
#define DMA_MODE_SINGLE 1
#define DMA_MODE_BLOCK 2
#define DMA_MODE_CASCADE 3
bx_dma_c *theDmaDevice = NULL;
int libdma_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
if (type == PLUGTYPE_CORE) {
theDmaDevice = new bx_dma_c ();
bx_devices.pluginDmaDevice = theDmaDevice;
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theDmaDevice, BX_PLUGIN_DMA);
return 0; // Success
} else {
return -1;
}
}
void libdma_LTX_plugin_fini(void)
{
delete theDmaDevice;
}
bx_dma_c::bx_dma_c()
{
put("DMA");
memset(&s, 0, sizeof(s));
}
bx_dma_c::~bx_dma_c()
{
SIM->get_bochs_root()->remove("dma");
BX_DEBUG(("Exit"));
}
unsigned bx_dma_c::registerDMA8Channel(unsigned channel,
Bit16u (* dmaRead)(Bit8u *data_byte, Bit16u maxlen),
Bit16u (* dmaWrite)(Bit8u *data_byte, Bit16u maxlen),
const char *name)
{
if (channel > 3) {
BX_PANIC(("registerDMA8Channel: invalid channel number(%u).", channel));
return 0; // Fail
}
if (BX_DMA_THIS s[0].chan[channel].used) {
BX_PANIC(("registerDMA8Channel: channel(%u) already in use.", channel));
return 0; // Fail
}
BX_INFO(("channel %u used by %s", channel, name));
BX_DMA_THIS h[channel].dmaRead8 = dmaRead;
BX_DMA_THIS h[channel].dmaWrite8 = dmaWrite;
BX_DMA_THIS s[0].chan[channel].used = 1;
return 1; // OK
}
unsigned bx_dma_c::registerDMA16Channel(unsigned channel,
Bit16u (* dmaRead)(Bit16u *data_word, Bit16u maxlen),
Bit16u (* dmaWrite)(Bit16u *data_word, Bit16u maxlen),
const char *name)
{
if ((channel < 4) || (channel > 7)) {
BX_PANIC(("registerDMA16Channel: invalid channel number(%u).", channel));
return 0; // Fail
}
if (BX_DMA_THIS s[1].chan[channel & 0x03].used) {
BX_PANIC(("registerDMA16Channel: channel(%u) already in use.", channel));
return 0; // Fail
}
BX_INFO(("channel %u used by %s", channel, name));
channel &= 0x03;
BX_DMA_THIS h[channel].dmaRead16 = dmaRead;
BX_DMA_THIS h[channel].dmaWrite16 = dmaWrite;
BX_DMA_THIS s[1].chan[channel].used = 1;
return 1; // OK
}
unsigned bx_dma_c::unregisterDMAChannel(unsigned channel)
{
bx_bool ma_sl = (channel > 3);
BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used = 0;
BX_INFO(("channel %u no longer used", channel));
return 1;
}
unsigned bx_dma_c::get_TC(void)
{
return BX_DMA_THIS TC;
}
void bx_dma_c::init(void)
{
unsigned c, i, j;
BX_DEBUG(("Init $Id$"));
/* 8237 DMA controller */
for (i=0; i < 2; i++) {
for (j=0; j < 4; j++) {
BX_DMA_THIS s[i].DRQ[j] = 0;
BX_DMA_THIS s[i].DACK[j] = 0;
}
}
BX_DMA_THIS HLDA = 0;
BX_DMA_THIS TC = 0;
// 0000..000F
for (i=0x0000; i<=0x000F; i++) {
DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
}
// 00080..008F
for (i=0x0080; i<=0x008F; i++) {
DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
}
// 000C0..00DE
for (i=0x00C0; i<=0x00DE; i+=2) {
DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
}
for (i=0; i<2; i++) {
for (c=0; c<4; c++) {
BX_DMA_THIS s[i].chan[c].mode.mode_type = 0; // demand mode
BX_DMA_THIS s[i].chan[c].mode.address_decrement = 0; // address increment
BX_DMA_THIS s[i].chan[c].mode.autoinit_enable = 0; // autoinit disable
BX_DMA_THIS s[i].chan[c].mode.transfer_type = 0; // verify
BX_DMA_THIS s[i].chan[c].base_address = 0;
BX_DMA_THIS s[i].chan[c].current_address = 0;
BX_DMA_THIS s[i].chan[c].base_count = 0;
BX_DMA_THIS s[i].chan[c].current_count = 0;
BX_DMA_THIS s[i].chan[c].page_reg = 0;
BX_DMA_THIS s[i].chan[c].used = 0;
}
}
memset(&BX_DMA_THIS ext_page_reg[0], 0, 16);
BX_DMA_THIS s[1].chan[0].used = 1; // cascade channel in use
BX_INFO(("channel 4 used by cascade"));
#if BX_DEBUGGER
// register device for the 'info device' command (calls debug_dump())
bx_dbg_register_debug_info("dma", this);
#endif
}
void bx_dma_c::reset(unsigned type)
{
reset_controller(0);
reset_controller(1);
}
void bx_dma_c::reset_controller(unsigned num)
{
BX_DMA_THIS s[num].mask[0] = 1;
BX_DMA_THIS s[num].mask[1] = 1;
BX_DMA_THIS s[num].mask[2] = 1;
BX_DMA_THIS s[num].mask[3] = 1;
BX_DMA_THIS s[num].ctrl_disabled = 0;
BX_DMA_THIS s[num].command_reg = 0;
BX_DMA_THIS s[num].status_reg = 0;
BX_DMA_THIS s[num].flip_flop = 0;
}
void bx_dma_c::register_state(void)
{
unsigned i, c;
char name[6];
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "dma", "DMA State");
for (i=0; i<2; i++) {
sprintf(name, "%d", i);
bx_list_c *ctrl = new bx_list_c(list, name);
BXRS_PARAM_BOOL(ctrl, flip_flop, BX_DMA_THIS s[i].flip_flop);
BXRS_HEX_PARAM_FIELD(ctrl, status_reg, BX_DMA_THIS s[i].status_reg);
BXRS_HEX_PARAM_FIELD(ctrl, command_reg, BX_DMA_THIS s[i].command_reg);
BXRS_PARAM_BOOL(ctrl, ctrl_disabled, BX_DMA_THIS s[i].ctrl_disabled);
for (c=0; c<4; c++) {
sprintf(name, "%d", c);
bx_list_c *chan = new bx_list_c(ctrl, name);
BXRS_PARAM_BOOL(chan, DRQ, BX_DMA_THIS s[i].DRQ[c]);
BXRS_PARAM_BOOL(chan, DACK, BX_DMA_THIS s[i].DACK[c]);
BXRS_PARAM_BOOL(chan, mask, BX_DMA_THIS s[i].mask[c]);
BXRS_DEC_PARAM_FIELD(chan, mode_type, BX_DMA_THIS s[i].chan[c].mode.mode_type);
BXRS_PARAM_BOOL(chan, address_decrement, BX_DMA_THIS s[i].chan[c].mode.address_decrement);
BXRS_PARAM_BOOL(chan, autoinit_enable, BX_DMA_THIS s[i].chan[c].mode.autoinit_enable);
BXRS_DEC_PARAM_FIELD(chan, transfer_type, BX_DMA_THIS s[i].chan[c].mode.transfer_type);
BXRS_HEX_PARAM_FIELD(chan, base_address, BX_DMA_THIS s[i].chan[c].base_address);
BXRS_HEX_PARAM_FIELD(chan, current_address, BX_DMA_THIS s[i].chan[c].current_address);
BXRS_HEX_PARAM_FIELD(chan, base_count, BX_DMA_THIS s[i].chan[c].base_count);
BXRS_HEX_PARAM_FIELD(chan, current_count, BX_DMA_THIS s[i].chan[c].current_count);
BXRS_HEX_PARAM_FIELD(chan, page_reg, BX_DMA_THIS s[i].chan[c].page_reg);
}
}
bx_list_c *extpg = new bx_list_c(list, "ext_page");
for (i=0; i<16; i++) {
sprintf(name, "0x%02x", 0x80+i);
new bx_shadow_num_c(extpg, name, &BX_DMA_THIS ext_page_reg[i], BASE_HEX);
}
}
// index to find channel from register number (only [0],[1],[2],[6] used)
Bit8u channelindex[7] = {2, 3, 1, 0, 0, 0, 0};
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u bx_dma_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_DMA_SMF
bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;
return class_ptr->read(address, io_len);
}
/* 8237 DMA controller */
Bit32u BX_CPP_AttrRegparmN(2)
bx_dma_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_DMA_SMF
Bit8u retval;
Bit8u channel;
BX_DEBUG(("read addr=%04x", (unsigned) address));
#if BX_DMA_FLOPPY_IO < 1
/* if we're not supporting DMA/floppy IO just return a bogus value */
return(0xff);
#endif
bx_bool ma_sl = (address >= 0xc0);
switch (address) {
case 0x00: /* DMA-1 current address, channel 0 */
case 0x02: /* DMA-1 current address, channel 1 */
case 0x04: /* DMA-1 current address, channel 2 */
case 0x06: /* DMA-1 current address, channel 3 */
case 0xc0: /* DMA-2 current address, channel 0 */
case 0xc4: /* DMA-2 current address, channel 1 */
case 0xc8: /* DMA-2 current address, channel 2 */
case 0xcc: /* DMA-2 current address, channel 3 */
channel = (address >> (1 + ma_sl)) & 0x03;
if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return (BX_DMA_THIS s[ma_sl].chan[channel].current_address & 0xff);
} else {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return (BX_DMA_THIS s[ma_sl].chan[channel].current_address >> 8);
}
case 0x01: /* DMA-1 current count, channel 0 */
case 0x03: /* DMA-1 current count, channel 1 */
case 0x05: /* DMA-1 current count, channel 2 */
case 0x07: /* DMA-1 current count, channel 3 */
case 0xc2: /* DMA-2 current count, channel 0 */
case 0xc6: /* DMA-2 current count, channel 1 */
case 0xca: /* DMA-2 current count, channel 2 */
case 0xce: /* DMA-2 current count, channel 3 */
channel = (address >> (1 + ma_sl)) & 0x03;
if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return (BX_DMA_THIS s[ma_sl].chan[channel].current_count & 0xff);
} else {
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
return (BX_DMA_THIS s[ma_sl].chan[channel].current_count >> 8);
}
case 0x08: // DMA-1 Status Register
case 0xd0: // DMA-2 Status Register
// bit 7: 1 = channel 3 request
// bit 6: 1 = channel 2 request
// bit 5: 1 = channel 1 request
// bit 4: 1 = channel 0 request
// bit 3: 1 = channel 3 has reached terminal count
// bit 2: 1 = channel 2 has reached terminal count
// bit 1: 1 = channel 1 has reached terminal count
// bit 0: 1 = channel 0 has reached terminal count
// reading this register clears lower 4 bits (hold flags)
retval = BX_DMA_THIS s[ma_sl].status_reg;
BX_DMA_THIS s[ma_sl].status_reg &= 0xf0;
return retval;
case 0x0d: // DMA-1: temporary register
case 0xda: // DMA-2: temporary register
// only used for memory-to-memory transfers
// write to 0x0d / 0xda clears temporary register
BX_ERROR(("DMA-%d: read of temporary register always returns 0", ma_sl+1));
return 0;
case 0x0081: // DMA-1 page register, channel 2
case 0x0082: // DMA-1 page register, channel 3
case 0x0083: // DMA-1 page register, channel 1
case 0x0087: // DMA-1 page register, channel 0
channel = channelindex[address - 0x81];
return BX_DMA_THIS s[0].chan[channel].page_reg;
case 0x0089: // DMA-2 page register, channel 2
case 0x008a: // DMA-2 page register, channel 3
case 0x008b: // DMA-2 page register, channel 1
case 0x008f: // DMA-2 page register, channel 0
channel = channelindex[address - 0x89];
return BX_DMA_THIS s[1].chan[channel].page_reg;
case 0x0080:
case 0x0084:
case 0x0085:
case 0x0086:
case 0x0088:
case 0x008c:
case 0x008d:
case 0x008e:
BX_DEBUG(("read: extra page register 0x%04x (unused)", (unsigned) address));
return BX_DMA_THIS ext_page_reg[address & 0x0f];
case 0x0f: // DMA-1: undocumented: read all mask bits
case 0xde: // DMA-2: undocumented: read all mask bits
retval = BX_DMA_THIS s[ma_sl].mask[0] |
(BX_DMA_THIS s[ma_sl].mask[1] << 1) |
(BX_DMA_THIS s[ma_sl].mask[2] << 2) |
(BX_DMA_THIS s[ma_sl].mask[3] << 3);
return (0xf0 | retval);
default:
BX_ERROR(("read: unsupported address=%04x", (unsigned) address));
return 0;
}
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void bx_dma_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_DMA_SMF
bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
/* 8237 DMA controller */
void BX_CPP_AttrRegparmN(3)
bx_dma_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_DMA_SMF
Bit8u set_mask_bit;
Bit8u channel;
if (io_len > 1) {
if ((io_len == 2) && (address == 0x0b)) {
#if BX_USE_DMA_SMF
BX_DMA_THIS write_handler(NULL, address, value & 0xff, 1);
BX_DMA_THIS write_handler(NULL, address+1, value >> 8, 1);
#else
BX_DMA_THIS write(address, value & 0xff, 1);
BX_DMA_THIS write(address+1, value >> 8, 1);
#endif
return;
}
BX_ERROR(("io write to address %08x, len=%u",
(unsigned) address, (unsigned) io_len));
return;
}
BX_DEBUG(("write: address=%04x value=%02x",
(unsigned) address, (unsigned) value));
#if BX_DMA_FLOPPY_IO < 1
/* if we're not supporting DMA/floppy IO just return */
return;
#endif
bx_bool ma_sl = (address >= 0xc0);
switch (address) {
case 0x00:
case 0x02:
case 0x04:
case 0x06:
case 0xc0:
case 0xc4:
case 0xc8:
case 0xcc:
channel = (address >> (1 + ma_sl)) & 0x03;
BX_DEBUG((" DMA-%d base and current address, channel %d", ma_sl+1, channel));
if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_address = value;
BX_DMA_THIS s[ma_sl].chan[channel].current_address = value;
} else { /* 2nd byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_address |= (value << 8);
BX_DMA_THIS s[ma_sl].chan[channel].current_address |= (value << 8);
BX_DEBUG((" base = %04x", BX_DMA_THIS s[ma_sl].chan[channel].base_address));
BX_DEBUG((" curr = %04x", BX_DMA_THIS s[ma_sl].chan[channel].current_address));
}
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
break;
case 0x01:
case 0x03:
case 0x05:
case 0x07:
case 0xc2:
case 0xc6:
case 0xca:
case 0xce:
channel = (address >> (1 + ma_sl)) & 0x03;
BX_DEBUG((" DMA-%d base and current count, channel %d", ma_sl+1, channel));
if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_count = value;
BX_DMA_THIS s[ma_sl].chan[channel].current_count = value;
} else { /* 2nd byte */
BX_DMA_THIS s[ma_sl].chan[channel].base_count |= (value << 8);
BX_DMA_THIS s[ma_sl].chan[channel].current_count |= (value << 8);
BX_DEBUG((" base = %04x", BX_DMA_THIS s[ma_sl].chan[channel].base_count));
BX_DEBUG((" curr = %04x", BX_DMA_THIS s[ma_sl].chan[channel].current_count));
}
BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
break;
case 0x08: /* DMA-1: command register */
case 0xd0: /* DMA-2: command register */
if ((value & 0xfb) != 0x00)
BX_ERROR(("write to command register: value 0x%02x not supported",
(unsigned) value));
BX_DMA_THIS s[ma_sl].command_reg = value;
BX_DMA_THIS s[ma_sl].ctrl_disabled = (value >> 2) & 0x01;
control_HRQ(ma_sl);
break;
case 0x09: // DMA-1: request register
case 0xd2: // DMA-2: request register
channel = value & 0x03;
// note: write to 0x0d / 0xda clears this register
if (value & 0x04) {
// set request bit
BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
BX_DEBUG(("DMA-%d: set request bit for channel %u", ma_sl+1, channel));
} else {
// clear request bit
BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
BX_DEBUG(("DMA-%d: cleared request bit for channel %u", ma_sl+1, channel));
}
control_HRQ(ma_sl);
break;
case 0x0a:
case 0xd4:
set_mask_bit = value & 0x04;
channel = value & 0x03;
BX_DMA_THIS s[ma_sl].mask[channel] = (set_mask_bit > 0);
BX_DEBUG(("DMA-%d: set_mask_bit=%u, channel=%u, mask now=%02xh", ma_sl+1,
set_mask_bit, channel, BX_DMA_THIS s[ma_sl].mask[channel]));
control_HRQ(ma_sl);
break;
case 0x0b: /* DMA-1 mode register */
case 0xd6: /* DMA-2 mode register */
channel = value & 0x03;
BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type = (value >> 6) & 0x03;
BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement = (value >> 5) & 0x01;
BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable = (value >> 4) & 0x01;
BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type = (value >> 2) & 0x03;
BX_DEBUG(("DMA-%d: mode register[%u] = %02x", ma_sl+1, channel, (unsigned) value));
break;
case 0x0c: /* DMA-1 clear byte flip/flop */
case 0xd8: /* DMA-2 clear byte flip/flop */
BX_DEBUG(("DMA-%d: clear flip/flop", ma_sl+1));
BX_DMA_THIS s[ma_sl].flip_flop = 0;
break;
case 0x0d: // DMA-1: master clear
case 0xda: // DMA-2: master clear
BX_DEBUG(("DMA-%d: master clear", ma_sl+1));
// writing any value to this port resets DMA controller 1 / 2
// same action as a hardware reset
// mask register is set (chan 0..3 disabled)
// command, status, request, temporary, and byte flip-flop are all cleared
reset_controller(ma_sl);
break;
case 0x0e: // DMA-1: clear mask register
case 0xdc: // DMA-2: clear mask register
BX_DEBUG(("DMA-%d: clear mask register", ma_sl+1));
BX_DMA_THIS s[ma_sl].mask[0] = 0;
BX_DMA_THIS s[ma_sl].mask[1] = 0;
BX_DMA_THIS s[ma_sl].mask[2] = 0;
BX_DMA_THIS s[ma_sl].mask[3] = 0;
control_HRQ(ma_sl);
break;
case 0x0f: // DMA-1: write all mask bits
case 0xde: // DMA-2: write all mask bits
BX_DEBUG(("DMA-%d: write all mask bits", ma_sl+1));
BX_DMA_THIS s[ma_sl].mask[0] = value & 0x01; value >>= 1;
BX_DMA_THIS s[ma_sl].mask[1] = value & 0x01; value >>= 1;
BX_DMA_THIS s[ma_sl].mask[2] = value & 0x01; value >>= 1;
BX_DMA_THIS s[ma_sl].mask[3] = value & 0x01;
control_HRQ(ma_sl);
break;
case 0x81: /* DMA-1 page register, channel 2 */
case 0x82: /* DMA-1 page register, channel 3 */
case 0x83: /* DMA-1 page register, channel 1 */
case 0x87: /* DMA-1 page register, channel 0 */
/* address bits A16-A23 for DMA channel */
channel = channelindex[address - 0x81];
BX_DMA_THIS s[0].chan[channel].page_reg = value;
BX_DEBUG(("DMA-1: page register %d = %02x", channel, (unsigned) value));
break;
case 0x89: /* DMA-2 page register, channel 2 */
case 0x8a: /* DMA-2 page register, channel 3 */
case 0x8b: /* DMA-2 page register, channel 1 */
case 0x8f: /* DMA-2 page register, channel 0 */
/* address bits A16-A23 for DMA channel */
channel = channelindex[address - 0x89];
BX_DMA_THIS s[1].chan[channel].page_reg = value;
BX_DEBUG(("DMA-2: page register %d = %02x", channel + 4, (unsigned) value));
break;
case 0x0080:
case 0x0084:
case 0x0085:
case 0x0086:
case 0x0088:
case 0x008c:
case 0x008d:
case 0x008e:
BX_DEBUG(("write: extra page register 0x%04x (unused)", (unsigned) address));
BX_DMA_THIS ext_page_reg[address & 0x0f] = value;
break;
default:
BX_ERROR(("write ignored: %04xh = %02xh",
(unsigned) address, (unsigned) value));
}
}
void bx_dma_c::set_DRQ(unsigned channel, bx_bool val)
{
Bit32u dma_base, dma_roof;
bx_bool ma_sl;
if (channel > 7) {
BX_PANIC(("set_DRQ() channel > 7"));
return;
}
ma_sl = (channel > 3);
BX_DMA_THIS s[ma_sl].DRQ[channel & 0x03] = val;
if (!BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used) {
BX_PANIC(("set_DRQ(): channel %d not connected to device", channel));
return;
}
channel &= 0x03;
if (!val) {
// clear bit in status reg
BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
control_HRQ(ma_sl);
return;
}
BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
if ((BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_SINGLE) &&
(BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_DEMAND) &&
(BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_CASCADE))
{
BX_PANIC(("set_DRQ: mode_type(%02x) not handled",
BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type));
}
dma_base = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
(BX_DMA_THIS s[ma_sl].chan[channel].base_address << ma_sl);
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0) {
dma_roof = dma_base + (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
} else {
dma_roof = dma_base - (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
}
if ((dma_base & (0x7fff0000 << ma_sl)) != (dma_roof & (0x7fff0000 << ma_sl))) {
BX_INFO(("dma_base = 0x%08x", dma_base));
BX_INFO(("dma_base_count = 0x%08x", BX_DMA_THIS s[ma_sl].chan[channel].base_count));
BX_INFO(("dma_roof = 0x%08x", dma_roof));
BX_PANIC(("request outside %dk boundary", 64 << ma_sl));
}
control_HRQ(ma_sl);
}
void bx_dma_c::control_HRQ(bx_bool ma_sl)
{
unsigned channel;
// do nothing if controller is disabled
if (BX_DMA_THIS s[ma_sl].ctrl_disabled)
return;
// deassert HRQ if no DRQ is pending
if ((BX_DMA_THIS s[ma_sl].status_reg & 0xf0) == 0) {
if (ma_sl) {
bx_pc_system.set_HRQ(0);
} else {
BX_DMA_THIS set_DRQ(4, 0);
}
return;
}
// find highest priority channel
for (channel=0; channel<4; channel++) {
if ((BX_DMA_THIS s[ma_sl].status_reg & (1 << (channel+4))) &&
(BX_DMA_THIS s[ma_sl].mask[channel]==0)) {
if (ma_sl) {
// assert Hold ReQuest line to CPU
bx_pc_system.set_HRQ(1);
} else {
// send DRQ to cascade channel of the master
BX_DMA_THIS set_DRQ(4, 1);
}
break;
}
}
}
void bx_dma_c::raise_HLDA(void)
{
unsigned channel;
bx_phy_address phy_addr;
bx_bool ma_sl = 0;
Bit16u maxlen, len = 1;
Bit8u buffer[BX_DMA_BUFFER_SIZE];
BX_DMA_THIS HLDA = 1;
// find highest priority channel
for (channel=0; channel<4; channel++) {
if ((BX_DMA_THIS s[1].status_reg & (1 << (channel+4))) &&
(BX_DMA_THIS s[1].mask[channel]==0)) {
ma_sl = 1;
break;
}
}
if (channel == 0) { // master cascade channel
BX_DMA_THIS s[1].DACK[0] = 1;
for (channel=0; channel<4; channel++) {
if ((BX_DMA_THIS s[0].status_reg & (1 << (channel+4))) &&
(BX_DMA_THIS s[0].mask[channel]==0)) {
ma_sl = 0;
break;
}
}
}
if (channel >= 4) {
// wait till they're unmasked
return;
}
phy_addr = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
(BX_DMA_THIS s[ma_sl].chan[channel].current_address << ma_sl);
if (!BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement) {
maxlen = (BX_DMA_THIS s[ma_sl].chan[channel].current_count + 1) << ma_sl;
BX_DMA_THIS TC = (maxlen <= BX_DMA_BUFFER_SIZE);
if (maxlen > BX_DMA_BUFFER_SIZE) {
maxlen = BX_DMA_BUFFER_SIZE;
}
} else {
BX_DMA_THIS TC = (BX_DMA_THIS s[ma_sl].chan[channel].current_count == 0);
maxlen = 1 << ma_sl;
}
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 1) { // write
// DMA controlled xfer of bytes from I/O to Memory
if (!ma_sl) {
if (BX_DMA_THIS h[channel].dmaWrite8)
len = BX_DMA_THIS h[channel].dmaWrite8(buffer, maxlen);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
DEV_MEM_WRITE_PHYSICAL_DMA(phy_addr, len, buffer);
BX_DBG_DMA_REPORT(phy_addr, len, BX_WRITE, buffer[0]); // FIXME
} else {
if (BX_DMA_THIS h[channel].dmaWrite16)
len = BX_DMA_THIS h[channel].dmaWrite16((Bit16u*)buffer, maxlen / 2);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
DEV_MEM_WRITE_PHYSICAL_DMA(phy_addr, len, buffer);
BX_DBG_DMA_REPORT(phy_addr, len * 2, BX_WRITE, buffer[0] | (buffer[1] << 16)); // FIXME
}
} else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 2) { // read
// DMA controlled xfer of bytes from Memory to I/O
if (!ma_sl) {
DEV_MEM_READ_PHYSICAL_DMA(phy_addr, maxlen, buffer);
if (BX_DMA_THIS h[channel].dmaRead8)
len = BX_DMA_THIS h[channel].dmaRead8(buffer, maxlen);
BX_DBG_DMA_REPORT(phy_addr, len, BX_READ, buffer[0]); // FIXME
} else {
DEV_MEM_READ_PHYSICAL_DMA(phy_addr, maxlen, buffer);
if (BX_DMA_THIS h[channel].dmaRead16)
len = BX_DMA_THIS h[channel].dmaRead16((Bit16u*)buffer, maxlen / 2);
BX_DBG_DMA_REPORT(phy_addr, len * 2, BX_READ, buffer[0] | (buffer[1] << 16)); // FIXME
}
} else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 0) {
// verify
if (!ma_sl) {
if (BX_DMA_THIS h[channel].dmaWrite8)
len = BX_DMA_THIS h[channel].dmaWrite8(buffer, 1);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
} else {
if (BX_DMA_THIS h[channel].dmaWrite16)
len = BX_DMA_THIS h[channel].dmaWrite16((Bit16u*)buffer, 1);
else
BX_PANIC(("no dmaWrite handler for channel %u.", channel));
}
} else {
BX_PANIC(("hlda: transfer_type 3 is undefined"));
}
BX_DMA_THIS s[ma_sl].DACK[channel] = 1;
// check for expiration of count, so we can signal TC and DACK(n)
// at the same time.
if (!BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement)
BX_DMA_THIS s[ma_sl].chan[channel].current_address += len;
else
BX_DMA_THIS s[ma_sl].chan[channel].current_address--;
BX_DMA_THIS s[ma_sl].chan[channel].current_count -= len;
if (BX_DMA_THIS s[ma_sl].chan[channel].current_count == 0xffff) {
// count expired, done with transfer
// assert TC, deassert HRQ & DACK(n) lines
BX_DMA_THIS s[ma_sl].status_reg |= (1 << channel); // hold TC in status reg
if (BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable == 0) {
// set mask bit if not in autoinit mode
BX_DMA_THIS s[ma_sl].mask[channel] = 1;
} else {
// count expired, but in autoinit mode
// reload count and base address
BX_DMA_THIS s[ma_sl].chan[channel].current_address =
BX_DMA_THIS s[ma_sl].chan[channel].base_address;
BX_DMA_THIS s[ma_sl].chan[channel].current_count =
BX_DMA_THIS s[ma_sl].chan[channel].base_count;
}
BX_DMA_THIS TC = 0; // clear TC, adapter card already notified
BX_DMA_THIS HLDA = 0;
bx_pc_system.set_HRQ(0); // clear HRQ to CPU
BX_DMA_THIS s[ma_sl].DACK[channel] = 0; // clear DACK to adapter card
if (!ma_sl) {
BX_DMA_THIS set_DRQ(4, 0); // clear DRQ to cascade
BX_DMA_THIS s[1].DACK[0] = 0; // clear DACK to cascade
}
}
}
#if BX_DEBUGGER
void bx_dma_c::debug_dump(int argc, char **argv)
{
int ch, i, j;
dbg_printf("i8237A DMA controller\n\n");
for (i = 0; i < 2; i++) {
for (j = 0; j < 4; j++) {
if (BX_DMA_THIS s[i].chan[j].used) {
ch = i * 4 + j;
dbg_printf("DMA channel %d", ch);
if (ch == 4) {
dbg_printf(" (cascade)\n");
} else if (BX_DMA_THIS s[i].DRQ[j] && !BX_DMA_THIS s[i].mask[j]) {
dbg_printf(" (active)\n");
dbg_printf(" address: base=0x%04x, current=0x%04x\n", BX_DMA_THIS s[i].chan[j].base_address,
BX_DMA_THIS s[i].chan[j].current_address);
dbg_printf(" count: base=0x%04x, current=0x%04x\n", BX_DMA_THIS s[i].chan[j].base_count,
BX_DMA_THIS s[i].chan[j].current_count);
dbg_printf(" page: 0x%02x\n", BX_DMA_THIS s[i].chan[j].page_reg);
dbg_printf(" mask: %u\n", BX_DMA_THIS s[i].mask[j]);
dbg_printf(" flip_flop: %u\n", BX_DMA_THIS s[i].flip_flop);
dbg_printf(" status_reg: 0x%02x\n", BX_DMA_THIS s[i].status_reg);
dbg_printf(" mode_type: %u\n", BX_DMA_THIS s[i].chan[j].mode.mode_type);
dbg_printf(" address_decrement: %u\n", BX_DMA_THIS s[i].chan[j].mode.address_decrement);
dbg_printf(" autoinit_enable: %u\n", BX_DMA_THIS s[i].chan[j].mode.autoinit_enable);
dbg_printf(" transfer_type: %u\n", BX_DMA_THIS s[i].chan[j].mode.transfer_type);
} else {
dbg_printf(" (not active: DRQ=%u, mask=%u)\n", BX_DMA_THIS s[i].DRQ[j],
BX_DMA_THIS s[i].mask[j]);
}
}
}
}
if (argc > 0) {
dbg_printf("\nAdditional options not supported\n");
}
}
#endif