Bochs/bochs/iodev/network/ne2k.cc
Volker Ruppert de94b08a1a - class bx_list_c now contains a chained list of parameters. Removed the now
obsolete maxsize parameter from all lists.
2012-02-12 18:43:20 +00:00

2083 lines
66 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2012 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
// Peter Grehan (grehan@iprg.nokia.com) coded the initial version of this
// NE2000/ether stuff.
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#if BX_SUPPORT_NE2K
#if BX_SUPPORT_PCI
#include "pci.h"
#endif
#include "ne2k.h"
#include "netmod.h"
//Never completely fill the ne2k ring so that we never
// hit the unclear completely full buffer condition.
#define BX_NE2K_NEVER_FULL_RING (1)
#define LOG_THIS theNE2kDevice->
bx_ne2k_c *theNE2kDevice = NULL;
const Bit8u ne2k_iomask[32] = {3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
// builtin configuration handling functions
void ne2k_init_options(void)
{
bx_param_c *network = SIM->get_param("network");
bx_list_c *menu = new bx_list_c(network, "ne2k", "NE2000");
menu->set_options(menu->SHOW_PARENT);
bx_param_bool_c *enabled = new bx_param_bool_c(menu,
"enabled",
"Enable NE2K NIC emulation",
"Enables the NE2K NIC emulation",
0);
bx_param_num_c *ioaddr = new bx_param_num_c(menu,
"ioaddr",
"NE2K I/O Address",
"I/O base address of the emulated NE2K device",
0, 0xffff,
0x300);
ioaddr->set_base(16);
bx_param_num_c *irq = new bx_param_num_c(menu,
"irq",
"NE2K Interrupt",
"IRQ used by the NE2K device",
0, 15,
9);
irq->set_options(irq->USE_SPIN_CONTROL);
SIM->init_std_nic_options("NE2K", menu);
enabled->set_dependent_list(menu->clone());
}
Bit32s ne2k_options_parser(const char *context, int num_params, char *params[])
{
int ret, valid = 0;
if (!strcmp(params[0], "ne2k")) {
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_NE2K);
char tmpdev[80];
if (!SIM->get_param_bool("enabled", base)->get()) {
SIM->get_param_enum("ethmod", base)->set_by_name("null");
}
if (SIM->get_param_bool(BXPN_I440FX_SUPPORT)->get()) {
for (int slot = 1; slot < 6; slot++) {
sprintf(tmpdev, "pci.slot.%d", slot);
if (!strcmp(SIM->get_param_string(tmpdev)->getptr(), "ne2k")) {
valid |= 0x03;
break;
}
}
}
for (int i = 1; i < num_params; i++) {
if (!strncmp(params[i], "ioaddr=", 7)) {
SIM->get_param_num("ioaddr", base)->set(strtoul(&params[i][7], NULL, 16));
valid |= 0x01;
} else if (!strncmp(params[i], "irq=", 4)) {
SIM->get_param_num("irq", base)->set(atol(&params[i][4]));
valid |= 0x02;
} else {
ret = SIM->parse_nic_params(context, params[i], base);
if (ret > 0) {
valid |= ret;
}
}
}
if (!SIM->get_param_bool("enabled", base)->get()) {
if (valid == 0x07) {
SIM->get_param_bool("enabled", base)->set(1);
} else if (valid < 0x80) {
if ((valid & 0x03) != 0x03) {
BX_ERROR(("%s: 'ne2k' directive incomplete (ioaddr and irq are required)", context));
}
if ((valid & 0x04) == 0) {
BX_ERROR(("%s: 'ne2k' directive incomplete (mac address is required)", context));
}
}
} else {
if (valid & 0x80) {
SIM->get_param_bool("enabled", base)->set(0);
}
}
} else {
BX_PANIC(("%s: unknown directive '%s'", context, params[0]));
}
return 0;
}
Bit32s ne2k_options_save(FILE *fp)
{
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_NE2K);
fprintf(fp, "ne2k: enabled=%d", SIM->get_param_bool("enabled", base)->get());
if (SIM->get_param_bool("enabled", base)->get()) {
char *ptr = SIM->get_param_string("macaddr", base)->getptr();
fprintf(fp, ", ioaddr=0x%x, irq=%d, mac=%02x:%02x:%02x:%02x:%02x:%02x, ethmod=%s, ethdev=%s, script=%s, bootrom=%s",
SIM->get_param_num("ioaddr", base)->get(),
SIM->get_param_num("irq", base)->get(),
(unsigned int)(0xff & ptr[0]),
(unsigned int)(0xff & ptr[1]),
(unsigned int)(0xff & ptr[2]),
(unsigned int)(0xff & ptr[3]),
(unsigned int)(0xff & ptr[4]),
(unsigned int)(0xff & ptr[5]),
SIM->get_param_enum("ethmod", base)->get_selected(),
SIM->get_param_string("ethdev", base)->getptr(),
SIM->get_param_string("script", base)->getptr(),
SIM->get_param_string("bootrom", base)->getptr());
}
fprintf(fp, "\n");
return 0;
}
// device plugin entry points
int libne2k_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
theNE2kDevice = new bx_ne2k_c();
bx_devices.pluginNE2kDevice = theNE2kDevice;
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theNE2kDevice, BX_PLUGIN_NE2K);
// add new configuration parameter for the config interface
ne2k_init_options();
// register add-on option for bochsrc and command line
SIM->register_addon_option("ne2k", ne2k_options_parser, ne2k_options_save);
return(0); // Success
}
void libne2k_LTX_plugin_fini(void)
{
SIM->unregister_addon_option("ne2k");
((bx_list_c*)SIM->get_param("network"))->remove("ne2k");
delete theNE2kDevice;
}
// the device object
bx_ne2k_c::bx_ne2k_c()
{
put("NE2K");
memset(&s, 0, sizeof(bx_ne2k_t));
s.tx_timer_index = BX_NULL_TIMER_HANDLE;
ethdev = NULL;
}
bx_ne2k_c::~bx_ne2k_c()
{
if (ethdev != NULL) {
delete ethdev;
}
BX_DEBUG(("Exit"));
}
void bx_ne2k_c::init(void)
{
char devname[16];
Bit8u macaddr[6];
const char *bootrom;
BX_DEBUG(("Init $Id$"));
// Read in values from config interface
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_NE2K);
// Check if the device is disabled or not configured
if (!SIM->get_param_bool("enabled", base)->get()) {
BX_INFO(("NE2000 disabled"));
BX_UNREGISTER_DEVICE_DEVMODEL("ne2k");
return;
}
memcpy(macaddr, SIM->get_param_string("macaddr", base)->getptr(), 6);
BX_NE2K_THIS s.pci_enabled = 0;
strcpy(devname, "NE2000 NIC");
#if BX_SUPPORT_PCI
if ((SIM->get_param_bool(BXPN_I440FX_SUPPORT)->get()) &&
(DEV_is_pci_device(BX_PLUGIN_NE2K))) {
BX_NE2K_THIS s.pci_enabled = 1;
strcpy(devname, "NE2000 PCI NIC");
BX_NE2K_THIS s.devfunc = 0x00;
DEV_register_pci_handlers(this, &BX_NE2K_THIS s.devfunc,
BX_PLUGIN_NE2K, devname);
for (unsigned i=0; i<256; i++)
BX_NE2K_THIS pci_conf[i] = 0x0;
// readonly registers
BX_NE2K_THIS pci_conf[0x00] = 0xec;
BX_NE2K_THIS pci_conf[0x01] = 0x10;
BX_NE2K_THIS pci_conf[0x02] = 0x29;
BX_NE2K_THIS pci_conf[0x03] = 0x80;
BX_NE2K_THIS pci_conf[0x04] = 0x01;
BX_NE2K_THIS pci_conf[0x0a] = 0x00;
BX_NE2K_THIS pci_conf[0x0b] = 0x02;
BX_NE2K_THIS pci_conf[0x0e] = 0x00;
BX_NE2K_THIS pci_conf[0x10] = 0x01;
BX_NE2K_THIS pci_conf[0x3d] = BX_PCI_INTA;
BX_NE2K_THIS s.base_address = 0x0;
BX_NE2K_THIS pci_rom_address = 0;
bootrom = SIM->get_param_string("bootrom", base)->getptr();
if (strlen(bootrom) > 0) {
BX_NE2K_THIS load_pci_rom(bootrom);
}
}
#endif
if (BX_NE2K_THIS s.tx_timer_index == BX_NULL_TIMER_HANDLE) {
BX_NE2K_THIS s.tx_timer_index =
bx_pc_system.register_timer(this, tx_timer_handler, 0,
0,0, "ne2k"); // one-shot, inactive
}
// Register the IRQ and i/o port addresses
if (!BX_NE2K_THIS s.pci_enabled) {
BX_NE2K_THIS s.base_address = SIM->get_param_num("ioaddr", base)->get();
BX_NE2K_THIS s.base_irq = SIM->get_param_num("irq", base)->get();
DEV_register_irq(BX_NE2K_THIS s.base_irq, "NE2000 ethernet NIC");
DEV_register_ioread_handler_range(BX_NE2K_THIS_PTR, read_handler,
BX_NE2K_THIS s.base_address,
BX_NE2K_THIS s.base_address + 0x0F,
devname, 3);
DEV_register_iowrite_handler_range(BX_NE2K_THIS_PTR, write_handler,
BX_NE2K_THIS s.base_address,
BX_NE2K_THIS s.base_address + 0x0F,
devname, 3);
DEV_register_ioread_handler(BX_NE2K_THIS_PTR, read_handler,
BX_NE2K_THIS s.base_address + 0x10,
devname, 3);
DEV_register_iowrite_handler(BX_NE2K_THIS_PTR, write_handler,
BX_NE2K_THIS s.base_address + 0x10,
devname, 3);
DEV_register_ioread_handler(BX_NE2K_THIS_PTR, read_handler,
BX_NE2K_THIS s.base_address + 0x1F,
devname, 1);
DEV_register_iowrite_handler(BX_NE2K_THIS_PTR, write_handler,
BX_NE2K_THIS s.base_address + 0x1F,
devname, 1);
bootrom = SIM->get_param_string("bootrom", base)->getptr();
if (strlen(bootrom) > 0) {
BX_PANIC(("%s: boot ROM support not present yet", devname));
}
BX_INFO(("%s initialized port 0x%x/32 irq %d mac %02x:%02x:%02x:%02x:%02x:%02x",
devname,
BX_NE2K_THIS s.base_address,
BX_NE2K_THIS s.base_irq,
macaddr[0], macaddr[1],
macaddr[2], macaddr[3],
macaddr[4], macaddr[5]));
} else {
BX_INFO(("%s initialized mac %02x:%02x:%02x:%02x:%02x:%02x",
devname,
macaddr[0], macaddr[1],
macaddr[2], macaddr[3],
macaddr[4], macaddr[5]));
}
// Initialise the mac address area by doubling the physical address
BX_NE2K_THIS s.macaddr[0] = macaddr[0];
BX_NE2K_THIS s.macaddr[1] = macaddr[0];
BX_NE2K_THIS s.macaddr[2] = macaddr[1];
BX_NE2K_THIS s.macaddr[3] = macaddr[1];
BX_NE2K_THIS s.macaddr[4] = macaddr[2];
BX_NE2K_THIS s.macaddr[5] = macaddr[2];
BX_NE2K_THIS s.macaddr[6] = macaddr[3];
BX_NE2K_THIS s.macaddr[7] = macaddr[3];
BX_NE2K_THIS s.macaddr[8] = macaddr[4];
BX_NE2K_THIS s.macaddr[9] = macaddr[4];
BX_NE2K_THIS s.macaddr[10] = macaddr[5];
BX_NE2K_THIS s.macaddr[11] = macaddr[5];
// ne2k signature
for (int i = 12; i < 32; i++)
BX_NE2K_THIS s.macaddr[i] = 0x57;
BX_NE2K_THIS s.statusbar_id = bx_gui->register_statusitem("NE2K", 1);
// Attach to the selected ethernet module
BX_NE2K_THIS ethdev = DEV_net_init_module(base, rx_handler, rx_status_handler, this);
}
//
// reset - restore state to power-up, cancelling all i/o
//
void bx_ne2k_c::reset(unsigned type)
{
if (type == BX_RESET_HARDWARE) {
// Zero out registers and memory
memset(&BX_NE2K_THIS s.CR, 0, sizeof(BX_NE2K_THIS s.CR));
memset(&BX_NE2K_THIS s.IMR, 0, sizeof(BX_NE2K_THIS s.IMR));
memset(&BX_NE2K_THIS s.DCR, 0, sizeof(BX_NE2K_THIS s.DCR));
memset(&BX_NE2K_THIS s.TCR, 0, sizeof(BX_NE2K_THIS s.TCR));
memset(&BX_NE2K_THIS s.TSR, 0, sizeof(BX_NE2K_THIS s.TSR));
memset(&BX_NE2K_THIS s.RCR, 0, sizeof(BX_NE2K_THIS s.RCR));
memset(&BX_NE2K_THIS s.RSR, 0, sizeof(BX_NE2K_THIS s.RSR));
BX_NE2K_THIS s.local_dma = 0;
BX_NE2K_THIS s.page_start = 0;
BX_NE2K_THIS s.page_stop = 0;
BX_NE2K_THIS s.bound_ptr = 0;
BX_NE2K_THIS s.tx_page_start = 0;
BX_NE2K_THIS s.num_coll = 0;
BX_NE2K_THIS s.tx_bytes = 0;
BX_NE2K_THIS s.fifo = 0;
BX_NE2K_THIS s.remote_dma = 0;
BX_NE2K_THIS s.remote_start = 0;
BX_NE2K_THIS s.remote_bytes = 0;
BX_NE2K_THIS s.tallycnt_0 = 0;
BX_NE2K_THIS s.tallycnt_1 = 0;
BX_NE2K_THIS s.tallycnt_2 = 0;
memset(&BX_NE2K_THIS s.physaddr, 0, sizeof(BX_NE2K_THIS s.physaddr));
memset(&BX_NE2K_THIS s.mchash, 0, sizeof(BX_NE2K_THIS s.mchash));
BX_NE2K_THIS s.curr_page = 0;
BX_NE2K_THIS s.rempkt_ptr = 0;
BX_NE2K_THIS s.localpkt_ptr = 0;
BX_NE2K_THIS s.address_cnt = 0;
memset(&BX_NE2K_THIS s.mem, 0, sizeof(BX_NE2K_THIS s.mem));
// Set power-up conditions
BX_NE2K_THIS s.CR.stop = 1;
BX_NE2K_THIS s.CR.rdma_cmd = 4;
BX_NE2K_THIS s.DCR.longaddr = 1;
set_irq_level(0);
}
memset(&BX_NE2K_THIS s.ISR, 0, sizeof(BX_NE2K_THIS s.ISR));
BX_NE2K_THIS s.ISR.reset = 1;
}
void bx_ne2k_c::register_state(void)
{
unsigned i;
char name[6];
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "ne2k", "NE2000 State");
bx_list_c *CR = new bx_list_c(list, "CR");
new bx_shadow_bool_c(CR, "stop", &BX_NE2K_THIS s.CR.stop);
new bx_shadow_bool_c(CR, "start", &BX_NE2K_THIS s.CR.start);
new bx_shadow_bool_c(CR, "tx_packet", &BX_NE2K_THIS s.CR.tx_packet);
new bx_shadow_num_c(CR, "rdma_cmd", &BX_NE2K_THIS s.CR.rdma_cmd);
new bx_shadow_num_c(CR, "pgsel", &BX_NE2K_THIS s.CR.pgsel);
bx_list_c *ISR = new bx_list_c(list, "ISR");
new bx_shadow_bool_c(ISR, "pkt_rx", &BX_NE2K_THIS s.ISR.pkt_rx);
new bx_shadow_bool_c(ISR, "pkt_tx", &BX_NE2K_THIS s.ISR.pkt_tx);
new bx_shadow_bool_c(ISR, "rx_err", &BX_NE2K_THIS s.ISR.rx_err);
new bx_shadow_bool_c(ISR, "tx_err", &BX_NE2K_THIS s.ISR.tx_err);
new bx_shadow_bool_c(ISR, "overwrite", &BX_NE2K_THIS s.ISR.overwrite);
new bx_shadow_bool_c(ISR, "cnt_oflow", &BX_NE2K_THIS s.ISR.cnt_oflow);
new bx_shadow_bool_c(ISR, "rdma_done", &BX_NE2K_THIS s.ISR.rdma_done);
new bx_shadow_bool_c(ISR, "reset", &BX_NE2K_THIS s.ISR.reset);
bx_list_c *IMR = new bx_list_c(list, "IMR");
new bx_shadow_bool_c(IMR, "rx_inte", &BX_NE2K_THIS s.IMR.rx_inte);
new bx_shadow_bool_c(IMR, "tx_inte", &BX_NE2K_THIS s.IMR.tx_inte);
new bx_shadow_bool_c(IMR, "rxerr_inte", &BX_NE2K_THIS s.IMR.rxerr_inte);
new bx_shadow_bool_c(IMR, "txerr_inte", &BX_NE2K_THIS s.IMR.txerr_inte);
new bx_shadow_bool_c(IMR, "overw_inte", &BX_NE2K_THIS s.IMR.overw_inte);
new bx_shadow_bool_c(IMR, "cofl_inte", &BX_NE2K_THIS s.IMR.cofl_inte);
new bx_shadow_bool_c(IMR, "rdma_inte", &BX_NE2K_THIS s.IMR.rdma_inte);
bx_list_c *DCR = new bx_list_c(list, "DCR");
new bx_shadow_bool_c(DCR, "wdsize", &BX_NE2K_THIS s.DCR.wdsize);
new bx_shadow_bool_c(DCR, "endian", &BX_NE2K_THIS s.DCR.endian);
new bx_shadow_bool_c(DCR, "longaddr", &BX_NE2K_THIS s.DCR.longaddr);
new bx_shadow_bool_c(DCR, "loop", &BX_NE2K_THIS s.DCR.loop);
new bx_shadow_bool_c(DCR, "auto_rx", &BX_NE2K_THIS s.DCR.auto_rx);
new bx_shadow_num_c(DCR, "fifo_size", &BX_NE2K_THIS s.DCR.fifo_size);
bx_list_c *TCR = new bx_list_c(list, "TCR");
new bx_shadow_bool_c(TCR, "crc_disable", &BX_NE2K_THIS s.TCR.crc_disable);
new bx_shadow_num_c(TCR, "loop_cntl", &BX_NE2K_THIS s.TCR.loop_cntl);
new bx_shadow_bool_c(TCR, "ext_stoptx", &BX_NE2K_THIS s.TCR.ext_stoptx);
new bx_shadow_bool_c(TCR, "coll_prio", &BX_NE2K_THIS s.TCR.coll_prio);
bx_list_c *TSR = new bx_list_c(list, "TSR");
new bx_shadow_bool_c(TSR, "tx_ok", &BX_NE2K_THIS s.TSR.tx_ok);
new bx_shadow_bool_c(TSR, "collided", &BX_NE2K_THIS s.TSR.collided);
new bx_shadow_bool_c(TSR, "aborted", &BX_NE2K_THIS s.TSR.aborted);
new bx_shadow_bool_c(TSR, "no_carrier", &BX_NE2K_THIS s.TSR.no_carrier);
new bx_shadow_bool_c(TSR, "fifo_ur", &BX_NE2K_THIS s.TSR.fifo_ur);
new bx_shadow_bool_c(TSR, "cd_hbeat", &BX_NE2K_THIS s.TSR.cd_hbeat);
new bx_shadow_bool_c(TSR, "ow_coll", &BX_NE2K_THIS s.TSR.ow_coll);
bx_list_c *RCR = new bx_list_c(list, "RCR");
new bx_shadow_bool_c(RCR, "errors_ok", &BX_NE2K_THIS s.RCR.errors_ok);
new bx_shadow_bool_c(RCR, "runts_ok", &BX_NE2K_THIS s.RCR.runts_ok);
new bx_shadow_bool_c(RCR, "broadcast", &BX_NE2K_THIS s.RCR.broadcast);
new bx_shadow_bool_c(RCR, "multicast", &BX_NE2K_THIS s.RCR.multicast);
new bx_shadow_bool_c(RCR, "promisc", &BX_NE2K_THIS s.RCR.promisc);
new bx_shadow_bool_c(RCR, "monitor", &BX_NE2K_THIS s.RCR.monitor);
bx_list_c *RSR = new bx_list_c(list, "RSR");
new bx_shadow_bool_c(RSR, "rx_ok", &BX_NE2K_THIS s.RSR.rx_ok);
new bx_shadow_bool_c(RSR, "bad_crc", &BX_NE2K_THIS s.RSR.bad_crc);
new bx_shadow_bool_c(RSR, "bad_falign", &BX_NE2K_THIS s.RSR.bad_falign);
new bx_shadow_bool_c(RSR, "fifo_or", &BX_NE2K_THIS s.RSR.fifo_or);
new bx_shadow_bool_c(RSR, "rx_missed", &BX_NE2K_THIS s.RSR.rx_missed);
new bx_shadow_bool_c(RSR, "rx_mbit", &BX_NE2K_THIS s.RSR.rx_mbit);
new bx_shadow_bool_c(RSR, "rx_disabled", &BX_NE2K_THIS s.RSR.rx_disabled);
new bx_shadow_bool_c(RSR, "deferred", &BX_NE2K_THIS s.RSR.deferred);
new bx_shadow_num_c(list, "local_dma", &BX_NE2K_THIS s.local_dma, BASE_HEX);
new bx_shadow_num_c(list, "page_start", &BX_NE2K_THIS s.page_start, BASE_HEX);
new bx_shadow_num_c(list, "page_stop", &BX_NE2K_THIS s.page_stop, BASE_HEX);
new bx_shadow_num_c(list, "bound_ptr", &BX_NE2K_THIS s.bound_ptr, BASE_HEX);
new bx_shadow_num_c(list, "tx_page_start", &BX_NE2K_THIS s.tx_page_start, BASE_HEX);
new bx_shadow_num_c(list, "num_coll", &BX_NE2K_THIS s.num_coll, BASE_HEX);
new bx_shadow_num_c(list, "tx_bytes", &BX_NE2K_THIS s.tx_bytes, BASE_HEX);
new bx_shadow_num_c(list, "fifo", &BX_NE2K_THIS s.fifo, BASE_HEX);
new bx_shadow_num_c(list, "remote_dma", &BX_NE2K_THIS s.remote_dma, BASE_HEX);
new bx_shadow_num_c(list, "remote_start", &BX_NE2K_THIS s.remote_start, BASE_HEX);
new bx_shadow_num_c(list, "remote_bytes", &BX_NE2K_THIS s.remote_bytes, BASE_HEX);
new bx_shadow_num_c(list, "tallycnt_0", &BX_NE2K_THIS s.tallycnt_0, BASE_HEX);
new bx_shadow_num_c(list, "tallycnt_1", &BX_NE2K_THIS s.tallycnt_1, BASE_HEX);
new bx_shadow_num_c(list, "tallycnt_2", &BX_NE2K_THIS s.tallycnt_2, BASE_HEX);
bx_list_c *paddr = new bx_list_c(list, "physaddr");
for (i=0; i<6; i++) {
sprintf(name, "0x%02x", i);
new bx_shadow_num_c(paddr, name, &BX_NE2K_THIS s.physaddr[i], BASE_HEX);
}
new bx_shadow_num_c(list, "curr_page", &BX_NE2K_THIS s.curr_page, BASE_HEX);
bx_list_c *mchash = new bx_list_c(list, "mchash");
for (i=0; i<8; i++) {
sprintf(name, "0x%02x", i);
new bx_shadow_num_c(mchash, name, &BX_NE2K_THIS s.mchash[i], BASE_HEX);
}
new bx_shadow_num_c(list, "rempkt_ptr", &BX_NE2K_THIS s.rempkt_ptr, BASE_HEX);
new bx_shadow_num_c(list, "localpkt_ptr", &BX_NE2K_THIS s.localpkt_ptr, BASE_HEX);
new bx_shadow_num_c(list, "address_cnt", &BX_NE2K_THIS s.address_cnt, BASE_HEX);
new bx_shadow_data_c(list, "mem", BX_NE2K_THIS s.mem, BX_NE2K_MEMSIZ);
new bx_shadow_bool_c(list, "tx_timer_active", &BX_NE2K_THIS s.tx_timer_active);
#if BX_SUPPORT_PCI
if (BX_NE2K_THIS s.pci_enabled) {
register_pci_state(list);
}
#endif
}
#if BX_SUPPORT_PCI
void bx_ne2k_c::after_restore_state(void)
{
if (BX_NE2K_THIS s.pci_enabled) {
if (DEV_pci_set_base_io(BX_NE2K_THIS_PTR, read_handler, write_handler,
&BX_NE2K_THIS s.base_address,
&BX_NE2K_THIS pci_conf[0x10],
32, &ne2k_iomask[0], "NE2000 PCI NIC")) {
BX_INFO(("new base address: 0x%04x", BX_NE2K_THIS s.base_address));
}
if (BX_NE2K_THIS pci_rom_size > 0) {
if (DEV_pci_set_base_mem(BX_NE2K_THIS_PTR, mem_read_handler,
mem_write_handler,
&BX_NE2K_THIS pci_rom_address,
&BX_NE2K_THIS pci_conf[0x30],
BX_NE2K_THIS pci_rom_size)) {
BX_INFO(("new ROM address: 0x%08x", BX_NE2K_THIS pci_rom_address));
}
}
}
}
#endif
//
// read_cr/write_cr - utility routines for handling reads/writes to
// the Command Register
//
Bit32u bx_ne2k_c::read_cr(void)
{
Bit32u val =
(((BX_NE2K_THIS s.CR.pgsel & 0x03) << 6) |
((BX_NE2K_THIS s.CR.rdma_cmd & 0x07) << 3) |
(BX_NE2K_THIS s.CR.tx_packet << 2) |
(BX_NE2K_THIS s.CR.start << 1) |
(BX_NE2K_THIS s.CR.stop));
BX_DEBUG(("read CR returns 0x%02x", val));
return val;
}
void bx_ne2k_c::write_cr(Bit32u value)
{
BX_DEBUG(("wrote 0x%02x to CR", value));
// Validate remote-DMA
if ((value & 0x38) == 0x00) {
BX_DEBUG(("CR write - invalid rDMA value 0"));
value |= 0x20; /* dma_cmd == 4 is a safe default */
}
// Check for s/w reset
if (value & 0x01) {
BX_NE2K_THIS s.ISR.reset = 1;
BX_NE2K_THIS s.CR.stop = 1;
} else {
BX_NE2K_THIS s.CR.stop = 0;
}
BX_NE2K_THIS s.CR.rdma_cmd = (value & 0x38) >> 3;
// If start command issued, the RST bit in the ISR
// must be cleared
if ((value & 0x02) && !BX_NE2K_THIS s.CR.start) {
BX_NE2K_THIS s.ISR.reset = 0;
}
BX_NE2K_THIS s.CR.start = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.CR.pgsel = (value & 0xc0) >> 6;
// Check for send-packet command
if (BX_NE2K_THIS s.CR.rdma_cmd == 3) {
// Set up DMA read from receive ring
BX_NE2K_THIS s.remote_start = BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.bound_ptr * 256;
BX_NE2K_THIS s.remote_bytes = (Bit16u) chipmem_read(BX_NE2K_THIS s.bound_ptr * 256 + 2, 2);
BX_INFO(("Sending buffer #x%x length %d",
BX_NE2K_THIS s.remote_start,
BX_NE2K_THIS s.remote_bytes));
}
// Check for start-tx
if ((value & 0x04) && BX_NE2K_THIS s.TCR.loop_cntl) {
if (BX_NE2K_THIS s.TCR.loop_cntl != 1) {
BX_INFO(("Loop mode %d not supported.", BX_NE2K_THIS s.TCR.loop_cntl));
} else {
rx_frame (& BX_NE2K_THIS s.mem[BX_NE2K_THIS s.tx_page_start*256 - BX_NE2K_MEMSTART],
BX_NE2K_THIS s.tx_bytes);
}
} else if (value & 0x04) {
if (BX_NE2K_THIS s.CR.stop || (!BX_NE2K_THIS s.CR.start && !BX_NE2K_THIS s.pci_enabled)) {
if (BX_NE2K_THIS s.tx_bytes == 0) /* njh@bandsman.co.uk */
return; /* Solaris9 probe */
BX_PANIC(("CR write - tx start, dev in reset"));
}
if (BX_NE2K_THIS s.tx_bytes == 0)
BX_PANIC(("CR write - tx start, tx bytes == 0"));
// Send the packet to the system driver
BX_NE2K_THIS s.CR.tx_packet = 1;
BX_NE2K_THIS ethdev->sendpkt(& BX_NE2K_THIS s.mem[BX_NE2K_THIS s.tx_page_start*256 - BX_NE2K_MEMSTART], BX_NE2K_THIS s.tx_bytes);
// some more debug
if (BX_NE2K_THIS s.tx_timer_active)
BX_ERROR(("CR write, tx timer still active"));
// Schedule a timer to trigger a tx-complete interrupt
// The number of microseconds is the bit-time / 10.
// The bit-time is the preamble+sfd (64 bits), the
// inter-frame gap (96 bits), the CRC (4 bytes), and the
// the number of bits in the frame (s.tx_bytes * 8).
//
bx_pc_system.activate_timer(BX_NE2K_THIS s.tx_timer_index,
(64 + 96 + 4*8 + BX_NE2K_THIS s.tx_bytes*8)/10,
0); // not continuous
BX_NE2K_THIS s.tx_timer_active = 1;
bx_gui->statusbar_setitem(BX_NE2K_THIS s.statusbar_id, 1, 1);
}
// Linux probes for an interrupt by setting up a remote-DMA read
// of 0 bytes with remote-DMA completion interrupts enabled.
// Detect this here
if (BX_NE2K_THIS s.CR.rdma_cmd == 0x01 &&
BX_NE2K_THIS s.CR.start &&
BX_NE2K_THIS s.remote_bytes == 0) {
BX_NE2K_THIS s.ISR.rdma_done = 1;
if (BX_NE2K_THIS s.IMR.rdma_inte) {
set_irq_level(1);
}
}
}
//
// chipmem_read/chipmem_write - access the 64K private RAM.
// The ne2000 memory is accessed through the data port of
// the asic (offset 0) after setting up a remote-DMA transfer.
// Both byte and word accesses are allowed.
// The first 16 bytes contains the MAC address at even locations,
// and there is 16K of buffer memory starting at 16K
//
Bit32u BX_CPP_AttrRegparmN(2)
bx_ne2k_c::chipmem_read(Bit32u address, unsigned int io_len)
{
Bit32u retval = 0;
if ((io_len == 2) && (address & 0x1))
BX_PANIC(("unaligned chipmem word read"));
// ROM'd MAC address
if ((address >=0) && (address <= 31)) {
retval = BX_NE2K_THIS s.macaddr[address];
if ((io_len == 2) || (io_len == 4)) {
retval |= (BX_NE2K_THIS s.macaddr[address + 1] << 8);
}
if (io_len == 4) {
retval |= (BX_NE2K_THIS s.macaddr[address + 2] << 16);
retval |= (BX_NE2K_THIS s.macaddr[address + 3] << 24);
}
return (retval);
}
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND)) {
retval = BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART];
if ((io_len == 2) || (io_len == 4)) {
retval |= (BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 1] << 8);
}
if (io_len == 4) {
retval |= (BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 2] << 16);
retval |= (BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 3] << 24);
}
return (retval);
}
BX_DEBUG(("out-of-bounds chipmem read, %04X", address));
return (0xff);
}
void BX_CPP_AttrRegparmN(3)
bx_ne2k_c::chipmem_write(Bit32u address, Bit32u value, unsigned io_len)
{
if ((io_len == 2) && (address & 0x1))
BX_PANIC(("unaligned chipmem word write"));
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND)) {
BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART] = value & 0xff;
if ((io_len == 2) || (io_len == 4)) {
BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 1] = value >> 8;
}
if (io_len == 4) {
BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 2] = value >> 16;
BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 3] = value >> 24;
}
} else
BX_DEBUG(("out-of-bounds chipmem write, %04X", address));
}
//
// asic_read/asic_write - This is the high 16 bytes of i/o space
// (the lower 16 bytes is for the DS8390). Only two locations
// are used: offset 0, which is used for data transfer, and
// offset 0xf, which is used to reset the device.
// The data transfer port is used to as 'external' DMA to the
// DS8390. The chip has to have the DMA registers set up, and
// after that, insw/outsw instructions can be used to move
// the appropriate number of bytes to/from the device.
//
Bit32u BX_CPP_AttrRegparmN(2)
bx_ne2k_c::asic_read(Bit32u offset, unsigned int io_len)
{
Bit32u retval = 0;
switch (offset) {
case 0x0: // Data register
//
// A read remote-DMA command must have been issued,
// and the source-address and length registers must
// have been initialised.
//
if (io_len > BX_NE2K_THIS s.remote_bytes) {
BX_ERROR(("ne2K: dma read underrun iolen=%d remote_bytes=%d",io_len,BX_NE2K_THIS s.remote_bytes));
//return 0;
}
//BX_INFO(("ne2k read DMA: addr=%4x remote_bytes=%d",BX_NE2K_THIS s.remote_dma,BX_NE2K_THIS s.remote_bytes));
retval = chipmem_read(BX_NE2K_THIS s.remote_dma, io_len);
//
// The 8390 bumps the address and decreases the byte count
// by the selected word size after every access, not by
// the amount of data requested by the host (io_len).
//
if (io_len == 4) {
BX_NE2K_THIS s.remote_dma += io_len;
} else {
BX_NE2K_THIS s.remote_dma += (BX_NE2K_THIS s.DCR.wdsize + 1);
}
if (BX_NE2K_THIS s.remote_dma == BX_NE2K_THIS s.page_stop << 8) {
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.page_start << 8;
}
// keep s.remote_bytes from underflowing
if (BX_NE2K_THIS s.remote_bytes > BX_NE2K_THIS s.DCR.wdsize)
if (io_len == 4) {
BX_NE2K_THIS s.remote_bytes -= io_len;
} else {
BX_NE2K_THIS s.remote_bytes -= (BX_NE2K_THIS s.DCR.wdsize + 1);
}
else
BX_NE2K_THIS s.remote_bytes = 0;
// If all bytes have been written, signal remote-DMA complete
if (BX_NE2K_THIS s.remote_bytes == 0) {
BX_NE2K_THIS s.ISR.rdma_done = 1;
if (BX_NE2K_THIS s.IMR.rdma_inte) {
set_irq_level(1);
}
}
break;
case 0xf: // Reset register
theNE2kDevice->reset(BX_RESET_SOFTWARE);
break;
default:
BX_INFO(("asic read invalid address %04x", (unsigned) offset));
break;
}
return (retval);
}
void bx_ne2k_c::asic_write(Bit32u offset, Bit32u value, unsigned io_len)
{
BX_DEBUG(("asic write addr=0x%02x, value=0x%04x", (unsigned) offset, (unsigned) value));
switch (offset) {
case 0x0: // Data register - see asic_read for a description
if ((io_len > 1) && (BX_NE2K_THIS s.DCR.wdsize == 0)) {
BX_PANIC(("dma write length %d on byte mode operation", io_len));
break;
}
if (BX_NE2K_THIS s.remote_bytes == 0) {
BX_ERROR(("ne2K: dma write, byte count 0"));
}
chipmem_write(BX_NE2K_THIS s.remote_dma, value, io_len);
if (io_len == 4) {
BX_NE2K_THIS s.remote_dma += io_len;
} else {
BX_NE2K_THIS s.remote_dma += (BX_NE2K_THIS s.DCR.wdsize + 1);
}
if (BX_NE2K_THIS s.remote_dma == BX_NE2K_THIS s.page_stop << 8) {
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.page_start << 8;
}
if (io_len == 4) {
BX_NE2K_THIS s.remote_bytes -= io_len;
} else {
BX_NE2K_THIS s.remote_bytes -= (BX_NE2K_THIS s.DCR.wdsize + 1);
}
if (BX_NE2K_THIS s.remote_bytes > BX_NE2K_MEMSIZ)
BX_NE2K_THIS s.remote_bytes = 0;
// If all bytes have been written, signal remote-DMA complete
if (BX_NE2K_THIS s.remote_bytes == 0) {
BX_NE2K_THIS s.ISR.rdma_done = 1;
if (BX_NE2K_THIS s.IMR.rdma_inte) {
set_irq_level(1);
}
}
break;
case 0xf: // Reset register
// end of reset pulse
break;
default: // this is invalid, but happens under win95 device detection
BX_INFO(("asic write invalid address %04x, ignoring", (unsigned) offset));
break;
}
}
//
// page0_read/page0_write - These routines handle reads/writes to
// the 'zeroth' page of the DS8390 register file
//
Bit32u bx_ne2k_c::page0_read(Bit32u offset, unsigned int io_len)
{
Bit8u value = 0;
if (io_len > 1) {
BX_ERROR(("bad length! page 0 read from register 0x%02x, len=%u", offset,
io_len)); /* encountered with win98 hardware probe */
return value;
}
switch (offset) {
case 0x1: // CLDA0
value = (BX_NE2K_THIS s.local_dma & 0xff);
break;
case 0x2: // CLDA1
value = (BX_NE2K_THIS s.local_dma >> 8);
break;
case 0x3: // BNRY
value = BX_NE2K_THIS s.bound_ptr;
break;
case 0x4: // TSR
value = ((BX_NE2K_THIS s.TSR.ow_coll << 7) |
(BX_NE2K_THIS s.TSR.cd_hbeat << 6) |
(BX_NE2K_THIS s.TSR.fifo_ur << 5) |
(BX_NE2K_THIS s.TSR.no_carrier << 4) |
(BX_NE2K_THIS s.TSR.aborted << 3) |
(BX_NE2K_THIS s.TSR.collided << 2) |
(BX_NE2K_THIS s.TSR.tx_ok));
break;
case 0x5: // NCR
value = BX_NE2K_THIS s.num_coll;
break;
case 0x6: // FIFO
// reading FIFO is only valid in loopback mode
BX_ERROR(("reading FIFO not supported yet"));
value = BX_NE2K_THIS s.fifo;
break;
case 0x7: // ISR
value = ((BX_NE2K_THIS s.ISR.reset << 7) |
(BX_NE2K_THIS s.ISR.rdma_done << 6) |
(BX_NE2K_THIS s.ISR.cnt_oflow << 5) |
(BX_NE2K_THIS s.ISR.overwrite << 4) |
(BX_NE2K_THIS s.ISR.tx_err << 3) |
(BX_NE2K_THIS s.ISR.rx_err << 2) |
(BX_NE2K_THIS s.ISR.pkt_tx << 1) |
(BX_NE2K_THIS s.ISR.pkt_rx));
break;
case 0x8: // CRDA0
value = (BX_NE2K_THIS s.remote_dma & 0xff);
break;
case 0x9: // CRDA1
value = (BX_NE2K_THIS s.remote_dma >> 8);
break;
case 0xa: // reserved / RTL8029ID0
if (BX_NE2K_THIS s.pci_enabled) {
value = 0x50;
} else {
BX_INFO(("reserved read - page 0, 0xa"));
value = 0xff;
}
break;
case 0xb: // reserved / RTL8029ID1
if (BX_NE2K_THIS s.pci_enabled) {
value = 0x43;
} else {
BX_INFO(("reserved read - page 0, 0xb"));
value = 0xff;
}
break;
case 0xc: // RSR
value = ((BX_NE2K_THIS s.RSR.deferred << 7) |
(BX_NE2K_THIS s.RSR.rx_disabled << 6) |
(BX_NE2K_THIS s.RSR.rx_mbit << 5) |
(BX_NE2K_THIS s.RSR.rx_missed << 4) |
(BX_NE2K_THIS s.RSR.fifo_or << 3) |
(BX_NE2K_THIS s.RSR.bad_falign << 2) |
(BX_NE2K_THIS s.RSR.bad_crc << 1) |
(BX_NE2K_THIS s.RSR.rx_ok));
break;
case 0xd: // CNTR0
value = BX_NE2K_THIS s.tallycnt_0;
break;
case 0xe: // CNTR1
value = BX_NE2K_THIS s.tallycnt_1;
break;
case 0xf: // CNTR2
value = BX_NE2K_THIS s.tallycnt_2;
break;
default:
BX_PANIC(("page 0 register 0x%02x out of range", offset));
}
BX_DEBUG(("page 0 read from register 0x%02x, value=0x%02x", offset, value));
return value;
}
void bx_ne2k_c::page0_write(Bit32u offset, Bit32u value, unsigned io_len)
{
Bit8u value2;
// It appears to be a common practice to use outw on page0 regs...
// break up outw into two outb's
if (io_len == 2) {
page0_write(offset, (value & 0xff), 1);
if (offset < 0x0f) {
page0_write(offset + 1, ((value >> 8) & 0xff), 1);
}
return;
}
BX_DEBUG(("page 0 write to register 0x%02x, value=0x%02x", offset, value));
switch (offset) {
case 0x1: // PSTART
BX_NE2K_THIS s.page_start = value;
break;
case 0x2: // PSTOP
BX_NE2K_THIS s.page_stop = value;
break;
case 0x3: // BNRY
BX_NE2K_THIS s.bound_ptr = value;
break;
case 0x4: // TPSR
BX_NE2K_THIS s.tx_page_start = value;
break;
case 0x5: // TBCR0
// Clear out low byte and re-insert
BX_NE2K_THIS s.tx_bytes &= 0xff00;
BX_NE2K_THIS s.tx_bytes |= (value & 0xff);
break;
case 0x6: // TBCR1
// Clear out high byte and re-insert
BX_NE2K_THIS s.tx_bytes &= 0x00ff;
BX_NE2K_THIS s.tx_bytes |= ((value & 0xff) << 8);
break;
case 0x7: // ISR
value &= 0x7f; // clear RST bit - status-only bit
// All other values are cleared iff the ISR bit is 1
BX_NE2K_THIS s.ISR.pkt_rx &= ~((bx_bool)((value & 0x01) == 0x01));
BX_NE2K_THIS s.ISR.pkt_tx &= ~((bx_bool)((value & 0x02) == 0x02));
BX_NE2K_THIS s.ISR.rx_err &= ~((bx_bool)((value & 0x04) == 0x04));
BX_NE2K_THIS s.ISR.tx_err &= ~((bx_bool)((value & 0x08) == 0x08));
BX_NE2K_THIS s.ISR.overwrite &= ~((bx_bool)((value & 0x10) == 0x10));
BX_NE2K_THIS s.ISR.cnt_oflow &= ~((bx_bool)((value & 0x20) == 0x20));
BX_NE2K_THIS s.ISR.rdma_done &= ~((bx_bool)((value & 0x40) == 0x40));
value = ((BX_NE2K_THIS s.ISR.rdma_done << 6) |
(BX_NE2K_THIS s.ISR.cnt_oflow << 5) |
(BX_NE2K_THIS s.ISR.overwrite << 4) |
(BX_NE2K_THIS s.ISR.tx_err << 3) |
(BX_NE2K_THIS s.ISR.rx_err << 2) |
(BX_NE2K_THIS s.ISR.pkt_tx << 1) |
(BX_NE2K_THIS s.ISR.pkt_rx));
value &= ((BX_NE2K_THIS s.IMR.rdma_inte << 6) |
(BX_NE2K_THIS s.IMR.cofl_inte << 5) |
(BX_NE2K_THIS s.IMR.overw_inte << 4) |
(BX_NE2K_THIS s.IMR.txerr_inte << 3) |
(BX_NE2K_THIS s.IMR.rxerr_inte << 2) |
(BX_NE2K_THIS s.IMR.tx_inte << 1) |
(BX_NE2K_THIS s.IMR.rx_inte));
if (value == 0)
set_irq_level(0);
break;
case 0x8: // RSAR0
// Clear out low byte and re-insert
BX_NE2K_THIS s.remote_start &= 0xff00;
BX_NE2K_THIS s.remote_start |= (value & 0xff);
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.remote_start;
break;
case 0x9: // RSAR1
// Clear out high byte and re-insert
BX_NE2K_THIS s.remote_start &= 0x00ff;
BX_NE2K_THIS s.remote_start |= ((value & 0xff) << 8);
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.remote_start;
break;
case 0xa: // RBCR0
// Clear out low byte and re-insert
BX_NE2K_THIS s.remote_bytes &= 0xff00;
BX_NE2K_THIS s.remote_bytes |= (value & 0xff);
break;
case 0xb: // RBCR1
// Clear out high byte and re-insert
BX_NE2K_THIS s.remote_bytes &= 0x00ff;
BX_NE2K_THIS s.remote_bytes |= ((value & 0xff) << 8);
break;
case 0xc: // RCR
// Check if the reserved bits are set
if (value & 0xc0)
BX_INFO(("RCR write, reserved bits set"));
// Set all other bit-fields
BX_NE2K_THIS s.RCR.errors_ok = ((value & 0x01) == 0x01);
BX_NE2K_THIS s.RCR.runts_ok = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.RCR.broadcast = ((value & 0x04) == 0x04);
BX_NE2K_THIS s.RCR.multicast = ((value & 0x08) == 0x08);
BX_NE2K_THIS s.RCR.promisc = ((value & 0x10) == 0x10);
BX_NE2K_THIS s.RCR.monitor = ((value & 0x20) == 0x20);
// Monitor bit is a little suspicious...
if (value & 0x20)
BX_INFO(("RCR write, monitor bit set!"));
break;
case 0xd: // TCR
// Check reserved bits
if (value & 0xe0)
BX_ERROR(("TCR write, reserved bits set"));
// Test loop mode (not supported)
if (value & 0x06) {
BX_NE2K_THIS s.TCR.loop_cntl = (value & 0x6) >> 1;
BX_INFO(("TCR write, loop mode %d not supported", BX_NE2K_THIS s.TCR.loop_cntl));
} else {
BX_NE2K_THIS s.TCR.loop_cntl = 0;
}
// Inhibit-CRC not supported.
if (value & 0x01)
BX_PANIC(("TCR write, inhibit-CRC not supported"));
// Auto-transmit disable very suspicious
if (value & 0x08)
BX_PANIC(("TCR write, auto transmit disable not supported"));
// Allow collision-offset to be set, although not used
BX_NE2K_THIS s.TCR.coll_prio = ((value & 0x08) == 0x08);
break;
case 0xe: // DCR
// the loopback mode is not suppported yet
if (!(value & 0x08)) {
BX_ERROR(("DCR write, loopback mode selected"));
}
// It is questionable to set longaddr and auto_rx, since they
// aren't supported on the ne2000. Print a warning and continue
if (value & 0x04)
BX_INFO(("DCR write - LAS set ???"));
if (value & 0x10)
BX_INFO(("DCR write - AR set ???"));
// Set other values.
BX_NE2K_THIS s.DCR.wdsize = ((value & 0x01) == 0x01);
BX_NE2K_THIS s.DCR.endian = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.DCR.longaddr = ((value & 0x04) == 0x04); // illegal ?
BX_NE2K_THIS s.DCR.loop = ((value & 0x08) == 0x08);
BX_NE2K_THIS s.DCR.auto_rx = ((value & 0x10) == 0x10); // also illegal ?
BX_NE2K_THIS s.DCR.fifo_size = (value & 0x50) >> 5;
break;
case 0xf: // IMR
// Check for reserved bit
if (value & 0x80)
BX_ERROR(("IMR write, reserved bit set"));
// Set other values
BX_NE2K_THIS s.IMR.rx_inte = ((value & 0x01) == 0x01);
BX_NE2K_THIS s.IMR.tx_inte = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.IMR.rxerr_inte = ((value & 0x04) == 0x04);
BX_NE2K_THIS s.IMR.txerr_inte = ((value & 0x08) == 0x08);
BX_NE2K_THIS s.IMR.overw_inte = ((value & 0x10) == 0x10);
BX_NE2K_THIS s.IMR.cofl_inte = ((value & 0x20) == 0x20);
BX_NE2K_THIS s.IMR.rdma_inte = ((value & 0x40) == 0x40);
value2 = ((BX_NE2K_THIS s.ISR.rdma_done << 6) |
(BX_NE2K_THIS s.ISR.cnt_oflow << 5) |
(BX_NE2K_THIS s.ISR.overwrite << 4) |
(BX_NE2K_THIS s.ISR.tx_err << 3) |
(BX_NE2K_THIS s.ISR.rx_err << 2) |
(BX_NE2K_THIS s.ISR.pkt_tx << 1) |
(BX_NE2K_THIS s.ISR.pkt_rx));
if (((value & value2) & 0x7f) == 0) {
set_irq_level(0);
} else {
set_irq_level(1);
}
break;
default:
BX_PANIC(("page 0 write, bad register 0x%02x", offset));
}
}
//
// page1_read/page1_write - These routines handle reads/writes to
// the first page of the DS8390 register file
//
Bit32u bx_ne2k_c::page1_read(Bit32u offset, unsigned int io_len)
{
BX_DEBUG(("page 1 read from register 0x%02x, len=%u", offset, io_len));
if (io_len > 1)
BX_PANIC(("bad length! page 1 read from register 0x%02x, len=%u", offset, io_len));
switch (offset) {
case 0x1: // PAR0-5
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
return (BX_NE2K_THIS s.physaddr[offset - 1]);
break;
case 0x7: // CURR
BX_DEBUG(("returning current page: 0x%02x", (BX_NE2K_THIS s.curr_page)));
return (BX_NE2K_THIS s.curr_page);
case 0x8: // MAR0-7
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
return (BX_NE2K_THIS s.mchash[offset - 8]);
break;
default:
BX_PANIC(("page 1 read register 0x%02x out of range", offset));
}
return (0);
}
void bx_ne2k_c::page1_write(Bit32u offset, Bit32u value, unsigned io_len)
{
BX_DEBUG(("page 1 write to register 0x%02x, len=%u, value=0x%04x", offset,
io_len, value));
switch (offset) {
case 0x1: // PAR0-5
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
BX_NE2K_THIS s.physaddr[offset - 1] = value;
if (offset == 6) {
BX_INFO(("Physical address set to %02x:%02x:%02x:%02x:%02x:%02x",
BX_NE2K_THIS s.physaddr[0],
BX_NE2K_THIS s.physaddr[1],
BX_NE2K_THIS s.physaddr[2],
BX_NE2K_THIS s.physaddr[3],
BX_NE2K_THIS s.physaddr[4],
BX_NE2K_THIS s.physaddr[5]));
}
break;
case 0x7: // CURR
BX_NE2K_THIS s.curr_page = value;
break;
case 0x8: // MAR0-7
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
BX_NE2K_THIS s.mchash[offset - 8] = value;
break;
default:
BX_PANIC(("page 1 write register 0x%02x out of range", offset));
}
}
//
// page2_read/page2_write - These routines handle reads/writes to
// the second page of the DS8390 register file
//
Bit32u bx_ne2k_c::page2_read(Bit32u offset, unsigned int io_len)
{
BX_DEBUG(("page 2 read from register 0x%02x, len=%u", offset, io_len));
if (io_len > 1)
BX_PANIC(("bad length! page 2 read from register 0x%02x, len=%u", offset, io_len));
switch (offset) {
case 0x1: // PSTART
return (BX_NE2K_THIS s.page_start);
case 0x2: // PSTOP
return (BX_NE2K_THIS s.page_stop);
case 0x3: // Remote Next-packet pointer
return (BX_NE2K_THIS s.rempkt_ptr);
case 0x4: // TPSR
return (BX_NE2K_THIS s.tx_page_start);
case 0x5: // Local Next-packet pointer
return (BX_NE2K_THIS s.localpkt_ptr);
case 0x6: // Address counter (upper)
return (BX_NE2K_THIS s.address_cnt >> 8);
case 0x7: // Address counter (lower)
return (BX_NE2K_THIS s.address_cnt & 0xff);
case 0x8: // Reserved
case 0x9:
case 0xa:
case 0xb:
BX_ERROR(("reserved read - page 2, register 0x%02x", offset));
return (0xff);
case 0xc: // RCR
return ((BX_NE2K_THIS s.RCR.monitor << 5) |
(BX_NE2K_THIS s.RCR.promisc << 4) |
(BX_NE2K_THIS s.RCR.multicast << 3) |
(BX_NE2K_THIS s.RCR.broadcast << 2) |
(BX_NE2K_THIS s.RCR.runts_ok << 1) |
(BX_NE2K_THIS s.RCR.errors_ok));
case 0xd: // TCR
return ((BX_NE2K_THIS s.TCR.coll_prio << 4) |
(BX_NE2K_THIS s.TCR.ext_stoptx << 3) |
((BX_NE2K_THIS s.TCR.loop_cntl & 0x3) << 1) |
(BX_NE2K_THIS s.TCR.crc_disable));
case 0xe: // DCR
return (((BX_NE2K_THIS s.DCR.fifo_size & 0x3) << 5) |
(BX_NE2K_THIS s.DCR.auto_rx << 4) |
(BX_NE2K_THIS s.DCR.loop << 3) |
(BX_NE2K_THIS s.DCR.longaddr << 2) |
(BX_NE2K_THIS s.DCR.endian << 1) |
(BX_NE2K_THIS s.DCR.wdsize));
case 0xf: // IMR
return ((BX_NE2K_THIS s.IMR.rdma_inte << 6) |
(BX_NE2K_THIS s.IMR.cofl_inte << 5) |
(BX_NE2K_THIS s.IMR.overw_inte << 4) |
(BX_NE2K_THIS s.IMR.txerr_inte << 3) |
(BX_NE2K_THIS s.IMR.rxerr_inte << 2) |
(BX_NE2K_THIS s.IMR.tx_inte << 1) |
(BX_NE2K_THIS s.IMR.rx_inte));
default:
BX_PANIC(("page 2 register 0x%02x out of range", offset));
}
return (0);
}
void bx_ne2k_c::page2_write(Bit32u offset, Bit32u value, unsigned io_len)
{
// Maybe all writes here should be BX_PANIC()'d, since they
// affect internal operation, but let them through for now
// and print a warning.
BX_ERROR(("page 2 write to register 0x%02x, len=%u, value=0x%04x", offset,
io_len, value));
switch (offset) {
case 0x1: // CLDA0
// Clear out low byte and re-insert
BX_NE2K_THIS s.local_dma &= 0xff00;
BX_NE2K_THIS s.local_dma |= (value & 0xff);
break;
case 0x2: // CLDA1
// Clear out high byte and re-insert
BX_NE2K_THIS s.local_dma &= 0x00ff;
BX_NE2K_THIS s.local_dma |= ((value & 0xff) << 8);
break;
case 0x3: // Remote Next-pkt pointer
BX_NE2K_THIS s.rempkt_ptr = value;
break;
case 0x4:
BX_PANIC(("page 2 write to reserved register 0x04"));
break;
case 0x5: // Local Next-packet pointer
BX_NE2K_THIS s.localpkt_ptr = value;
break;
case 0x6: // Address counter (upper)
// Clear out high byte and re-insert
BX_NE2K_THIS s.address_cnt &= 0x00ff;
BX_NE2K_THIS s.address_cnt |= ((value & 0xff) << 8);
break;
case 0x7: // Address counter (lower)
// Clear out low byte and re-insert
BX_NE2K_THIS s.address_cnt &= 0xff00;
BX_NE2K_THIS s.address_cnt |= (value & 0xff);
break;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
BX_PANIC(("page 2 write to reserved register 0x%02x", offset));
break;
default:
BX_PANIC(("page 2 write, illegal register 0x%02x", offset));
break;
}
}
//
// page3_read/page3_write - writes to this page are illegal
//
Bit32u bx_ne2k_c::page3_read(Bit32u offset, unsigned int io_len)
{
if (BX_NE2K_THIS s.pci_enabled) {
switch (offset) {
case 0x3: // CONFIG0
return (0);
case 0x5: // CONFIG2
return (0x40);
case 0x6: // CONFIG3
return (0x40);
default:
BX_ERROR(("page 3 read register 0x%02x attempted", offset));
return (0);
}
} else {
BX_ERROR(("page 3 read register 0x%02x attempted", offset));
return (0);
}
}
void bx_ne2k_c::page3_write(Bit32u offset, Bit32u value, unsigned io_len)
{
BX_ERROR(("page 3 write register 0x%02x attempted", offset));
}
//
// tx_timer_handler/tx_timer
//
void bx_ne2k_c::tx_timer_handler(void *this_ptr)
{
bx_ne2k_c *class_ptr = (bx_ne2k_c *) this_ptr;
class_ptr->tx_timer();
}
void bx_ne2k_c::tx_timer(void)
{
BX_DEBUG(("tx_timer"));
BX_NE2K_THIS s.CR.tx_packet = 0;
BX_NE2K_THIS s.TSR.tx_ok = 1;
BX_NE2K_THIS s.ISR.pkt_tx = 1;
// Generate an interrupt if not masked
if (BX_NE2K_THIS s.IMR.tx_inte) {
set_irq_level(1);
}
BX_NE2K_THIS s.tx_timer_active = 0;
}
#if BX_SUPPORT_PCI
bx_bool bx_ne2k_c::mem_read_handler(bx_phy_address addr, unsigned len,
void *data, void *param)
{
Bit8u *data_ptr;
Bit32u mask = (BX_NE2K_THIS pci_rom_size - 1);
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
for (unsigned i = 0; i < len; i++) {
if (BX_NE2K_THIS pci_conf[0x30] & 0x01) {
*data_ptr = BX_NE2K_THIS pci_rom[addr & mask];
} else {
*data_ptr = 0xff;
}
addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
return 1;
}
bx_bool bx_ne2k_c::mem_write_handler(bx_phy_address addr, unsigned len,
void *data, void *param)
{
BX_INFO(("write to ROM ignored (addr=0x%08x len=%d)", (Bit32u)addr, len));
return 1;
}
#endif
//
// read_handler/read - i/o 'catcher' function called from BOCHS
// mainline when the CPU attempts a read in the i/o space registered
// by this ne2000 instance
//
Bit32u bx_ne2k_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_NE2K_SMF
bx_ne2k_c *class_ptr = (bx_ne2k_c *) this_ptr;
return class_ptr->read(address, io_len);
}
Bit32u bx_ne2k_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_NE2K_SMF
BX_DEBUG(("read addr %x, len %d", address, io_len));
Bit32u retval = 0;
int offset = address - BX_NE2K_THIS s.base_address;
if (offset >= 0x10) {
retval = asic_read(offset - 0x10, io_len);
} else if (offset == 0x00) {
retval = read_cr();
} else {
switch (BX_NE2K_THIS s.CR.pgsel) {
case 0x00:
retval = page0_read(offset, io_len);
break;
case 0x01:
retval = page1_read(offset, io_len);
break;
case 0x02:
retval = page2_read(offset, io_len);
break;
case 0x03:
retval = page3_read(offset, io_len);
break;
default:
BX_PANIC(("ne2K: unknown value of pgsel in read - %d",
BX_NE2K_THIS s.CR.pgsel));
}
}
return (retval);
}
//
// write_handler/write - i/o 'catcher' function called from BOCHS
// mainline when the CPU attempts a write in the i/o space registered
// by this ne2000 instance
//
void bx_ne2k_c::write_handler(void *this_ptr, Bit32u address, Bit32u value,
unsigned io_len)
{
#if !BX_USE_NE2K_SMF
bx_ne2k_c *class_ptr = (bx_ne2k_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void bx_ne2k_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_NE2K_SMF
BX_DEBUG(("write addr %x, value %x len %d", address, value, io_len));
int offset = address - BX_NE2K_THIS s.base_address;
//
// The high 16 bytes of i/o space are for the ne2000 asic -
// the low 16 bytes are for the DS8390, with the current
// page being selected by the PS0,PS1 registers in the
// command register
//
if (offset >= 0x10) {
asic_write(offset - 0x10, value, io_len);
} else if (offset == 0x00) {
write_cr(value);
} else {
switch (BX_NE2K_THIS s.CR.pgsel) {
case 0x00:
page0_write(offset, value, io_len);
break;
case 0x01:
page1_write(offset, value, io_len);
break;
case 0x02:
page2_write(offset, value, io_len);
break;
case 0x03:
page3_write(offset, value, io_len);
break;
default:
BX_PANIC(("ne2K: unknown value of pgsel in write - %d",
BX_NE2K_THIS s.CR.pgsel));
}
}
}
/*
* mcast_index() - return the 6-bit index into the multicast
* table. Stolen unashamedly from FreeBSD's if_ed.c
*/
unsigned bx_ne2k_c::mcast_index(const void *dst)
{
#define POLYNOMIAL 0x04c11db6
Bit32u crc = 0xffffffffL;
int carry, i, j;
unsigned char b;
unsigned char *ep = (unsigned char *) dst;
for (i = 6; --i >= 0;) {
b = *ep++;
for (j = 8; --j >= 0;) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return (crc >> 26);
#undef POLYNOMIAL
}
/*
* Callback from the eth system driver to check if the device can receive
*/
Bit32u bx_ne2k_c::rx_status_handler(void *arg)
{
bx_ne2k_c *class_ptr = (bx_ne2k_c *) arg;
return class_ptr->rx_status();
}
Bit32u bx_ne2k_c::rx_status()
{
Bit32u status = BX_NETDEV_10MBIT;
if ((BX_NE2K_THIS s.CR.stop == 0) &&
(BX_NE2K_THIS s.page_start != 0) &&
((BX_NE2K_THIS s.DCR.loop != 0) ||
(BX_NE2K_THIS s.TCR.loop_cntl == 0))) {
status |= BX_NETDEV_RXREADY;
}
return status;
}
/*
* Callback from the eth system driver when a frame has arrived
*/
void bx_ne2k_c::rx_handler(void *arg, const void *buf, unsigned len)
{
// BX_DEBUG(("rx_handler with length %d", len));
bx_ne2k_c *class_ptr = (bx_ne2k_c *) arg;
class_ptr->rx_frame(buf, len);
}
/*
* rx_frame() - called by the platform-specific code when an
* ethernet frame has been received. The destination address
* is tested to see if it should be accepted, and if the
* rx ring has enough room, it is copied into it and
* the receive process is updated
*/
void bx_ne2k_c::rx_frame(const void *buf, unsigned io_len)
{
int pages;
int avail;
unsigned idx;
int wrapped;
int nextpage;
unsigned char pkthdr[4];
unsigned char *pktbuf = (unsigned char *) buf;
unsigned char *startptr;
BX_DEBUG(("rx_frame with length %d", io_len));
if ((BX_NE2K_THIS s.CR.stop != 0) ||
(BX_NE2K_THIS s.page_start == 0) ||
((BX_NE2K_THIS s.DCR.loop == 0) &&
(BX_NE2K_THIS s.TCR.loop_cntl != 0))) {
return;
}
// Add the pkt header + CRC to the length, and work
// out how many 256-byte pages the frame would occupy
pages = (io_len + 4 + 4 + 255)/256;
if (BX_NE2K_THIS s.curr_page < BX_NE2K_THIS s.bound_ptr) {
avail = BX_NE2K_THIS s.bound_ptr - BX_NE2K_THIS s.curr_page;
} else {
avail = (BX_NE2K_THIS s.page_stop - BX_NE2K_THIS s.page_start) -
(BX_NE2K_THIS s.curr_page - BX_NE2K_THIS s.bound_ptr);
wrapped = 1;
}
// Avoid getting into a buffer overflow condition by not attempting
// to do partial receives. The emulation to handle this condition
// seems particularly painful.
if ((avail < pages)
#if BX_NE2K_NEVER_FULL_RING
|| (avail == pages)
#endif
) {
return;
}
if ((io_len < 60) && !BX_NE2K_THIS s.RCR.runts_ok) {
BX_DEBUG(("rejected small packet, length %d", io_len));
return;
}
// Do address filtering if not in promiscuous mode
if (! BX_NE2K_THIS s.RCR.promisc) {
if (!memcmp(buf, broadcast_macaddr, 6)) {
if (!BX_NE2K_THIS s.RCR.broadcast) {
return;
}
} else if (pktbuf[0] & 0x01) {
if (! BX_NE2K_THIS s.RCR.multicast) {
return;
}
idx = mcast_index(buf);
if (!(BX_NE2K_THIS s.mchash[idx >> 3] & (1 << (idx & 0x7)))) {
return;
}
} else if (0 != memcmp(buf, BX_NE2K_THIS s.physaddr, 6)) {
return;
}
} else {
BX_DEBUG(("rx_frame promiscuous receive"));
}
// BX_INFO(("rx_frame %d to %x:%x:%x:%x:%x:%x from %x:%x:%x:%x:%x:%x",
// io_len,
// pktbuf[0], pktbuf[1], pktbuf[2], pktbuf[3], pktbuf[4], pktbuf[5],
// pktbuf[6], pktbuf[7], pktbuf[8], pktbuf[9], pktbuf[10], pktbuf[11]));
nextpage = BX_NE2K_THIS s.curr_page + pages;
if (nextpage >= BX_NE2K_THIS s.page_stop) {
nextpage -= BX_NE2K_THIS s.page_stop - BX_NE2K_THIS s.page_start;
}
// Setup packet header
pkthdr[0] = 0; // rx status - old behavior
pkthdr[0] = 1; // Probably better to set it all the time
// rather than set it to 0, which is clearly wrong.
if (pktbuf[0] & 0x01) {
pkthdr[0] |= 0x20; // rx status += multicast packet
}
pkthdr[1] = nextpage; // ptr to next packet
pkthdr[2] = (io_len + 4) & 0xff; // length-low
pkthdr[3] = (io_len + 4) >> 8; // length-hi
// copy into buffer, update curpage, and signal interrupt if config'd
startptr = & BX_NE2K_THIS s.mem[BX_NE2K_THIS s.curr_page * 256 -
BX_NE2K_MEMSTART];
if ((nextpage > BX_NE2K_THIS s.curr_page) ||
((BX_NE2K_THIS s.curr_page + pages) == BX_NE2K_THIS s.page_stop)) {
memcpy(startptr, pkthdr, 4);
memcpy(startptr + 4, buf, io_len);
BX_NE2K_THIS s.curr_page = nextpage;
} else {
int endbytes = (BX_NE2K_THIS s.page_stop - BX_NE2K_THIS s.curr_page)
* 256;
memcpy(startptr, pkthdr, 4);
memcpy(startptr + 4, buf, endbytes - 4);
startptr = & BX_NE2K_THIS s.mem[BX_NE2K_THIS s.page_start * 256 -
BX_NE2K_MEMSTART];
memcpy(startptr, (void *)(pktbuf + endbytes - 4),
io_len - endbytes + 8);
BX_NE2K_THIS s.curr_page = nextpage;
}
BX_NE2K_THIS s.RSR.rx_ok = 1;
BX_NE2K_THIS s.RSR.rx_mbit = (bx_bool)((pktbuf[0] & 0x01) > 0);
BX_NE2K_THIS s.ISR.pkt_rx = 1;
if (BX_NE2K_THIS s.IMR.rx_inte) {
set_irq_level(1);
}
bx_gui->statusbar_setitem(BX_NE2K_THIS s.statusbar_id, 1);
}
void bx_ne2k_c::set_irq_level(bx_bool level)
{
if (BX_NE2K_THIS s.pci_enabled) {
#if BX_SUPPORT_PCI
DEV_pci_set_irq(BX_NE2K_THIS s.devfunc, BX_NE2K_THIS pci_conf[0x3d], level);
#endif
} else {
if (level) {
DEV_pic_raise_irq(BX_NE2K_THIS s.base_irq);
} else {
DEV_pic_lower_irq(BX_NE2K_THIS s.base_irq);
}
}
}
#if BX_SUPPORT_PCI
// pci configuration space read callback handler
Bit32u bx_ne2k_c::pci_read_handler(Bit8u address, unsigned io_len)
{
Bit32u value = 0;
for (unsigned i=0; i<io_len; i++) {
value |= (BX_NE2K_THIS pci_conf[address+i] << (i*8));
}
BX_DEBUG(("NE2000 PCI NIC read register 0x%02x value 0x%08x", address, value));
return value;
}
// pci configuration space write callback handler
void bx_ne2k_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len)
{
Bit8u value8, oldval;
bx_bool baseaddr_change = 0;
bx_bool romaddr_change = 0;
if ((address > 0x13) && (address < 0x30))
return;
for (unsigned i=0; i<io_len; i++) {
oldval = BX_NE2K_THIS pci_conf[address+i];
value8 = (value >> (i*8)) & 0xFF;
switch (address+i) {
case 0x04:
value8 &= 0x01;
break;
case 0x3c:
if (value8 != oldval) {
BX_INFO(("new irq line = %d", value8));
}
break;
case 0x10:
value8 = (value8 & 0xfc) | 0x01;
case 0x11:
case 0x12:
case 0x13:
baseaddr_change |= (value8 != oldval);
break;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
if (BX_NE2K_THIS pci_rom_size > 0) {
if ((address+i) == 0x30) {
value8 &= 0x01;
} else if ((address+i) == 0x31) {
value8 &= 0xfc;
}
romaddr_change = 1;
break;
}
default:
value8 = oldval;
}
BX_NE2K_THIS pci_conf[address+i] = value8;
}
if (baseaddr_change) {
if (DEV_pci_set_base_io(BX_NE2K_THIS_PTR, read_handler, write_handler,
&BX_NE2K_THIS s.base_address,
&BX_NE2K_THIS pci_conf[0x10],
32, &ne2k_iomask[0], "NE2000 PCI NIC")) {
BX_INFO(("new base address: 0x%04x", BX_NE2K_THIS s.base_address));
}
}
if (romaddr_change) {
if (DEV_pci_set_base_mem(BX_NE2K_THIS_PTR, mem_read_handler,
mem_write_handler,
&BX_NE2K_THIS pci_rom_address,
&BX_NE2K_THIS pci_conf[0x30],
BX_NE2K_THIS pci_rom_size)) {
BX_INFO(("new ROM address: 0x%08x", BX_NE2K_THIS pci_rom_address));
}
}
if (io_len == 1)
BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value));
else if (io_len == 2)
BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value));
else if (io_len == 4)
BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value));
}
#endif /* BX_SUPPORT_PCI */
#if BX_DEBUGGER
/*
* this implements the info ne2k commands in the debugger.
* info ne2k - shows all registers
* info ne2k page N - shows all registers in a page
* info ne2k page N reg M - shows just one register
*/
#define SHOW_FIELD(reg,field) do { \
if (n>0 && !(n%5)) dbg_printf ("\n "); \
dbg_printf ("%s=%d ", #field, BX_NE2K_THIS s.reg.field); \
n++; \
} while (0);
#define BX_HIGH_BYTE(x) ((0xff00 & (x)) >> 8)
#define BX_LOW_BYTE(x) (0x00ff & (x))
#define BX_DUPLICATE(n) if (brief && num!=n) break;
void bx_ne2k_c::print_info(FILE *fp, int page, int reg, int brief)
{
int i;
int n = 0;
if (page < 0) {
for (page=0; page<=2; page++)
theNE2kDevice->print_info(fp, page, reg, 1);
// tell them how to use this command
dbg_printf("\nHow to use the info ne2k command:\n");
dbg_printf("info ne2k - show all registers\n");
dbg_printf("info ne2k page N - show registers in page N\n");
dbg_printf("info ne2k page N reg M - show just one register\n");
return;
}
if (page > 2) {
dbg_printf("NE2K has only pages 0, 1, and 2. Page %d is out of range.\n", page);
return;
}
if (reg < 0) {
dbg_printf("NE2K registers, page %d\n", page);
dbg_printf("----------------------\n");
for (reg=0; reg<=15; reg++)
theNE2kDevice->print_info (fp, page, reg, 1);
dbg_printf("----------------------\n");
return;
}
if (reg > 15) {
dbg_printf("NE2K has only registers 0-15 (0x0-0xf). Register %d is out of range.\n", reg);
return;
}
if (!brief) {
dbg_printf("NE2K Info - page %d, register 0x%02x\n", page, reg);
dbg_printf("----------------------------------\n");
}
int num = page*0x100 + reg;
switch (num) {
case 0x0000:
case 0x0100:
case 0x0200:
dbg_printf ("CR (Command register):\n ");
SHOW_FIELD(CR, stop);
SHOW_FIELD(CR, start);
SHOW_FIELD(CR, tx_packet);
SHOW_FIELD(CR, rdma_cmd);
SHOW_FIELD(CR, pgsel);
dbg_printf("\n");
break;
case 0x0003:
dbg_printf("BNRY = Boundary Pointer = 0x%02x\n", BX_NE2K_THIS s.bound_ptr);
break;
case 0x0004:
dbg_printf("TSR (Transmit Status Register), read-only:\n ");
SHOW_FIELD(TSR, tx_ok);
SHOW_FIELD(TSR, reserved);
SHOW_FIELD(TSR, collided);
SHOW_FIELD(TSR, aborted);
SHOW_FIELD(TSR, no_carrier);
SHOW_FIELD(TSR, fifo_ur);
SHOW_FIELD(TSR, cd_hbeat);
SHOW_FIELD(TSR, ow_coll);
dbg_printf("\n");
// fall through into TPSR, no break line.
case 0x0204:
dbg_printf("TPSR = Transmit Page Start = 0x%02x\n", BX_NE2K_THIS s.tx_page_start);
break;
case 0x0005:
case 0x0006: BX_DUPLICATE(0x0005);
dbg_printf("NCR = Number of Collisions Register (read-only) = 0x%02x\n", BX_NE2K_THIS s.num_coll);
dbg_printf("TBCR1,TBCR0 = Transmit Byte Count = %02x %02x\n",
BX_HIGH_BYTE(BX_NE2K_THIS s.tx_bytes),
BX_LOW_BYTE(BX_NE2K_THIS s.tx_bytes));
dbg_printf("FIFO = %02x\n", BX_NE2K_THIS s.fifo);
break;
case 0x0007:
dbg_printf("ISR (Interrupt Status Register):\n ");
SHOW_FIELD(ISR, pkt_rx);
SHOW_FIELD(ISR, pkt_tx);
SHOW_FIELD(ISR, rx_err);
SHOW_FIELD(ISR, tx_err);
SHOW_FIELD(ISR, overwrite);
SHOW_FIELD(ISR, cnt_oflow);
SHOW_FIELD(ISR, rdma_done);
SHOW_FIELD(ISR, reset);
dbg_printf("\n");
break;
case 0x0008:
case 0x0009: BX_DUPLICATE(0x0008);
dbg_printf("CRDA1,0 = Current remote DMA address = %02x %02x\n",
BX_HIGH_BYTE(BX_NE2K_THIS s.remote_dma),
BX_LOW_BYTE(BX_NE2K_THIS s.remote_dma));
dbg_printf("RSAR1,0 = Remote start address = %02x %02x\n",
BX_HIGH_BYTE(s.remote_start),
BX_LOW_BYTE(s.remote_start));
break;
case 0x000a:
case 0x000b: BX_DUPLICATE(0x000a);
dbg_printf("RCBR1,0 = Remote byte count = %02x\n", BX_NE2K_THIS s.remote_bytes);
break;
case 0x000c:
dbg_printf("RSR (Receive Status Register), read-only:\n ");
SHOW_FIELD(RSR, rx_ok);
SHOW_FIELD(RSR, bad_crc);
SHOW_FIELD(RSR, bad_falign);
SHOW_FIELD(RSR, fifo_or);
SHOW_FIELD(RSR, rx_missed);
SHOW_FIELD(RSR, rx_mbit);
SHOW_FIELD(RSR, rx_disabled);
SHOW_FIELD(RSR, deferred);
dbg_printf("\n");
// fall through into RCR
case 0x020c:
dbg_printf("RCR (Receive Configuration Register):\n ");
SHOW_FIELD(RCR, errors_ok);
SHOW_FIELD(RCR, runts_ok);
SHOW_FIELD(RCR, broadcast);
SHOW_FIELD(RCR, multicast);
SHOW_FIELD(RCR, promisc);
SHOW_FIELD(RCR, monitor);
SHOW_FIELD(RCR, reserved);
dbg_printf("\n");
break;
case 0x000d:
dbg_printf("CNTR0 = Tally Counter 0 (Frame alignment errors) = %02x\n",
BX_NE2K_THIS s.tallycnt_0);
// fall through into TCR
case 0x020d:
dbg_printf("TCR (Transmit Configuration Register):\n ");
SHOW_FIELD(TCR, crc_disable);
SHOW_FIELD(TCR, loop_cntl);
SHOW_FIELD(TCR, ext_stoptx);
SHOW_FIELD(TCR, coll_prio);
SHOW_FIELD(TCR, reserved);
dbg_printf("\n");
break;
case 0x000e:
dbg_printf("CNTR1 = Tally Counter 1 (CRC Errors) = %02x\n",
BX_NE2K_THIS s.tallycnt_1);
// fall through into DCR
case 0x020e:
dbg_printf("DCR (Data Configuration Register):\n ");
SHOW_FIELD(DCR, wdsize);
SHOW_FIELD(DCR, endian);
SHOW_FIELD(DCR, longaddr);
SHOW_FIELD(DCR, loop);
SHOW_FIELD(DCR, auto_rx);
SHOW_FIELD(DCR, fifo_size);
dbg_printf("\n");
break;
case 0x000f:
dbg_printf("CNTR2 = Tally Counter 2 (Missed Packet Errors) = %02x\n",
BX_NE2K_THIS s.tallycnt_2);
// fall through into IMR
case 0x020f:
dbg_printf("IMR (Interrupt Mask Register)\n ");
SHOW_FIELD(IMR, rx_inte);
SHOW_FIELD(IMR, tx_inte);
SHOW_FIELD(IMR, rxerr_inte);
SHOW_FIELD(IMR, txerr_inte);
SHOW_FIELD(IMR, overw_inte);
SHOW_FIELD(IMR, cofl_inte);
SHOW_FIELD(IMR, rdma_inte);
SHOW_FIELD(IMR, reserved);
dbg_printf("\n");
break;
case 0x0101:
case 0x0102: BX_DUPLICATE(0x0101);
case 0x0103: BX_DUPLICATE(0x0101);
case 0x0104: BX_DUPLICATE(0x0101);
case 0x0105: BX_DUPLICATE(0x0101);
case 0x0106: BX_DUPLICATE(0x0101);
dbg_printf("MAC address registers are located at page 1, registers 1-6.\n");
dbg_printf("The MAC address is ");
for (i=0; i<=5; i++)
dbg_printf("%02x%c", BX_NE2K_THIS s.physaddr[i], i<5?':' : '\n');
break;
case 0x0107:
dbg_printf("Current page is 0x%02x\n", BX_NE2K_THIS s.curr_page);
break;
case 0x0108:
case 0x0109: BX_DUPLICATE(0x0108);
case 0x010A: BX_DUPLICATE(0x0108);
case 0x010B: BX_DUPLICATE(0x0108);
case 0x010C: BX_DUPLICATE(0x0108);
case 0x010D: BX_DUPLICATE(0x0108);
case 0x010E: BX_DUPLICATE(0x0108);
case 0x010F: BX_DUPLICATE(0x0108);
dbg_printf("MAR0-7 (Multicast address registers 0-7) are set to:\n");
for (i=0; i<8; i++) dbg_printf("%02x ", BX_NE2K_THIS s.mchash[i]);
dbg_printf("\nMAR0 is listed first.\n");
break;
case 0x0001:
case 0x0002: BX_DUPLICATE(0x0001);
case 0x0201: BX_DUPLICATE(0x0001);
case 0x0202: BX_DUPLICATE(0x0001);
dbg_printf("PSTART = Page start register = %02x\n", BX_NE2K_THIS s.page_start);
dbg_printf("PSTOP = Page stop register = %02x\n", BX_NE2K_THIS s.page_stop);
dbg_printf("Local DMA address = %02x %02x\n",
BX_HIGH_BYTE(BX_NE2K_THIS s.local_dma),
BX_LOW_BYTE(BX_NE2K_THIS s.local_dma));
break;
case 0x0203:
dbg_printf("Remote Next Packet Pointer = %02x\n", BX_NE2K_THIS s.rempkt_ptr);
break;
case 0x0205:
dbg_printf("Local Next Packet Pointer = %02x\n", BX_NE2K_THIS s.localpkt_ptr);
break;
case 0x0206:
case 0x0207: BX_DUPLICATE(0x0206);
dbg_printf("Address Counter= %02x %02x\n",
BX_HIGH_BYTE(BX_NE2K_THIS s.address_cnt),
BX_LOW_BYTE(BX_NE2K_THIS s.address_cnt));
break;
case 0x0208:
case 0x0209: BX_DUPLICATE(0x0208);
case 0x020A: BX_DUPLICATE(0x0208);
case 0x020B: BX_DUPLICATE(0x0208);
if (!brief) dbg_printf ("Reserved\n");
case 0xffff:
dbg_printf("IMR (Interrupt Mask Register):\n ");
dbg_printf("\n");
break;
default:
dbg_printf("NE2K info: sorry, page %d register %d cannot be displayed.\n", page, reg);
}
if (!brief)
dbg_printf("\n");
}
#else
void bx_ne2k_c::print_info (FILE *fp, int page, int reg, int brief)
{
}
#endif
#endif /* if BX_SUPPORT_NE2K */