Bochs/bochs/fpu/wmFPUemu_glue.cc
Kevin Lawton 07b0df2a8a Updated accessing of modrm/sib addressing information to
use accessors.  This lets me work on compressing the
size of fetch-decode structure (now called bxInstruction_c).

I've reduced it down to about 76 bytes.  We should be able
to do much better soon.  I needed the abstraction of the
accessors, so I have a lot of freedom to re-arrange things
without making massive future changes.

Lost a few percent of performance in these mods, but my
main focus was to get the abstraction.
2002-09-17 22:50:53 +00:00

296 lines
7.8 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// This is the glue logic needed to connect the wm-FPU-emu
// FPU emulator written by Bill Metzenthen to bochs.
//
#include "bochs.h"
#include <math.h>
extern "C" {
#include "fpu_emu.h"
#include "linux/signal.h"
}
#define LOG_THIS genlog->
#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif
// Use this to hold a pointer to the instruction since
// we can't pass this to the FPU emulation routines, which
// will ultimately call routines here.
static bxInstruction_c *fpu_iptr = NULL;
static BX_CPU_C *fpu_cpu_ptr = NULL;
i387_t *current_i387;
extern "C" void
math_emulate2(fpu_addr_modes addr_modes,
u_char FPU_modrm,
u_char byte1,
void *data_address,
struct address data_sel_off,
struct address entry_sel_off);
extern "C" void printfp(char *s, FPU_REG *r);
// This is called by bochs upon reset
void
BX_CPU_C::fpu_init(void)
{
current_i387 = &(BX_CPU_THIS_PTR the_i387);
finit();
}
void
BX_CPU_C::fpu_execute(bxInstruction_c *i)
{
fpu_addr_modes addr_modes;
void *data_address;
struct address data_sel_off;
struct address entry_sel_off;
Boolean is_32;
fpu_iptr = i;
fpu_cpu_ptr = this;
current_i387 = &(BX_CPU_THIS_PTR the_i387);
#if 0
addr_modes.default_mode = VM86;
addr_modes.default_mode = 0; // FPU_CS == __USER_CS && FPU_DS == __USER_DS
addr_modes.default_mode = SEG32;
addr_modes.default_mode = PM16;
#endif
if (protected_mode()) {
addr_modes.default_mode = SEG32;
}
else if (v8086_mode()) {
addr_modes.default_mode = VM86;
}
else {
// real mode, use vm86 for now
addr_modes.default_mode = VM86;
}
// Mark if instruction used opsize or addrsize prefixes
// Actually, addr_modes.override.address_size is not used,
// could delete that code.
is_32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
if (i->as_32 == is_32)
addr_modes.override.address_size = 0;
else
addr_modes.override.address_size = ADDR_SIZE_PREFIX;
if (i->os_32 == is_32)
addr_modes.override.operand_size = 0;
else
addr_modes.override.operand_size = OP_SIZE_PREFIX;
// For now set access_limit to max. It seems to be
// a number from 0..255 denoting how many bytes the
// current instruction can access according to its
// memory operand. 255 means >= 255.
access_limit = 0xff;
// fill in orig eip here in offset
// fill in CS in selector
entry_sel_off.offset = BX_CPU_THIS_PTR prev_eip;
entry_sel_off.selector = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
// should set these fields to 0 if mem operand not used
data_address = (void *) i->rm_addr;
data_sel_off.offset = i->rm_addr;
data_sel_off.selector = BX_CPU_THIS_PTR sregs[i->seg].selector.value;
math_emulate2(addr_modes, i->modrm(), i->b1, data_address,
data_sel_off, entry_sel_off);
}
static double sigh_scale_factor = pow(2.0, -31.0);
static double sigl_scale_factor = pow(2.0, -63.0);
void
BX_CPU_C::fpu_print_regs()
{
Bit32u reg;
reg = i387.soft.cwd;
fprintf(stderr, "cwd 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = i387.soft.swd;
fprintf(stderr, "swd 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = i387.soft.twd;
fprintf(stderr, "twd 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = i387.soft.fip;
fprintf(stderr, "fip 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = i387.soft.fcs;
fprintf(stderr, "fcs 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = i387.soft.foo;
fprintf(stderr, "foo 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = i387.soft.fos;
fprintf(stderr, "fos 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
// print stack too
for (int i=0; i<8; i++) {
FPU_REG *fpr = &st(i);
double f1 = pow(2.0, ((0x7fff&fpr->exp) - EXTENDED_Ebias));
if (fpr->exp & SIGN_Negative) f1 = -f1;
double f2 = ((double)fpr->sigh * sigh_scale_factor);
double f3 = ((double)fpr->sigl * sigl_scale_factor);
double f = f1*(f2+f3);
fprintf(stderr, "st%d %.10f (raw 0x%04x%08x%08x)\n", i, f, 0xffff&fpr->exp, fpr->sigh, fpr->sigl);
}
}
unsigned
fpu_get_ds(void)
{
return(fpu_cpu_ptr->sregs[BX_SEG_REG_DS].selector.value);
}
void
fpu_set_ax(unsigned short val16)
{
// define to set AX in the current CPU -- not ideal.
#undef AX
#define AX (fpu_cpu_ptr->gen_reg[0].word.rx)
AX = val16;
#undef AX
//BX_DEBUG(( "fpu_set_ax(0x%04x)", (unsigned) val16));
}
void
fpu_verify_area(unsigned what, void *ptr, unsigned n)
{
bx_segment_reg_t *seg;
seg = &fpu_cpu_ptr->sregs[fpu_iptr->seg];
if (what == VERIFY_READ) {
fpu_cpu_ptr->read_virtual_checks(seg, PTR2INT(ptr), n);
}
else { // VERIFY_WRITE
fpu_cpu_ptr->write_virtual_checks(seg, PTR2INT(ptr), n);
}
//BX_DEBUG(( "verify_area: 0x%x", PTR2INT(ptr)));
}
void
FPU_printall(void)
{
BX_PANIC(("FPU_printall"));
}
unsigned
fpu_get_user(void *ptr, unsigned len)
{
Bit32u val32;
Bit16u val16;
Bit8u val8;
switch (len) {
case 1:
fpu_cpu_ptr->read_virtual_byte(fpu_iptr->seg, PTR2INT(ptr), &val8);
val32 = val8;
break;
case 2:
fpu_cpu_ptr->read_virtual_word(fpu_iptr->seg, PTR2INT(ptr), &val16);
val32 = val16;
break;
case 4:
fpu_cpu_ptr->read_virtual_dword(fpu_iptr->seg, PTR2INT(ptr), &val32);
break;
default:
BX_PANIC(("fpu_get_user: len=%u", len));
}
return(val32);
}
void
fpu_put_user(unsigned val, void *ptr, unsigned len)
{
Bit32u val32;
Bit16u val16;
Bit8u val8;
switch (len) {
case 1:
val8 = val;
fpu_cpu_ptr->write_virtual_byte(fpu_iptr->seg, PTR2INT(ptr), &val8);
break;
case 2:
val16 = val;
fpu_cpu_ptr->write_virtual_word(fpu_iptr->seg, PTR2INT(ptr), &val16);
break;
case 4:
val32 = val;
fpu_cpu_ptr->write_virtual_dword(fpu_iptr->seg, PTR2INT(ptr), &val32);
break;
default:
BX_PANIC(("fpu_put_user: len=%u", len));
}
}
void
math_abort(struct info *info, unsigned int signal)
{
UNUSED(info); // info is always passed NULL
#if BX_CPU_LEVEL >= 4
// values of signal:
// SIGILL : opcodes which are illegal
// SIGFPE : unmasked FP exception before WAIT or non-control instruction
// SIGSEGV : access data beyond segment violation
switch (signal) {
case SIGFPE:
if (fpu_cpu_ptr->cr0.ne == 0) {
// MSDOS compatibility external interrupt (IRQ13)
BX_PANIC (("math_abort: MSDOS compatibility not supported yet"));
}
fpu_cpu_ptr->exception(BX_MF_EXCEPTION, 0, 0);
// execution does not reach here
case SIGILL:
BX_PANIC (("math_abort: SIGILL not implemented yet."));
break;
case SIGSEGV:
BX_PANIC (("math_abort: SIGSEGV not implemented yet."));
break;
}
#else
UNUSED(signal);
BX_INFO(("math_abort: CPU<4 not supported yet"));
#endif
}
int
printk(const char * fmt, ...)
{
BX_INFO(("printk not complete: %s", fmt));
return(0); // for now
}